Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.039
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 37: 439-456, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31026415

RESUMEN

Monocytes are innate blood cells that maintain vascular homeostasis and are early responders to pathogens in acute infections. There are three well-characterized classes of monocytes: classical (CD14+CD16- in humans and Ly6Chi in mice), intermediate (CD14+CD16+ in humans and Ly6C+Treml4+ in mice), and nonclassical (CD14-CD16+ in humans and Ly6Clo in mice). Classical monocytes are critical for the initial inflammatory response. Classical monocytes can differentiate into macrophages in tissue and can contribute to chronic disease. Nonclassical monocytes have been widely viewed as anti-inflammatory, as they maintain vascular homeostasis. They are a first line of defense in recognition and clearance of pathogens. However, their roles in chronic disease are less clear. They have been shown to be protective as well as positively associated with disease burden. This review focuses on the state of the monocyte biology field and the functions of monocytes, particularly nonclassical monocytes, in health and disease.


Asunto(s)
Artritis Reumatoide/inmunología , Aterosclerosis/inmunología , Vasos Sanguíneos/fisiología , Monocitos/inmunología , Infarto del Miocardio/inmunología , Animales , Autoinmunidad , Hematopoyesis , Homeostasis , Humanos , Inflamación , Ratones
2.
Cell ; 182(2): 270-296, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32707093

RESUMEN

Mammals have two specialized vascular circulatory systems: the blood vasculature and the lymphatic vasculature. The lymphatic vasculature is a unidirectional conduit that returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays major roles in immune cell trafficking and lipid absorption. As we discuss in this review, the molecular characterization of lymphatic vascular development and our understanding of this vasculature's role in pathophysiological conditions has greatly improved in recent years, changing conventional views about the roles of the lymphatic vasculature in health and disease. Morphological or functional defects in the lymphatic vasculature have now been uncovered in several pathological conditions. We propose that subtle asymptomatic alterations in lymphatic vascular function could underlie the variability seen in the body's response to a wide range of human diseases.


Asunto(s)
Vasos Linfáticos/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Historia del Siglo XXI , Humanos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Linfangiogénesis , Enfermedades Linfáticas/genética , Enfermedades Linfáticas/historia , Enfermedades Linfáticas/patología , Metástasis Linfática , Vasos Linfáticos/anatomía & histología , Vasos Linfáticos/citología , Neoplasias/metabolismo , Neoplasias/patología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
3.
Cell ; 176(5): 1128-1142.e18, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30686582

RESUMEN

Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.


Asunto(s)
Circulación Colateral/fisiología , Corazón/crecimiento & desarrollo , Regeneración/fisiología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Quimiocina CXCL12/metabolismo , Vasos Coronarios/crecimiento & desarrollo , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología , Receptores CXCR4/metabolismo , Transducción de Señal
4.
Immunity ; 56(10): 2342-2357.e10, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625409

RESUMEN

The heart is an autoimmune-prone organ. It is crucial for the heart to keep injury-induced autoimmunity in check to avoid autoimmune-mediated inflammatory disease. However, little is known about how injury-induced autoimmunity is constrained in hearts. Here, we reveal an unknown intramyocardial immunosuppressive program driven by Tbx1, a DiGeorge syndrome disease gene that encodes a T-box transcription factor (TF). We found induced profound lymphangiogenic and immunomodulatory gene expression changes in lymphatic endothelial cells (LECs) after myocardial infarction (MI). The activated LECs penetrated the infarcted area and functioned as intramyocardial immune hubs to increase the numbers of tolerogenic dendritic cells (tDCs) and regulatory T (Treg) cells through the chemokine Ccl21 and integrin Icam1, thereby inhibiting the expansion of autoreactive CD8+ T cells and promoting reparative macrophage expansion to facilitate post-MI repair. Mimicking its timing and implementation may be an additional approach to treating autoimmunity-mediated cardiac diseases.

5.
Physiol Rev ; 104(2): 659-725, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589393

RESUMEN

Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Mesenquimatosas , Infarto del Miocardio , Humanos , Infarto del Miocardio/terapia , Infarto del Miocardio/patología , Miocardio/metabolismo , Fenómenos Fisiológicos Cardiovasculares , Insuficiencia Cardíaca/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología
6.
Immunity ; 51(5): 899-914.e7, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31732166

RESUMEN

Myocardial infarction, stroke, and sepsis trigger systemic inflammation and organism-wide complications that are difficult to manage. Here, we examined the contribution of macrophages residing in vital organs to the systemic response after these injuries. We generated a comprehensive catalog of changes in macrophage number, origin, and gene expression in the heart, brain, liver, kidney, and lung of mice with myocardial infarction, stroke, or sepsis. Predominantly fueled by heightened local proliferation, tissue macrophage numbers increased systemically. Macrophages in the same organ responded similarly to different injuries by altering expression of tissue-specific gene sets. Preceding myocardial infarction improved survival of subsequent pneumonia due to enhanced bacterial clearance, which was caused by IFNÉ£ priming of alveolar macrophages. Conversely, EGF receptor signaling in macrophages exacerbated inflammatory lung injury. Our data suggest that local injury activates macrophages in remote organs and that targeting macrophages could improve resilience against systemic complications following myocardial infarction, stroke, and sepsis.


Asunto(s)
Susceptibilidad a Enfermedades , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Biomarcadores , Recuento de Células , Susceptibilidad a Enfermedades/inmunología , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Isquemia/etiología , Isquemia/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones , Células Musculares/inmunología , Células Musculares/metabolismo , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Neumonía/etiología , Neumonía/metabolismo , Neumonía/patología
7.
Immunity ; 51(1): 131-140.e5, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315031

RESUMEN

Macrophages play an important role in structural cardiac remodeling and the transition to heart failure following myocardial infarction (MI). Previous research has focused on the impact of blood-derived monocytes on cardiac repair. Here we examined the contribution of resident cavity macrophages located in the pericardial space adjacent to the site of injury. We found that disruption of the pericardial cavity accelerated maladaptive post-MI cardiac remodeling. Gata6+ macrophages in mouse pericardial fluid contributed to the reparative immune response. Following experimental MI, these macrophages invaded the epicardium and lost Gata6 expression but continued to perform anti-fibrotic functions. Loss of this specialized macrophage population enhanced interstitial fibrosis after ischemic injury. Gata6+ macrophages were present in human pericardial fluid, supporting the notion that this reparative function is relevant in human disease. Our findings uncover an immune cardioprotective role for the pericardial tissue compartment and argue for the reevaluation of surgical procedures that remove the pericardium.


Asunto(s)
Fibrosis/prevención & control , Factor de Transcripción GATA6/metabolismo , Corazón/fisiología , Macrófagos/inmunología , Infarto del Miocardio/inmunología , Miocardio/patología , Pericardio/inmunología , Animales , Movimiento Celular , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Remodelación Ventricular
8.
Immunity ; 50(2): 390-402.e10, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30709741

RESUMEN

Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.


Asunto(s)
Vasos Sanguíneos/inmunología , Ritmo Circadiano/inmunología , Neutrófilos/inmunología , Fagocitosis/inmunología , Animales , Vasos Sanguíneos/metabolismo , Candida albicans/inmunología , Candida albicans/fisiología , Células Cultivadas , Senescencia Celular/inmunología , Quimiocina CXCL2/inmunología , Quimiocina CXCL2/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Receptores CXCR4/inmunología , Receptores CXCR4/metabolismo , Factores de Tiempo
9.
Semin Immunol ; 69: 101809, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37478801

RESUMEN

Pyroptosis is a form of programmed cell death associated with activation of inflammasomes and inflammatory caspases, proteolytic cleavage of gasdermin proteins (forming pores in the plasma membrane), and selective release of proinflammatory mediators. Induction of pyroptosis results in amplification of inflammation, contributing to the pathogenesis of chronic cardiovascular diseases such as atherosclerosis and diabetic cardiomyopathy, and acute cardiovascular events, such as thrombosis and myocardial infarction. While engagement of pyroptosis during sepsis-induced cardiomyopathy and septic shock is expected and well documented, we are just beginning to understand pyroptosis involvement in the pathogenesis of cardiovascular diseases with less defined inflammatory components, such as atrial fibrillation. Due to the danger that pyroptosis represents to cells within the cardiovascular system and the whole organism, multiple levels of pyroptosis regulation have evolved. Those include regulation of inflammasome priming, post-translational modifications of gasdermins, and cellular mechanisms for pore removal. While pyroptosis in macrophages is well characterized as a dramatic pro-inflammatory process, pyroptosis in other cell types within the cardiovascular system displays variable pathways and consequences. Furthermore, different cells and organs engage in local and distant crosstalk and exchange of pyroptosis triggers (oxidized mitochondrial DNA), mediators (IL-1ß, S100A8/A9) and antagonists (IL-9). Development of genetic tools, such as Gasdermin D knockout animals, and small molecule inhibitors of pyroptosis will not only help us fully understand the role of pyroptosis in cardiovascular diseases but may result in novel therapeutic approaches inhibiting inflammation and progression of chronic cardiovascular diseases to reduce morbidity and mortality from acute cardiovascular events.


Asunto(s)
Enfermedades Cardiovasculares , Piroptosis , Animales , Humanos , Piroptosis/fisiología , Gasderminas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Inflamasomas/metabolismo , Inflamación
10.
Genes Dev ; 33(21-22): 1457-1459, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676733

RESUMEN

The Hippo pathway is an evolutionarily conserved kinase cascade that is fundamental for tissue development, homeostasis, and regeneration. In the developing mammalian heart, Hippo signaling regulates cardiomyocyte numbers and organ size. While cardiomyocytes in the adult heart are largely postmitotic, Hippo deficiency can increase proliferation of these cells and affect cardiac regenerative capacity. Recent studies have also shown that resident cardiac fibroblasts play a critical role in disease responsiveness and healing, and in this issue of Genes and Development, Xiao and colleagues (pp. 1491-1505) demonstrate that Hippo signaling also integrates the activity of fibroblasts in the heart. They show that Hippo signaling normally maintains the cardiac fibroblast in a resting state and, conversely, its inactivation during disease-related stress results in a spontaneous transition toward a myofibroblast state that underlies fibrosis and ventricular remodeling. This phenotypic switch is associated with increased cytokine signaling that promotes nonautonomous resident fibroblast and myeloid cell activation.


Asunto(s)
Negociación , Proteínas Serina-Treonina Quinasas , Animales , Proliferación Celular , Fibroblastos , Fibrosis , Miocitos Cardíacos
11.
Genes Dev ; 33(21-22): 1491-1505, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31558567

RESUMEN

Cardiac fibroblasts (CFs) respond to injury by transitioning through multiple cell states, including resting CFs, activated CFs, and myofibroblasts. We report here that Hippo signaling cell-autonomously regulates CF fate transitions and proliferation, and non-cell-autonomously regulates both myeloid and CF activation in the heart. Conditional deletion of Hippo pathway kinases, Lats1 and Lats2, in uninjured CFs initiated a self-perpetuating fibrotic response in the adult heart that was exacerbated by myocardial infarction (MI). Single cell transcriptomics showed that uninjured Lats1/2 mutant CFs spontaneously transitioned to a myofibroblast cell state. Through gene regulatory network reconstruction, we found that Hippo-deficient myofibroblasts deployed a network of transcriptional regulators of endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) consistent with elevated secretory activity. We observed an expansion of myeloid cell heterogeneity in uninjured Lats1/2 CKO hearts with similarity to cells recovered from control hearts post-MI. Integrated genome-wide analysis of Yap chromatin occupancy revealed that Yap directly activates myofibroblast cell identity genes, the proto-oncogene Myc, and an array of genes encoding pro-inflammatory factors through enhancer-promoter looping. Our data indicate that Lats1/2 maintain the resting CF cell state through restricting the Yap-induced injury response.


Asunto(s)
Fibroblastos/citología , Fibrosis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/patología , Fibrosis/fisiopatología , Eliminación de Gen , Ratones Endogámicos C57BL , Infarto del Miocardio/fisiopatología , Proteínas Señalizadoras YAP
12.
Immunol Rev ; 314(1): 357-375, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36315403

RESUMEN

Over the past millennia, life expectancy has drastically increased. While a mere 25 years during Bronze and Iron ages, life expectancy in many European countries and in Japan is currently above 80 years. Such an increase in life expectancy is a result of improved diet, life style, and medical care. Yet, increased life span and aging also represent the most important non-modifiable risk factors for several pathologies including cardiovascular disease, neurodegenerative diseases, and cancer. In recent years, neutrophils have been implicated in all of these pathologies. Hence, this review provides an overview of how aging impacts neutrophil production and function and conversely how neutrophils drive aging-associated pathologies. Finally, we provide a perspective on how processes of neutrophil-driven pathologies in the context of aging can be targeted therapeutically.


Asunto(s)
Envejecimiento , Neutrófilos , Humanos , Longevidad , Esperanza de Vida , Factores de Riesgo
13.
Annu Rev Med ; 75: 459-474, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37722708

RESUMEN

Rapid and accurate triage of patients presenting with chest pain to an emergency department (ED) is critical to prevent ED overcrowding and unnecessary resource use in individuals at low risk of acute myocardial infarction (AMI) and to efficiently and effectively guide patients at high risk to definite therapy. The use of biomarkers for rule-out or rule-in of suspected AMI has evolved substantially over the last several decades. Previously well-established biomarkers have been replaced by cardiac troponin (cTn). High-sensitivity cTn (hs-cTn) assays represent the newest generation of cTn assays and offer tremendous advantages, including improved sensitivity and precision. Still, implementation of these assays in the United States lags behind several other areas of the world. Within this educational review, we discuss the evolution of biomarker testing for detection of myocardial injury, address the specifics of hs-cTn assays and their recommended use within triage algorithms, and highlight potential challenges in their use. Ultimately, we focus on implementation strategies for hs-cTn assays, as they are now clearly ready for prime time.


Asunto(s)
Infarto del Miocardio , Humanos , Infarto del Miocardio/diagnóstico , Biomarcadores , Dolor en el Pecho/diagnóstico , Algoritmos , Troponina
14.
Circ Res ; 134(6): 675-694, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484024

RESUMEN

The impact of circadian rhythms on cardiovascular function and disease development is well established, with numerous studies in genetically modified animals emphasizing the circadian molecular clock's significance in the pathogenesis and pathophysiology of myocardial ischemia and heart failure progression. However, translational preclinical studies targeting the heart's circadian biology are just now emerging and are leading to the development of a novel field of medicine termed circadian medicine. In this review, we explore circadian molecular mechanisms and novel therapies, including (1) intense light, (2) small molecules modulating the circadian mechanism, and (3) chronotherapies such as cardiovascular drugs and meal timings. These promise significant clinical translation in circadian medicine for cardiovascular disease. (4) Additionally, we address the differential functioning of the circadian mechanism in males versus females, emphasizing the consideration of biological sex, gender, and aging in circadian therapies for cardiovascular disease.


Asunto(s)
Relojes Circadianos , Insuficiencia Cardíaca , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Masculino , Animales , Daño por Reperfusión Miocárdica/patología , Ritmo Circadiano , Cronoterapia , Insuficiencia Cardíaca/terapia
15.
Circ Res ; 135(2): 353-371, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38963865

RESUMEN

The epicardium, previously viewed as a passive outer layer around the heart, is now recognized as an essential component in development, regeneration, and repair. In this review, we explore the cellular and molecular makeup of the epicardium, highlighting its roles in heart regeneration and repair in zebrafish and salamanders, as well as its activation in young and adult postnatal mammals. We also examine the latest technologies used to study the function of epicardial cells for therapeutic interventions. Analysis of highly regenerative animal models shows that the epicardium is essential in regulating cardiomyocyte proliferation, transient fibrosis, and neovascularization. However, despite the epicardium's unique cellular programs to resolve cardiac damage, it remains unclear how to replicate these processes in nonregenerative mammalian organisms. During myocardial infarction, epicardial cells secrete signaling factors that modulate fibrotic, vascular, and inflammatory remodeling, which differentially enhance or inhibit cardiac repair. Recent transcriptomic studies have validated the cellular and molecular heterogeneity of the epicardium across various species and developmental stages, shedding further light on its function under pathological conditions. These studies have also provided insights into the function of regulatory epicardial-derived signaling molecules in various diseases, which could lead to new therapies and advances in reparative cardiovascular medicine. Moreover, insights gained from investigating epicardial cell function have initiated the development of novel techniques, including using human pluripotent stem cells and cardiac organoids to model reparative processes within the cardiovascular system. This growing understanding of epicardial function holds the potential for developing innovative therapeutic strategies aimed at addressing developmental heart disorders, enhancing regenerative therapies, and mitigating cardiovascular disease progression.


Asunto(s)
Pericardio , Regeneración , Pericardio/metabolismo , Pericardio/citología , Animales , Humanos , Regeneración/fisiología , Transducción de Señal , Miocitos Cardíacos/metabolismo
16.
Circ Res ; 134(11): 1581-1606, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781302

RESUMEN

HIV infection and antiretroviral therapy alter mitochondrial function, which can progressively lead to mitochondrial damage and accelerated aging. The interaction between persistent HIV reservoirs and mitochondria may provide insight into the relatively high rates of cardiovascular disease and mortality in persons living with HIV. In this review, we explore the intricate relationship between HIV and mitochondrial function, highlighting the potential for novel therapeutic strategies in the context of cardiovascular diseases. We reflect on mitochondrial dynamics, mitochondrial DNA, and mitochondrial antiviral signaling protein in the context of HIV. Furthermore, we summarize how toxicities related to early antiretroviral therapy and current highly active antiretroviral therapy can contribute to mitochondrial dysregulation, chronic inflammation, and poor clinical outcomes. There is a need to understand the mechanisms and develop new targeted therapies. We further consider current and potential future therapies for HIV and their interplay with mitochondria. We reflect on the next-generation antiretroviral therapies and HIV cure due to the direct and indirect effects of HIV persistence, associated comorbidities, coinfections, and the advancement of interdisciplinary research fields. This includes exploring novel and creative approaches to target mitochondria for therapeutic intervention.


Asunto(s)
Enfermedades Cardiovasculares , Infecciones por VIH , Mitocondrias , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Infecciones por VIH/complicaciones , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/virología , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Animales , Terapia Antirretroviral Altamente Activa/efectos adversos , Dinámicas Mitocondriales/efectos de los fármacos , Fármacos Anti-VIH/uso terapéutico , Fármacos Anti-VIH/efectos adversos
17.
Circ Res ; 134(12): 1791-1807, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843293

RESUMEN

Cardiac macrophages represent a functionally diverse population of cells involved in cardiac homeostasis, repair, and remodeling. With recent advancements in single-cell technologies, it is possible to elucidate specific macrophage subsets based on transcriptional signatures and cell surface protein expression to gain a deep understanding of macrophage diversity in the heart. The use of fate-mapping technologies and parabiosis studies have provided insight into the ontogeny and dynamics of macrophages identifying subsets derived from embryonic and adult definitive hematopoietic progenitors that include tissue-resident and bone marrow monocyte-derived macrophages, respectively. Within the heart, these subsets have distinct tissue niches and functional roles in the setting of homeostasis and disease, with cardiac resident macrophages representing a protective cell population while bone marrow monocyte-derived cardiac macrophages have a context-dependent effect, triggering both proinflammatory tissue injury, but also promoting reparative functions. With the increased understanding of the clinical relevance of cardiac macrophage subsets, there has been an increasing need to detect and measure cardiac macrophage compositions in living animals and patients. New molecular tracers compatible with positron emission tomography/computerized tomography and positron emission tomography/ magnetic resonance imaging have enabled investigators to noninvasively and serially visualize cardiac macrophage subsets within the heart to define associations with disease and measure treatment responses. Today, advancements within this thriving field are poised to fuel an era of clinical translation.


Asunto(s)
Macrófagos , Miocardio , Animales , Macrófagos/metabolismo , Humanos , Miocardio/metabolismo , Miocardio/citología
18.
Circ Res ; 134(10): 1292-1305, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38618716

RESUMEN

BACKGROUND: During myocardial ischemia/reperfusion (I/R) injury, high levels of matrix Ca2+ and reactive oxygen species (ROS) induce the opening of the mitochondrial permeability transition pore (mPTP), which causes mitochondrial dysfunction and ultimately necrotic death. However, the mechanisms of how these triggers individually or cooperatively open the pore have yet to be determined. METHODS: Here, we use a combination of isolated mitochondrial assays and in vivo I/R surgery in mice. We challenged isolated liver and heart mitochondria with Ca2+, ROS, and Fe2+ to induce mitochondrial swelling. Using inhibitors of the mPTP (cyclosporine A or ADP) lipid peroxidation (ferrostatin-1, MitoQ), we determined how the triggers elicit mitochondrial damage. Additionally, we used the combination of inhibitors during I/R injury in mice to determine if dual inhibition of these pathways is additivity protective. RESULTS: In the absence of Ca2+, we determined that ROS fails to trigger mPTP opening. Instead, high levels of ROS induce mitochondrial dysfunction and rupture independently of the mPTP through lipid peroxidation. As expected, Ca2+ in the absence of ROS induces mPTP-dependent mitochondrial swelling. Subtoxic levels of ROS and Ca2+ synergize to induce mPTP opening. Furthermore, this synergistic form of Ca2+- and ROS-induced mPTP opening persists in the absence of CypD (cyclophilin D), suggesting the existence of a CypD-independent mechanism for ROS sensitization of the mPTP. These ex vivo findings suggest that mitochondrial dysfunction may be achieved by multiple means during I/R injury. We determined that dual inhibition of the mPTP and lipid peroxidation is significantly more protective against I/R injury than individually targeting either pathway alone. CONCLUSIONS: In the present study, we have investigated the relationship between Ca2+ and ROS, and how they individually or synergistically induce mitochondrial swelling. Our findings suggest that Ca2+ mediates mitochondrial damage through the opening of the mPTP, although ROS mediates its damaging effects through lipid peroxidation. However, subtoxic levels both Ca2+ and ROS can induce mPTP-mediated mitochondrial damage. Targeting both of these triggers to preserve mitochondria viability unveils a highly effective therapeutic approach for mitigating I/R injury.


Asunto(s)
Peroxidación de Lípido , Ratones Endogámicos C57BL , Mitocondrias Cardíacas , Mitocondrias Hepáticas , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica , Especies Reactivas de Oxígeno , Animales , Peroxidación de Lípido/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/patología , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Mitocondrias Hepáticas/efectos de los fármacos , Calcio/metabolismo , Dilatación Mitocondrial/efectos de los fármacos
19.
Circ Res ; 134(11): 1465-1482, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655691

RESUMEN

BACKGROUND: Preclinical studies have shown the therapeutic potential of VEGF-B (vascular endothelial growth factor B) in revascularization of the ischemic myocardium, but the associated cardiac hypertrophy and adverse side effects remain a concern. To understand the importance of endothelial proliferation and migration for the beneficial versus adverse effects of VEGF-B in the heart, we explored the cardiac effects of autocrine versus paracrine VEGF-B expression in transgenic and gene-transduced mice. METHODS: We used single-cell RNA sequencing to compare cardiac endothelial gene expression in VEGF-B transgenic mouse models. Lineage tracing was used to identify the origin of a VEGF-B-induced novel endothelial cell population and adeno-associated virus-mediated gene delivery to compare the effects of VEGF-B isoforms. Cardiac function was investigated using echocardiography, magnetic resonance imaging, and micro-computed tomography. RESULTS: Unlike in physiological cardiac hypertrophy driven by a cardiomyocyte-specific VEGF-B transgene (myosin heavy chain alpha-VEGF-B), autocrine VEGF-B expression in cardiac endothelium (aP2 [adipocyte protein 2]-VEGF-B) was associated with septal defects and failure to increase perfused subendocardial capillaries postnatally. Paracrine VEGF-B led to robust proliferation and myocardial migration of a novel cardiac endothelial cell lineage (VEGF-B-induced endothelial cells) of endocardial origin, whereas autocrine VEGF-B increased proliferation of VEGF-B-induced endothelial cells but failed to promote their migration and efficient contribution to myocardial capillaries. The surviving aP2-VEGF-B offspring showed an altered ratio of secreted VEGF-B isoforms and developed massive pathological cardiac hypertrophy with a distinct cardiac vessel pattern. In the normal heart, we found a small VEGF-B-induced endothelial cell population that was only minimally expanded during myocardial infarction but not during physiological cardiac hypertrophy associated with mouse pregnancy. CONCLUSIONS: Paracrine and autocrine secretions of VEGF-B induce expansion of a specific endocardium-derived endothelial cell population with distinct angiogenic markers. However, autocrine VEGF-B signaling fails to promote VEGF-B-induced endothelial cell migration and contribution to myocardial capillaries, predisposing to septal defects and inducing a mismatch between angiogenesis and myocardial growth, which results in pathological cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Linaje de la Célula , Endocardio , Células Endoteliales , Ratones Transgénicos , Factor B de Crecimiento Endotelial Vascular , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Ratones , Endocardio/metabolismo , Endocardio/patología , Comunicación Paracrina , Proliferación Celular , Comunicación Autocrina , Ratones Endogámicos C57BL , Femenino , Masculino , Movimiento Celular
20.
Circ Res ; 135(1): 138-154, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38662804

RESUMEN

BACKGROUND: The biological mechanisms linking environmental exposures with cardiovascular disease pathobiology are incompletely understood. We sought to identify circulating proteomic signatures of environmental exposures and examine their associations with cardiometabolic and respiratory disease in observational cohort studies. METHODS: We tested the relations of >6500 circulating proteins with 29 environmental exposures across the built environment, green space, air pollution, temperature, and social vulnerability indicators in ≈3000 participants of the CARDIA study (Coronary Artery Risk Development in Young Adults) across 4 centers using penalized and ordinary linear regression. In >3500 participants from FHS (Framingham Heart Study) and JHS (Jackson Heart Study), we evaluated the prospective relations of proteomic signatures of the envirome with cardiovascular disease and mortality using Cox models. RESULTS: Proteomic signatures of the envirome identified novel/established cardiovascular disease-relevant pathways including DNA damage, fibrosis, inflammation, and mitochondrial function. The proteomic signatures of the envirome were broadly related to cardiometabolic disease and respiratory phenotypes (eg, body mass index, lipids, and left ventricular mass) in CARDIA, with replication in FHS/JHS. A proteomic signature of social vulnerability was associated with a composite of cardiovascular disease/mortality (1428 events; FHS: hazard ratio, 1.16 [95% CI, 1.08-1.24]; P=1.77×10-5; JHS: hazard ratio, 1.25 [95% CI, 1.14-1.38]; P=6.38×10-6; hazard ratio expressed as per 1 SD increase in proteomic signature), robust to adjustment for known clinical risk factors. CONCLUSIONS: Environmental exposures are related to an inflammatory-metabolic proteome, which identifies individuals with cardiometabolic disease and respiratory phenotypes and outcomes. Future work examining the dynamic impact of the environment on human cardiometabolic health is warranted.


Asunto(s)
Factores de Riesgo Cardiometabólico , Enfermedades Cardiovasculares , Exposición a Riesgos Ambientales , Proteómica , Humanos , Proteómica/métodos , Femenino , Masculino , Exposición a Riesgos Ambientales/efectos adversos , Adulto , Persona de Mediana Edad , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/epidemiología , Estudios Prospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA