Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 158, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331736

RESUMEN

BACKGROUND: Studies have confirmed that Infectious bovine rhinotracheitis virus (IBRV) infection induces mitochondrial damage. MicroRNAs (miRNAs) are a class of noncoding RNA molecules, which are involved in various biological processes and pathological changes associated with mitochondrial damage. It is currently unclear whether miRNAs participate in IBRV-induced mitochondrial damage in Madin-Darby bovine kidney (MDBK) cells. RESULTS: In the present study, we used high-throughput sequencing technology, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to screen for mitochondria-related miRNAs and messenger RNAs (mRNAs). In total, 279 differentially expressed miRNAs and 832 differentially expressed mRNAs were identified in 6 hours (IBRV1) versus 24 hours (IBRV2) after IBRV infection in MDBK cells. GO and KEGG enrichment analysis revealed that 42 differentially expressed mRNAs and 348 target genes of differentially expressed miRNAs were correlated with mitochondrial damage, and the miRNA-mitochondria-related target genes regulatory network was constructed to elucidate their potential regulatory relationships. Among the 10 differentially expressed miRNAs, 8 showed expression patterns consistent with the high-throughput sequencing results. Functional validation results showed that overexpression of miR-10a and miR-182 aggravated mitochondrial damage, while inhibition of miR-10a and miR-182 alleviated mitochondrial damage. CONCLUSIONS: This study not only revealed the expression changes of miRNAs and mRNAs in IBRV-infected MDBK cells, but also revealed possible biological regulatory relationship between them. MiR-10a and miR-182 may have the potential to be developed as biomarkers for the diagnosis and treatment of IBRV. Together, Together, these data and analyses provide additional insights into the roles of miRNA and mRNA in IBRV-induced mitochondria damage.


Asunto(s)
Herpesvirus Bovino 1 , MicroARNs , Animales , Bovinos , MicroARNs/genética , MicroARNs/metabolismo , Herpesvirus Bovino 1/genética , Células Epiteliales/metabolismo , Riñón/metabolismo , Redes Reguladoras de Genes , ARN Mensajero/genética , Perfilación de la Expresión Génica
2.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L754-L769, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625125

RESUMEN

Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.


Asunto(s)
Mitocondrias , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Animales , Mucosa Respiratoria/patología , Mucosa Respiratoria/metabolismo , Células Epiteliales/patología , Células Epiteliales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Curr Issues Mol Biol ; 46(3): 1700-1712, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38534726

RESUMEN

Vitamin K2 (MK-7) has been shown to cause significant changes in different physiological processes and diseases, but its role in acute lung injury (ALI) is unclear. Therefore, in this study, we aimed to evaluate the protective effects of VK2 against LPS-induced ALI in mice. The male C57BL/6J mice were randomly divided into six groups (n = 7): the control group, LPS group, negative control group (LPS + Oil), positive control group (LPS + DEX), LPS + VK2 (L) group (VK2, 1.5 mg/kg), and LPS + VK2 (H) group (VK2, 15 mg/kg). Hematoxylin-eosin (HE) staining of lung tissue was performed. Antioxidant superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities, and the Ca2+ level in the lung tissue were measured. The effects of VK2 on inflammation, apoptosis, tight junction (TJ) injury, mitochondrial dysfunction, and autophagy were quantitatively assessed using Western blot analysis. Compared with the LPS group, VK2 improved histopathological changes; alleviated inflammation, apoptosis, and TJ injury; increased antioxidant enzyme activity; reduced Ca2+ overload; regulated mitochondrial function; and inhibited lung autophagy. These results indicate that VK2 could improve tight junction protein loss, inflammation, and cell apoptosis in LPS-induced ALI by inhibiting the mitochondrial dysfunction and excessive autophagy, indicating that VK2 plays a beneficial role in ALI and might be a potential therapeutic strategy.

4.
Apoptosis ; 29(7-8): 1109-1125, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38796567

RESUMEN

Podocyte apoptosis or loss is the pivotal pathological characteristic of diabetic kidney disease (DKD). Insulin-like growth factor-binding protein 2 (IGFBP2) have a proinflammatory and proapoptotic effect on diseases. Previous studies have shown that serum IGFBP2 level significantly increased in DKD patients, but the precise mechanisms remain unclear. Here, we found that IGFBP2 levels obviously increased under a diabetic state and high glucose stimuli. Deficiency of IGFBP2 attenuated the urine protein, renal pathological injury and glomeruli hypertrophy of DKD mice induced by STZ, and knockdown or deletion of IGFBP2 alleviated podocytes apoptosis induced by high concentration of glucose or in DKD mouse. Furthermore, IGFBP2 facilitated apoptosis, which was characterized by increase in inflammation and oxidative stress, by binding with integrin α5 (ITGA5) of podocytes, and then activating the phosphorylation of focal adhesion kinase (FAK)-mediated mitochondrial injury, including membrane potential decreasing, ROS production increasing. Moreover, ITGA5 knockdown or FAK inhibition attenuated the podocyte apoptosis caused by high glucose or IGFBP2 overexpression. Taken together, these findings unveiled the insight mechanism that IGFBP2 increased podocyte apoptosis by mitochondrial injury via ITGA5/FAK phosphorylation pathway in DKD progression, and provided the potential therapeutic strategies for diabetic kidney disease.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Mitocondrias , Podocitos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Podocitos/metabolismo , Podocitos/patología , Animales , Ratones , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/genética , Masculino , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Estrés Oxidativo , Integrina alfa5/metabolismo , Integrina alfa5/genética , Ratones Endogámicos C57BL , Transducción de Señal , Fosforilación , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Ratones Noqueados , Integrinas
5.
Apoptosis ; 29(7-8): 1211-1231, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38622369

RESUMEN

The high heterogeneity of breast cancer (BC) caused by pathogenic gene mutations poses a challenge to immunotherapy, but the underlying mechanism remains unknown. The difference in the infiltration of M1 macrophages induced by TP53 mutations has a significant impact on BC immunotherapy. The aim of this study was to develop a TP53-related M1 macrophage infiltration molecular typing risk signature in BC and evaluate the biological functions of the key gene to find new immunotherapy biomarkers. Weighted correlation network analysis (WGCNA) and negative matrix factorization (NMF) were used for distinguishing BC subtypes. The signature and the nomogram were both constructed and evaluated. Biological functions of the novel signature gene SLC2A6 were confirmed through in vitro and in vivo experiments. RNA-Sequencing and protein profiling were used for detecting the possible mechanism of SLC2A6. The results suggested that four BC subtypes were distinguished by TP53-related genes that affect M1 macrophage infiltration. The signature constructed by molecular typing characteristics could evaluate BC's clinical features and tumor microenvironment. The nomogram could accurately predict the prognosis. The signature gene SLC2A6 was found to have an abnormally low expression in tumor tissues. Overexpression of SLC2A6 could inhibit proliferation, promote mitochondrial damage, and result in apoptosis of tumor cells. The HSP70 family member protein HSPA6 could bind with SLC2A6 and increase with the increased expression of SLC2A6. In summary, the risk signature provides a reference for BC risk assessment, and the signature gene SLC2A6 could act as a tumor suppressor in BC.


Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Macrófagos , Proteína p53 Supresora de Tumor , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/inmunología , Femenino , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Animales , Pronóstico , Factores Protectores , Ratones , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Apoptosis/genética , Nomogramas , Proliferación Celular/genética
6.
Small ; 20(25): e2309487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38197548

RESUMEN

Cellular senescence, a vulnerable state of growth arrest, has been regarded as a potential strategy to weaken the resistance of tumor cells, leading to dramatic improvements in treatment efficacy. However, a selective and efficient strategy for inducing local tumor cellular senescence has not yet been reported. Herein, piezoelectric catalysis is utilized to reduce intracellular NAD+ to NADH for local tumor cell senescence for the first time. In detail, a biocompatible nanomedicine (BTO/Rh-D@M) is constructed by wrapping the piezoelectric BaTiO3/(Cp*RhCl2)2 (BTO/Rh) and doxorubicin (DOX) in the homologous cytomembrane with tumor target. After tumors are stimulated by ultrasound, negative and positive charges are generated on the BTO/Rh by piezoelectric catalysis, which reduce the intracellular NAD+ to NADH for cellular senescence and oxidize H2O to reactive oxygen species (ROS) for mitochondrial damage. Thus, the therapeutic efficacy of tumor immunogenic cell death-induced chemo-immunotherapy is boosted by combining cellular senescence, DOX, and ROS. The results indicate that 23.9% of the piezoelectric catalysis-treated tumor cells senesced, and solid tumors in mice disappeared completely after therapy. Collectively, this study highlights a novel strategy to realize cellular senescence utilizing piezoelectric catalysis and the significance of inducing tumor cellular senescence to improve therapeutic efficacy.


Asunto(s)
Senescencia Celular , Doxorrubicina , Inmunoterapia , Especies Reactivas de Oxígeno , Senescencia Celular/efectos de los fármacos , Animales , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Catálisis , Especies Reactivas de Oxígeno/metabolismo , Ratones , Inmunoterapia/métodos , NAD/metabolismo , NAD/química , Línea Celular Tumoral , Humanos , Titanio/química , Titanio/farmacología , Neoplasias/terapia , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Rodio/química , Rodio/farmacología , Compuestos de Bario
7.
J Transl Med ; 22(1): 494, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790051

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM), a serious complication of diabetes, leads to structural and functional abnormalities of the heart and ultimately evolves to heart failure. IL-37 exerts a substantial influence on the regulation of inflammation and metabolism. Whether IL-37 is involved in DCM is unknown. METHODS: The plasma samples were collected from healthy controls, diabetic patients and DCM patients, and the level of IL-37 and its relationship with heart function were observed. The changes in cardiac function, myocardial fibrosis and mitochondrial injury in DCM mice with or without IL-37 intervention were investigated in vivo. By an in vitro co-culture approach involving HG challenge of cardiomyocytes and fibroblasts, the interaction carried out by cardiomyocytes on fibroblast profibrotic activation was studied. Finally, the possible interactive mediator between cardiomyocytes and fibroblasts was explored, and the intervention role of IL-37 and its relevant molecular mechanisms. RESULTS: We showed that the level of plasma IL-37 in DCM patients was upregulated compared to that in healthy controls and diabetic patients. Both recombinant IL-37 administration or inducing IL-37 expression alleviated cardiac dysfunction and myocardial fibrosis in DCM mice. Mechanically, hyperglycemia impaired mitochondria through SIRT1/AMPK/PGC1α signaling, resulting in significant cardiomyocyte apoptosis and the release of extracellular vesicles containing mtDNA. Fibroblasts then engulfed these mtDNA-enriched vesicles, thereby activating TLR9 signaling and the cGAS-STING pathway to initiate pro-fibrotic process and adverse remodeling. However, the presence of IL-37 ameliorated mitochondrial injury by preserving the activity of SIRT1-AMPK-PGC1α axis, resulting in a reduction in release of mtDNA-enriched vesicle and ultimately attenuating the progression of DCM. CONCLUSIONS: Collectively, our study demonstrates a protective role of IL-37 in DCM, offering a promising therapeutic agent for this disease.


Asunto(s)
ADN Mitocondrial , Cardiomiopatías Diabéticas , Fibrosis , Interleucina-1 , Miocitos Cardíacos , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Apoptosis/efectos de los fármacos , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , ADN Mitocondrial/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Interleucina-1/metabolismo , Ratones Endogámicos C57BL , Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo
8.
Microb Pathog ; 192: 106719, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810768

RESUMEN

Cimicifugae rhizoma is a traditional Chinese herbal medicine in China, and modern pharmacological research showed that it has obvious antiviral activity. Many polysaccharides have been proved to have immune enhancement and antiviral activity, but there are few studies on the biological activity of Cimicifuga rhizoma polysaccharide (CRP). The aim was to explore the character of CRP and its effects on improving immune activity and inhibiting transmissible gastroenteritis virus (TGEV). The monosaccharide composition, molecular weight, fourier transform infrared spectra and electron microscopy analysis of CRP was measured. The effect of CRP on immune activity in lymphocytes and RAW264.7 cells were studied by colorimetry, FITC-OVA fluorescent staining and ELISA. The effect of CRP on TGEV-infected PK-15 cells was determined using Real-time PCR, Hoechst fluorescence staining, trypan blue staining, acridine orange staining, Annexin V-FITC/PI fluorescent staining, DCFH-DA loading probe, and JC-1 staining. Network pharmacology was used to predict the targets of CRP in enhancing immunity and anti-TGEV, and molecular docking was used to further analyze the binding mode between CPR and core targets. The results showed that CRP was mainly composed of glucose and galactose, and its molecular weight was 64.28 kDa. The content of iNOS and NO in CRP group were significantly higher than the control group. CRP (125 and 62.5 µg/mL) could significantly enhance the phagocytic capacity of RAW264.7 cells, and imprive the content of IL-1ß content compared with control group. 250 µg/mL of CRP possessed the significant inhibitory effect on TGEV, which could significantly reduce the apoptosis compared to TGVE group and inhibit the decrease in mitochondrial membrane potential compared to TGVE group. The mRNA expression of TGEV N gene in CRP groups was significantly lower than TGEV group. PPI showed that the core targets of immune-enhancing were AKT1, MMP9, HSP90AA1, etc., and the core targets of TGE were CASP3, MMP9, EGFR, etc. Molecular docking show that CRP has binding potential with target. These results indicated that CRP possessed the better immune enhancement effect and anti-TGEV activity.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Polisacáridos , Virus de la Gastroenteritis Transmisible , Animales , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Células RAW 264.7 , Virus de la Gastroenteritis Transmisible/efectos de los fármacos , Antivirales/farmacología , Rizoma/química , Interleucina-1beta/metabolismo , Peso Molecular , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Línea Celular , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Espectroscopía Infrarroja por Transformada de Fourier , Monosacáridos , Óxido Nítrico/metabolismo , Factores Inmunológicos/farmacología
9.
Cell Commun Signal ; 22(1): 231, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637880

RESUMEN

BACKGROUND: Neurodegenerative diseases are increasingly recognized for their association with oxidative stress, which leads to progressive dysfunction and loss of neurons, manifesting in cognitive and motor impairments. This study aimed to elucidate the neuroprotective role of peroxiredoxin II (Prx II) in counteracting oxidative stress-induced mitochondrial damage, a key pathological feature of neurodegeneration. METHODS: We investigated the impact of Prx II deficiency on endoplasmic reticulum stress and mitochondrial dysfunction using HT22 cell models with knocked down and overexpressed Prx II. We observed alcohol-treated HT22 cells using transmission electron microscopy and monitored changes in the length of mitochondria-associated endoplasmic reticulum membranes and their contact with endoplasmic reticulum mitochondria contact sites (EMCSs). Additionally, RNA sequencing and bioinformatic analysis were conducted to identify the role of Prx II in regulating mitochondrial transport and the formation of EMCSs. RESULTS: Our results indicated that Prx II preserves mitochondrial integrity by facilitating the formation of EMCSs, which are essential for maintaining mitochondrial Ca2+ homeostasis and preventing mitochondria-dependent apoptosis. Further, we identified a novel regulatory axis involving Prx II, the transcription factor ATF3, and miR-181b-5p, which collectively modulate the expression of Armcx3, a protein implicated in mitochondrial transport. Our findings underscore the significance of Prx II in protecting neuronal cells from alcohol-induced oxidative damage and suggest that modulating the Prx II-ATF3-miR-181b-5p pathway may offer a promising therapeutic strategy against neurodegenerative diseases. CONCLUSIONS: This study not only expands our understanding of the cytoprotective mechanisms of Prx II but also offers necessary data for developing targeted interventions to bolster mitochondrial resilience in neurodegenerative conditions.


Asunto(s)
MicroARNs , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Apoptosis , Estrés del Retículo Endoplásmico , MicroARNs/metabolismo
10.
Cell Commun Signal ; 22(1): 383, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075489

RESUMEN

BACKGROUND: Acute hypobaric hypoxia-induced brain injury has been a challenge in the health management of mountaineers; therefore, new neuroprotective agents are urgently required. Meldonium, a well-known cardioprotective drug, has been reported to have neuroprotective effects. However, the relevant mechanisms have not been elucidated. We hypothesized that meldonium may play a potentially novel role in hypobaric hypoxia cerebral injury. METHODS: We initially evaluated the neuroprotection efficacy of meldonium against acute hypoxia in mice and primary hippocampal neurons. The potential molecular targets of meldonium were screened using drug-target binding Huprot™ microarray chip and mass spectrometry analyses after which they were validated with surface plasmon resonance (SPR), molecular docking, and pull-down assay. The functional effects of such binding were explored through gene knockdown and overexpression. RESULTS: The study clearly shows that pretreatment with meldonium rapidly attenuates neuronal pathological damage, cerebral blood flow changes, and mitochondrial damage and its cascade response to oxidative stress injury, thereby improving survival rates in mice brain and primary hippocampal neurons, revealing the remarkable pharmacological efficacy of meldonium in acute high-altitude brain injury. On the one hand, we confirmed that meldonium directly interacts with phosphoglycerate kinase 1 (PGK1) to promote its activity, which improved glycolysis and pyruvate metabolism to promote ATP production. On the other hand, meldonium also ameliorates mitochondrial damage by PGK1 translocating to mitochondria under acute hypoxia to regulate the activity of TNF receptor-associated protein 1 (TRAP1) molecular chaperones. CONCLUSION: These results further explain the mechanism of meldonium as an energy optimizer and provide a strategy for preventing acute hypobaric hypoxia brain injury at high altitudes.


Asunto(s)
Lesiones Encefálicas , Fosfoglicerato Quinasa , Animales , Fosfoglicerato Quinasa/metabolismo , Fosfoglicerato Quinasa/genética , Ratones , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/metabolismo , Hipoxia/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
11.
Mol Biol Rep ; 51(1): 607, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704801

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) is a critical neurological condition with few treatment options, where secondary immune responses and specific cell death forms, like pyroptosis, worsen brain damage. Pyroptosis involves gasdermin-mediated membrane pores, increasing inflammation and neural harm, with the NLRP3/Caspase-1/GSDMD pathway being central to this process. Peroxiredoxin II (Prx II), recognized for its mitochondrial protection and reactive oxygen species (ROS) scavenging abilities, appears as a promising neuronal pyroptosis modulator. However, its exact role and action mechanisms need clearer definition. This research aims to explore Prx II impact on neuronal pyroptosis and elucidate its mechanisms, especially regarding endoplasmic reticulum (ER) stress and oxidative stress-induced neuronal damage modulation. METHODS AND RESULTS: Utilizing MTT assays, Microscopy, Hoechst/PI staining, Western blotting, and immunofluorescence, we found Prx II effectively reduces LPS/ATP-induced pyroptosis and neuroinflammation in HT22 hippocampal neuronal cells. Our results indicate Prx II's neuroprotective actions are mediated through PI3K/AKT activation and ER stress pathway inhibition, diminishing mitochondrial dysfunction and decreasing neuronal pyroptosis through the ROS/MAPK/NF-κB pathway. These findings highlight Prx II potential therapeutic value in improving intracerebral hemorrhage outcomes by lessening secondary brain injury via critical signaling pathway modulation involved in neuronal pyroptosis. CONCLUSIONS: Our study not only underlines Prx II importance in neuroprotection but also opens new therapeutic intervention avenues in intracerebral hemorrhage, stressing the complex interplay between redox regulation, ER stress, and mitochondrial dynamics in neuroinflammation and cell death management.


Asunto(s)
Estrés del Retículo Endoplásmico , Estrés Oxidativo , Peroxirredoxinas , Piroptosis , Animales , Ratones , Línea Celular , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/complicaciones , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Peroxirredoxinas/metabolismo , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
12.
J Biochem Mol Toxicol ; 38(1): e23529, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37702290

RESUMEN

Ionizing radiation interacts with the immune system and induces molecular damage in the cellular milieu by generating reactive oxygen species (ROS) leading to cell death. The present study was performed to investigate the protective efficacy of N-acetyl-L-tryptophan (NAT) against gamma-radiation-induced cell death in murine macrophage J774A.1 cells. The radioprotective efficacy of NAT was evaluated in terms of cell survivability, effect on antioxidant enzyme activity, and free radicals inhibition. Radioprotective efficacy of NAT pretreatment to irradiated cells was assessed via cell cycle progression, mitochondrial membrane potential (MMP) perturbation, and apoptosis regulation using flow cytometry. Results of the study demonstrated significant radioprotective efficacy (>80%) of NAT in irradiated cells as estimated by sulforhodamine B (SRB), MTT, and clonogenic assay. Significant (p < 0.001) reduction in ROS, xanthine oxidase, and mitochondrial superoxide levels along with increment in catalase, glutathione-s-transferase, glutathione, and ATPase activities in NAT pretreated plus irradiated cells was observed as compared to the gamma-irradiated cells. Further, significant (p < 0.001) stabilization of MMP and reduction in apoptosis was also observed in NAT pretreated plus irradiated cells as compared to irradiated cells that not pretreated with NAT. The current study demonstrates that NAT pretreatment to irradiated cells protects against gamma radiation-induced cell death by reducing oxidative stress, stabilizing MMP, and inhibiting apoptosis. These observations conclusively highlight the potential of developing NAT as a prospective radioprotective agent upon further validation using in-depth preclinical assessment in cellular and animal models.


Asunto(s)
Enfermedades Mitocondriales , Protectores contra Radiación , Animales , Ratones , Triptófano/farmacología , Triptófano/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estudios Prospectivos , Muerte Celular , Apoptosis , Estrés Oxidativo , Oxidación-Reducción , Macrófagos/metabolismo , Homeostasis , Enfermedades Mitocondriales/metabolismo , Protectores contra Radiación/farmacología , Antioxidantes/farmacología
13.
J Asthma ; : 1-18, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294718

RESUMEN

OBJECTIVE: At present, targeting molecular-pharmacological therapy is still difficult in neutrophilic asthma. The investigation aims to identify and validate mitochondrion-related gene signatures for diagnosis and specific targeting therapeutics in neutrophilic asthma. METHODS: Bronchial biopsy samples of neutrophilic asthma and healthy people were identified from the GSE143303 dataset and then matched with human mitochondrial gene data to obtain mitochondria-related differential genes (MitoDEGs). Signature mitochondria-related diagnostic markers were jointly screened by support vector machine (SVM) analysis, least absolute shrinkage, and selection operator (LASSO) regression. The expression of marker MitoDEGs was evaluated by validation datasets GSE147878 and GSE43696. The diagnostic value was evaluated by receiver operating characteristic (ROC) curve analysis. Meanwhile, the infiltrating immune cells were analyzed by the CIBERSORT. Finally, oxidative stress level and mitochondrial functional morphology for asthmatic mice and BEAS-2B cells were evaluated. The expression of signature MitoDEGs was verified by qPCR. RESULTS: 67 MitoDEGs were identified. Five signature MitoDEGs (SOD2, MTHFD2, PPTC7, NME6, and SLC25A18) were further screened out. The area under the curve (AUC) of signature MitoDEGs presented a good diagnostic performance (more than 0.9). There were significant differences in the expression of signature MitoDEGs between neutrophilic asthma and non-neutrophilic asthma. In addition, the basic features of mitochondrial dysfunction were demonstrated by in vitro and in vivo experiments. The expression of signature MitoDEGs in the neutrophilic asthma mice presented a significant difference from the control group. CONCLUSIONS: These MitoDEGs signatures in neutrophilic asthma may hold potential as anchor diagnostic and therapeutic targets in neutrophilic asthma.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38475937

RESUMEN

Supramolecular nanoparticles containing peptides and drugs have recently gained recognition as an effective tumor treatment drug delivery system. A multitarget drug termed pemetrexed is effective against various cancers, including nonsmall cell lung cancer. The work aims to establish the capability of pemetrexed gold nanoparticles (PEM-AuNPs) to induce apoptosis and explore molecular changes. X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscope, and transmission electron microscope were used to investigate the synthesized nanoparticles. The MTT assay was utilized to investigate the anticancer properties of PEM-AuNPs at varying concentrations (50, 100, and 200 µM). PEM-AuNPs demonstrated a decrease in cell viability with 55.87%, 43.04%, and 25.59% for A549 cells and 54.31%, 37.40%, and 25.84% for H1299 cells at the respective concentrations. To assess apoptosis and perform morphological analysis, diverse biochemical staining techniques, including acridine orange-ethidium bromide and 4',6-diamidino-2-phenylindole nuclear staining assays, were employed. Additionally, 2',7'-dichlorofluorescein diacetate staining confirmed the induction of reactive oxygen species generation, while JC-1 staining validated the impact on the mitochondrial membrane at the IC50 concentration of PEM-AuNPs. Thus, the study demonstrated that the synthesized  PEM-AuNPs exhibited enhanced anticancer activity against both A549 and H1299 cells.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38837810

RESUMEN

The most effective drug, doxorubicin (DOX), is widely used worldwide for clinical application as an anticancer drug. DOX-induced cytotoxicity is characterized by mitochondrial dysfunction. There is no alternative treatment against DOX-induced cardiac damage despite intensive research in the present decades. Ohwia caudata has emerged as a potential herbal remedy that prevents from DOX-induced cytotoxicity owing to its pharmacological action of sustaining mitochondrial dynamics by attenuating oxidative stress and inducing cellular longevity. However, its underlying mechanisms are unknown. The novel treatment provided here depends on new evidence from DOX-treated H9c2 cells, which significantly enhanced insulin-like growth factor (IGF) II receptor (IGF-IIR) pathways that activated calcineurin and phosphorylated dynamin-related protein 1 (p-Drp1) at ser616 (p-Drp1[ser616]); cells undergo apoptosis due to these factors, which translocate to mitochondria and disrupt their function and integrity, and in terms of herbal medicine treatment, which significantly blocked these phenomena. Thus, our findings indicate that maintaining integrity of mitochondria is an essential element in lowering DOX-induced cytotoxicity, which further emphasizes that our herbal medicine can successfully block IGF-IIR pathways and could potentially act as an alternative mechanism in terms of cardioprotective against doxorubicin.

16.
J Appl Toxicol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778435

RESUMEN

Beryllium sulfate (BeSO4) can cause inflammation through the mechanism, which has not been elucidated. Mitochondrial DNA (mtDNA) is a key contributor of inflammation. With mitochondrial damage, released mtDNA can bind to specific receptors (e.g., cGAS) and then activate related pathway to promote inflammatory responses. To investigate the mechanism of mtDNA in BeSO4-induced inflammatory response in 16HBE cells, we established the BeSO4-induced 16HBE cell inflammation model and the ethidium bromide (EB)-induced ρ016HBE cell model to detect the mtDNA content, oxidative stress-related markers, mitochondrial membrane potential, the expression of the cGAS-STING pathway, and inflammation-related factors. Our results showed that BeSO4 caused oxidative stress, decline of mitochondrial membrane potential, and the release of mtDNA into the cytoplasm of 16HBE cells. In addition, BeSO4 induced inflammation in 16HBE cells by activating the cGAS-STING pathway. Furthermore, mtDNA deletion inhibited the expression of cGAS-STING pathway, IL-10, TNF-α, and IFN-ß. This study revealed a novel mechanism of BeSO4-induced inflammation in 16HBE cells, which contributes to the understanding of the molecular mechanism of beryllium and its compounds-induced toxicity.

17.
J Appl Toxicol ; 44(7): 1005-1013, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38462915

RESUMEN

Acute pancreatitis represents an inflammatory disease featuring pancreatic necrosis and inflammation. Inflammatory injury of pancreatic acinar cells (PACs) is critically involved in the initiation and progression of acute pancreatitis. Pyroptosis, a new kind of programmed cell death concomitant with a low-grade inflammatory reaction, plays a function in acute pancreatitis pathology. It is unclear whether saikosaponin d (SSd), a pharmacologically active natural product, could protect PACs by regulating pyroptosis. Here, we established a PAC injury model in vitro using cerulein to treat AR42J cells. SSd restored viability and proliferation and lowered the release of pancreatic enzymes and inflammatory interleukins in cerulein-treated AR42J cells. Cerulein-induced pyroptosis was evidenced by typical ultrastructural changes and NLRP3/caspase-1 activation in AR42J cells, but SSd attenuated cerulein-induced pyroptosis and inhibited NLRP3/caspase-1 pathway. Mechanically, SSd reduced mitochondrial damage and mtDNA release, and blocked cGAS-STING signaling in AR42J cells treated with cerulein, contributing to the inhibition of NLRP3-mediated pyroptosis. Furthermore, SSd abolished cerulein-elevated oxidative stress in AR42J cells, leading to the mitigation of mitochondrial damage and inhibition of cGAS-STING signaling and pyroptosis. In conclusion, SSd protected PACs against cerulein-induced pyroptosis by alleviating mitochondrial damage and inhibiting the cGAS-STING pathway, and it could be a therapeutic candidate for acute pancreatitis.


Asunto(s)
Células Acinares , Ceruletida , Mitocondrias , Ácido Oleanólico , Piroptosis , Saponinas , Transducción de Señal , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Saponinas/farmacología , Piroptosis/efectos de los fármacos , Ceruletida/toxicidad , Animales , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Páncreas/efectos de los fármacos , Páncreas/patología , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Línea Celular , Pancreatitis/inducido químicamente , Pancreatitis/prevención & control , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sustancias Protectoras/farmacología
18.
Pestic Biochem Physiol ; 203: 106017, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084778

RESUMEN

Emamectin benzoate (EMB), commonly used as an insecticide in fishery production, inevitably leaves residual chemicals in aquatic environments. High-level EMB exposure can cause severe damage to multiple systems of marine animals, potentially through mechanisms involving severe mitochondrial damage and oxidative stress. However, it is not clear yet how EMB exposure at a certain level can cause damage to fish kidney tissue. In this study, we exposed carps to an aquatic environment containing 2.4 µg/L of EMB and cultured carp kidney cells in vitro, established a cell model exposed to EMB. Our findings revealed that EMB exposure resulted in severe kidney tissue damage in carp and compromised the viability of grass carp kidney cells (CIK cells). By RNA-seq analysis, EMB exposure led to significant differences in mitochondrial homeostasis, response to ROS, ferroptosis, and autophagy signals in carp kidney tissue. Mechanistically, EMB exposure induced mitochondrial oxidative stress by promoting the generation of mitochondrial superoxide and reducing the activity of antioxidant enzymes. Additionally, EMB exposure triggered loss of mitochondrial membrane potential, an imbalance in mitochondrial fusion/division homeostasis, and dysfunction in oxidative phosphorylation, ultimately impairing ATP synthesis. Notably, EMB exposure also accelerated excessive autophagy and ferroptosis of cells by contributing to the formation of lipid peroxides and autophagosomes, and the deposition of Fe2+. However, N-acetyl-L-cysteine (NAC) treatment alleviated the damage and death of CIK cells by inhibiting oxidative stress. Overall, our study demonstrated that EMB exposure induced mitochondrial oxidative stress, impaired mitochondrial homeostasis, and function, promoted autophagy and ferroptosis of kidney cells, and ultimately led to kidney tissue damage in carp. Our research enhanced the toxicological understanding on EMB exposure and provides a model reference for comparative medicine.


Asunto(s)
Autofagia , Carpas , Ferroptosis , Ivermectina , Riñón , Mitocondrias , Estrés Oxidativo , Animales , Carpas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Ferroptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Autofagia/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Insecticidas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos
19.
Drug Chem Toxicol ; : 1-12, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38859707

RESUMEN

The herbicide triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) is already considered an environmental problem due to damage caused by incorrect disposal, leaching, and aerial dispersion, which may pose risks to the environment and human health. Studies have evaluated metabolism, absorption, excretion, and active transport but there is no clear information about its mode of action (MoA) and its cytotoxic action potential remains unknown. In this context, mitochondria have been used to assess the toxicity of xenobiotics, for this reason, to identify the toxic mechanism of triclopyr, hepatic mitochondria from Wistar rats were exposed in vitro to different concentrations of triclopyr (0.5-500 µM). There was neither formation/accumulation of reactive oxygen and nitrogen species, nor lipid peroxidation or changes in the mitochondrial antioxidant system, in addition to proper functioning of oxidative phosphorylation and ATP production. Changes were found in NAD(P)H oxidation, membrane potential dissipation and mitochondrial calcium gradient. These results demonstrate that mitochondria suffer damage related to their bioenergetics and redox status but not to their structure when exposed to concentrations of triclopyr considered higher than those described as found in the environment so far.HighlightsTriclopyr has a low mitochondrial uncoupling potential.The damage caused to the bioenergetics and redox state of the mitochondria is related to concentrations considered higher than those found in the environment.Even at high concentrations, triclopyr was not able to change the structure of the organelle after exposure.Oxidative phosphorylation and ATP production were not impaired after exposure.NAD(P)H oxidation resulted in potential membrane dissipation and mitochondrial calcium gradient dissipation.Triclopyr does not have RONS-forming properties, as well as it does not peroxide membrane lipids, it preserves membrane sulfhydryl groups and maintains the normality of the GSH/GSSG ratio.

20.
Artículo en Inglés | MEDLINE | ID: mdl-37805023

RESUMEN

BACKGROUND: Nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2) deficiency, or chronic granulomatous disease (CGD), is an inborn error of immunity associated with increased susceptibility to infection and inflammatory manifestations. The pathophysiologic mechanism leading to the increased inflammatory response in CGD remains elusive. OBJECTIVE: We investigated the pathophysiologic mechanisms leading to NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation in NOX2 deficiency. METHODS: We used NOX2-deficient human primary and CRISPR-engineered macrophages to show that NOX2 deficiency enhances the inflammatory response mainly by modulating the 2 steps of NLRP3 inflammasome activation: its transcriptional priming and its posttranslational triggering. RESULTS: At the transcriptional level, NOX2-deficient phagocytes display increased priming of the NLRP3 inflammasome, as evidenced by increased transcription of NLRP3 and IL-1ß through an IL-1ß-dependent stimulation of the nuclear factor kappa-light-chain enhancer of activated B cells (aka NF-κB) pathway. At the posttranslational level, the absence of NOX2 triggers the NLRP3 inflammasome activation by increased K+ efflux and excessive release of mitochondrial DNA due to mitochondrial damage. Furthermore, NLRP3-driven pyroptosis in NOX2-deficient phagocytes further enhances NLRP3 activation by increasing K+ efflux. CONCLUSION: Our results unveil the role of NOX2 as a repressor of the inflammatory response at both transcriptional and posttranslational levels and pave the way for a more targeted approach to treating CGD patients with inflammatory manifestations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA