Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Fluoresc ; 34(2): 599-608, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37329379

RESUMEN

An innovative simple, sensitive, and selective method has been developed and validated for quantification of hazardous Allura red (AR, E129) dye in beverages. Allura red (AR) is a synthetic dye that is commonly used in the food industry to give foods a bright and appealing color. The method is based on microwave-assistant nitrogen-doped carbon quantum dots (N@CQDs) from a very cheap source with a high quantum yield equal to (36.60%). The mechanism of the reaction is based on an ion-pair association complex between AR and nitrogen-doped carbon quantum dots (N@CQDs) at pH 3.2. The reaction between AR and N@CQDs led to a quenching effect of the fluorescence intensity of N@CQDs at 445 nm after excitation at 350 nm. Moreover, the quantum method's linearity covered the range between 0.07 and 10.0 µg mL- 1 with a regression coefficient is 0.9992. The presented work has been validated by ICH criteria. High-resolution transmission electron microscopy (HR-TEM), X-ray photon spectroscopy (XPS), Zeta potential measurements, fluorescence, UV-VIS, and FTIR spectroscopy have all been used to fully characterize of the N@CQDs. The N@CQDs were successfully utilized in different applications (beverages) with high accuracy.


Asunto(s)
Compuestos Azo , Colorantes de Alimentos , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Nitrógeno/química , Límite de Detección , Bebidas
2.
J Fluoresc ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743378

RESUMEN

To address an accurate detection of heavy metal ions in Baijiu production, a nitrogen-doping carbon quantum dots (N-CQDs) was prepared by hydrothermal method from citric acid and urea. The as-prepared N-CQDs had an average particle size of 2.74 nm, and a large number of functional groups (amino, carbonyl group, etc.) attached on its surface, which obtained a 9.6% of quantum yield (QY) with relatively high and stable fluorescence performance. As a fluorescent sensor, the fluorescence of N-CQDs at 380 nm excitation wavelength could be quenched quantitatively by adding Cu2+, due to the dynamic quenching of electron transfer caused by the binding of amine groups and Cu2+, which showed excellent sensitivity and selectivity to Cu2+ in the range of 0.5-5 µM with a detection limit (LOD) of 0.032 µM. In addition, the N-CQDs as well as could be applied to quantitative determine alcohol content in the range of 10-80 V/V% depending on the fluorescence enhancement. Upon the experiment, the fluorescent mechanism was studied by Molecular dynamics (MD) simulations, which demonstrated that solvent effect played an influential role on sensing alcohol content in Baijiu. Overall, the work provided a theoretically guide for the design of fluorescence sensors to monitor heavy metal ion in liquid drinks and sense alcohol content.

3.
J Fluoresc ; 34(2): 571-578, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37314534

RESUMEN

Green and economical self-doped nitrogen-containing fluorescent carbon quantum dots (N-CQDs) were synthesized using a one-pot hydrothermal treatment method. The optical and structural properties of the N-CQDs were investigated in detail by UV-vis and fluorescence spectroscopy, X-ray diffraction (XRD) techniques, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) spectroscopy, and elemental analysis illustrate the surface function and composition of N-CQDs. N-CQDs emit a broad fluorescence between365 Ì´ 465 nm and fluoresce most strongly at the excitation wavelength of 415 nm. Meanwhile, Cr (VI) could significantly burst the fluorescence intensity of N-CQDs. N-CQDs showed an excellent sensitivity and selectivity to Cr (VI), which exhibited good linearity in the range of 0 Ì´ 40 µmol/L with a detection limit of 0.16 µmol/L. In addition, the mechanism of Fluorescence quenching of N-CQDs by Cr (VI) was investigated. This work well provides a research idea for the preparation of green carbon quantum dots from biomass and their use for the detection of metal ions.

4.
Environ Res ; 247: 118301, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38272291

RESUMEN

Limited utilization of photogenerated charge carriers in titanium dioxide under visible light have hinder its application development. To address this challenge, a novel N-doped carbon quantum dots (N-CQDs) and oxygen vacancies (OVs) synergistically decorated on TiO2 (P25) was synthesized through a facile one-step hydrothermal method. Under visible light irradiation, the first order reaction rate constants of formaldehyde (HCHO) photocatalytic oxidation by OVs-TiO2 and N-CQDs/OVs-TiO2 was significantly higher than that of pristine P25, with 10.1 and 16.7 folds increase, respectively. Characterization results confirmed the generation of OVs on the surface of N-CQDs/TiO2 composite. The optical and electrochemical experiments suggested the electron capture center effect of OVs and the properties of N-CQDs in unique up-converted photoluminescence, efficient charge separation, as well as significant adsorption in visible light region. In addition, the work function also clarified that photoelectrons could transfer from N-CQDs to OVs-TiO2. Furthermore, different relative humidity and electron paramagnetic resonance (EPR) experiments demonstrated that the hydroxyl radical (•OH) was the dominant reactive radical in HCHO photodegradation. The •O2- could also enhance the photodegradation efficiency of HCHO. This work provides an in-depth understanding on the complementary roles of N-CQDs and OVs and is helpful for designing metallic oxide photocatalysts for volatile organic compounds removal.


Asunto(s)
Carbono , Puntos Cuánticos , Carbono/química , Gases , Oxígeno , Puntos Cuánticos/química , Luz , Formaldehído , Catálisis
5.
Luminescence ; 39(6): e4801, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38855811

RESUMEN

Atopic dermatitis (AD) is a persistent, inflammatory skin condition that impacts approximately 15 to 20% of children and 1 to 3% of adults globally. Common skin manifestations include papules, papulovesicular, and brown or red patches with swelling, crusting, and flaking. Therefore, the drug abrocitinib (ABR) was approved by the US FDA as an oral treatment for atopic dermatitis. The present study outlines the development of innovative, thermostable, and pH-stable organic solvent-free nitrogen-doped carbon dots (N@CQDs) synthesized through a one-step method for evaluating ABR with a notable quantum yield of 33.84% to minimize the use of organic solvents. Their cost-effectiveness, eco-friendly characteristics, and outstanding photocatalytic properties have established them as a promising alternative to conventional luminescent techniques like fluorescent dyes and luminous derivatization technique. The reaction of ABR with N@CQDs led to a significant decrease in the luminescent response of the produced green and stable carbon quantum dots at 513 nm. The detection range was determined to be 1.0-150.0 ng mL-1, with a lower limit of quantitation (LOQ) equal to 0.52 ng mL-1 based on the linear graph. The green method effectively used for analysis of ABR in pharmaceutical tablets and pharmacokinetic study with high sensitivity.


Asunto(s)
Carbono , Nitrógeno , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Nitrógeno/química , Humanos , Pirimidinas/química , Pirimidinas/sangre , Pirimidinas/síntesis química , Fluorometría , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Solventes/química , Estructura Molecular
6.
J Fluoresc ; 33(3): 1101-1110, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36576682

RESUMEN

The neuro-stimulant anti-narcoleptic drug as modafinil (MOD) is used to treatment neurological conditions caused by COVID-19. MOD was used to treatment narcolepsy, shift-work sleep disorder, and obstructive sleep apnea-related sleepiness. So, an innovative, quick, economical, selective, and ecologically friendly procedure was carried out. A highly sensitive N@CQDs technique was created from green Eruca sativa leaves in about 4 min using microwave synthesis at 700 w. The quantum yield of the synthesized N@CQDs was found to be 41.39%. By increasing the concentration of MOD, the quantum dots' fluorescence intensity was gradually quenched. After being excited at 445 nm, the fluorescence reading was recorded at 515 nm. The linear range was found to be in the range 50 - 700 ng mL-1 with lower limit of quantitation (LOQ) equal to 45.00 ng mL-1. The current method was fully validated and bio analytically according to (US-FDA and ICH) guidelines. Full characterization of the N@CQDs has been conducted by high resolution transmission electron microscope (HRTEM), Zeta potential measurement, fluorescence, UV-VIS, and FTIR spectroscopy. Various experimental variables including pH, QDs concentration and the reaction time were optimized. The proposed study is simply implemented for the therapeutic drug monitoring system (TDMS) and various clinical laboratories for further pharmacokinetic research.


Asunto(s)
COVID-19 , Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Modafinilo , Carbono/química , Nitrógeno/química , Microondas , Colorantes Fluorescentes/química
7.
J Fluoresc ; 33(5): 1887-1896, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36867288

RESUMEN

Community-acquired pneumonia is one of the most common infectious diseases and a substantial cause of mortality and morbidity worldwide. Therefore eravacycline (ERV) was approved by the FDA in 2018 for the treatment of acute bacterial skin infections, GIT infections, and community-acquired bacterial pneumonia caused by susceptible bacteria. Hence, a green highly sensitive, cost-effective, fast, and selective fluorimetric approach was developed for the estimation of ERV in milk, dosage form, content uniformity, and human plasma. The selective method is based on the utilization of plum juice and copper sulphate for the synthesis of green copper and nitrogen carbon dots (Cu-N@CDs) with high quantum yield. The quantum dots' fluorescence was enhanced after the addition of ERV. The calibration range was found to be in the range 1.0 - 80.0 ng mL-1 with LOQ equal to 0.14 ng mL-1 and LOD was found to be 0.05 ng mL-1. The creative method is simple to deploy in clinical labs and therapeutic drug health monitoring system. The current approach has been bioanalytically validated using US-FDA and validated ICH criteria. High-resolution transmission electron microscopy (HR-TEM), X-ray photon spectroscopy (XPS), Zeta potential measurements, fluorescence, UV-VIS, and FTIR spectroscopy have all been used to fully characterize the Cu-N@CQDs. The Cu-N@CQDs were effectively applied in human plasma and milk samples with a high percentage of recovery ranging from 97.00 to 98.80%.


Asunto(s)
Cobre , Puntos Cuánticos , Humanos , Espectrometría de Fluorescencia , Microondas , Fluorometría , Puntos Cuánticos/química , Carbono/química
8.
Luminescence ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088021

RESUMEN

Vanillin is a flavouring agent that is prohibited for use in infant food products with ages lower than 6 months. Excessive vanillin usage could lead to eating disorders, nausea, headache, and vomiting. Therefore, it is essential to control the contents of vanillin in food samples, especially in infant formula. Here, we developed a highly sensitive nanosensor for vanillin based on using green synthesized highly fluorescent (QY = 29.5%) N-doped carbon quantum dots (N-CQDs) as a turn-off fluorescent nanoprobe. The N-doped CQDs synthesis was adopted using citrus bulb squeeze extract and the commonly used fertilizer, urea, as substrates. After mixing with vanillin, the fluorescence of the N-CQDs was largely quenched in a vanillin concentration-dependent manner. The sensing conditions were optimized by quality-by-design using a two-level full factorial design (22 FFD). The N-doped CQDs could detect vanillin in the range 0.1-12.0 µg/ml with a limit of detection of 0.013 µg/ml. Next, a smartphone imaging-based assay combined with a UV chamber was adopted and applied for vanillin determination. This simple detection technique showed sensitivity similar to that of the conventional fluorimetric method. Both conventional and smartphone-based methods were successfully applied for the determination of vanillin in infant milk formula and biscuits and could detect real vanillin concentrations in the analyzed samples with high % recoveries (94.5% to 105.5%). At last, the biocompatibility of the newly synthesized N-CQDs was tested, and it was found to be an excellent candidate for cancer cell imaging.

9.
Nanotechnology ; 33(19)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34937015

RESUMEN

A highly sensitive and selective modified electrode was successfully developed for the monitoring of nicotinamide adenine dinucleotide (NADH) in the presence of folic acid. In this regard, a carbon paste electrode (CPE) was functionalized by the nitrogen-doped carbon quantum dots/tin oxide (N-CQDs/SnO2) nanocomposite and 1-butyl-2,3-dimethyl imidazolium hexafluorophosphate ([C4DMIM][PF6]) ionic liquid (IL). The structure and surface morphology of the nanocomposite were characterized by various methods, including field emission scanning electron microscopy, energy dispersive spectroscopy (EDS), high-resolution transmission electron microscopy (HR-TEM), and x-ray diffraction (XRD). The modified electrode displayed powerful and long-lasting electron mediating activity, with well-separated NADH and folic acid oxidation peaks. The sensing response of the developed [C4DMIM][PF6]/N-CQDs/SnO2/CPE platform was evaluated by determining NADH via the voltammetric technique under the optimized operating conditions. The current peaks of the square wave voltammograms of NADH and folic acid increased linearly with enhancing its concentrations within the ranges of 0.003-275µM NADH and 0.4-380µM folic acid. The detection limits for NADH and folic acid were obtained at 0.8 nM and 0.1µM, respectively. Interference species such as glucose, urea, tryptophan, glycine, methionine, and vitamin B12had no influence on the ability of the fabricated modified electrode to detect the target species. The low detection limit, high sensitivity, excellent selectivity, superior stability, and cost-effectiveness made it suitable for the quantification of NADH in the real biological samples with the recovery percent values in the range of 97.5%-103%.

10.
Molecules ; 27(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889460

RESUMEN

The fabrication of efficient fluorescent probes that possess an excellent sensitivity and selectivity for uric acid is highly desirable and challenging. In this study, composites of silver nanoparticles (AgNPs) wrapped with nitrogen-doped carbon quantum dots (N-CQDs) were synthesised utilising N-CQDs as the reducing and stabilising agents in a single reaction with AgNO3. The morphology and structure, absorption properties, functional groups, and fluorescence properties were characterised by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet spectroscopy, fluorescence spectroscopy, and X-ray diffraction spectroscopy. In addition, we developed a novel method based on AgNPs/N-CQDs for the detection of uric acid using the enzymatic reaction of uric acid oxidase. The fluorescence enhancement of the AgNPs/N-CQDs composite was linear (R2 = 0.9971) in the range of 2.0-60 µmol/L, and gave a detection limit of 0.53 µmol/L. Trace uric acid was successfully determined in real serum samples from the serum of 10 healthy candidates and 10 gout patients, and the results were consistent with those recorded by Qianxinan Prefecture People's Hospital. These results indicate that the developed AgNP/N-CQD system can provide a universal platform for detecting the multispecies ratio fluorescence of H2O2 generation in other biological systems.


Asunto(s)
Nanopartículas del Metal , Puntos Cuánticos , Carbono/química , Humanos , Peróxido de Hidrógeno , Límite de Detección , Nanopartículas del Metal/química , Nitrógeno/química , Puntos Cuánticos/química , Plata/química , Ácido Úrico
11.
Luminescence ; 35(8): 1373-1383, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32543018

RESUMEN

In this study, by adjusting sulfuric acid concentrations, tunable multicolour S/N-carbon quantum dots (CQDs) were synthesized from waste foam as the raw material. The S/N-CQDs presented blue, blue-green, green, green-yellow and yellow emission with an emission peak shifting from 475 to 589 nm and with optimum excitation wavelengths of 385, 405, 440, 450, and 500 nm, respectively. Using transmission electron microscopy, the S/N-CQDs were seen to be spherical in morphology with a size around 6-8 nm. Fourier transform infrared spectra and X-ray photoelectron spectroscopy indicated that the surface of the S/N-CQDs was highly oxidized and sulfur doped. The fluorescence mechanism of multicolour S/N-CQDs emission was mainly related to a band gap change caused by the surface state. Blue-emitting S/N-CQDs were used as a fluorescent probe that was highly selective and sensitive to Cr3+ ions, with a low detection limit of 6 µM. The waste foam-derived S/N-CQDs exhibited promising potential for ion detection in real water samples due to its excellent fluorescence activity.


Asunto(s)
Puntos Cuánticos , Carbono , Colorantes Fluorescentes , Iones , Azufre
12.
Int J Biol Macromol ; 278(Pt 4): 134965, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179084

RESUMEN

The major objective of this research revolves around the integration of polypyrrole (PPy) and various concentrations of nitrogen-doped carbon quantum dots (N-CQDs) into a polyacrylamide (PAm)-grafted hydroxyethyl cellulose (gHEC) to produce gHEC@PPy@N-CQDs bionanocomposites that possess environmentally sustainable properties. The intercalation and uniform distribution of N-CQDs inside the gHEC@PPy matrix have been demonstrated through the analysis of data obtained from X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The samples underwent analysis using thermogravimetric analysis (TGA and DTG) as well as scanning and transmission electron microscopy. The improved dispersion of PPy and 4 % N-CQDs inside the matrix led to enhanced electrical characteristics of the graphene-hybridized metal bionanocomposite. The peculiar optical and photoluminescence emission observed in the gHEC@PPy@N-CQDs bionanocomposites can be attributed to the surface groups of N-CQDs and the transition between CN and CN. This hypothesis suggests that these factors play a significant role in determining the observed optical properties. The main goal is to identify distinctive and captivating applications for these bionanocomposites across several domains, including electronics, optical and light-emitting devices with a broad spectrum of colors, and bioimaging applications.


Asunto(s)
Carbono , Celulosa , Nanocompuestos , Nitrógeno , Polímeros , Pirroles , Puntos Cuánticos , Celulosa/química , Celulosa/análogos & derivados , Puntos Cuánticos/química , Pirroles/química , Nitrógeno/química , Polímeros/química , Nanocompuestos/química , Carbono/química , Resinas Acrílicas/química , Espectroscopía Infrarroja por Transformada de Fourier , Luminiscencia , Difracción de Rayos X
13.
Appl Spectrosc ; 78(3): 329-339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38166449

RESUMEN

Terbium- and nitrogen-doped carbon quantum dots (Tb,N@CQDs) were greenly created employing microwave synthesis from plum juice with terbium nitrate. The synthesis of Tb,N@CQDs was fast (7 min) with a high quantum yield (35.44%). Tb,N@CQDs were fully characterized using transmission electron microscopy, Zeta potential analysis, fluorescence, and ultraviolet spectroscopy. Omadacycline (OMC) is a broad-spectrum tetracycline that has been recently approved by the United States Food and Drug Act (FDA) in October 2018. OMC is the first oral aminomethylcycline class antibiotic drug that was authorized for the treatment of acute skin structure infections and community-acquired pneumonia. Tb,N@CQDs exhibited emission at 440 nm after excitation at 360 nm, where their fluorescence intensity showed a reduction upon addition of OMC. The experimental parameters were further studied and optimized. The linear range was between 40 and 60 parts per billion (ppb), with (limit of quantitation) equal to 34.78 ppb. The proposed approach was validated for bioanalytical purposes using FDA guidelines and proved to be straightforward, cheap, highly sensitive, and very selective, which can be used in clinical studies. The developed approach proved to be green using some current assessment metrics and was applied successfully for the determination of OMC in human plasma, milk, and pharmaceutical formulations as well as pharmacokinetic study.


Asunto(s)
Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Terbio/química , Tetraciclinas , Carbono/química , Nitrógeno
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123850, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38219614

RESUMEN

In this study, a novel composite material was developed for the ratiometric detection of pyrophosphate anion (P2O74-). This composite consisted of Al and nitrogen co-doped carbon dots (Al-N@CQDs) and glutathione-capped copper nanoclusters (GSH@CuNCs). The Al-N@CQDs component, with its high reserved coordination capacity of Al3+, induced the non-luminescent behavior of GSH@CuNCs, resulting in an aggregation-induced emission (AIE) effect. The hybrid material (Al-N@CQDs/GSH@CuNCs) exhibited dual-emission signals at 620 nm and 450 nm after integrating the two independent materials utilizing the AIE effect and the fluorescence resonance energy transfer (FRET) approach. This approach represents the first utilization of this composite for ratiometric detection. Nevertheless, upon the addition of P2O74-, the AIE and FRET processes were hindered due to the higher coordination interaction of Al3+ towards P2O74- compared to the amino/carboxyl groups on Al-N@CQDs. This successful interference of the AIE and FRET processes allowed for the effective estimation of P2O74-. The response ratio (F450/F620) increased with increasing the concentration of P2O74- in the range of 0.035-160 µM, with an impressive detection limit of 0.012 µM. This innovative approach of utilizing hybrid CQDs/thiolate-capped nanoclusters as a ratiometric fluorescent sensor for analytical applications introduces new possibilities in the field. The as-fabricated system was successfully applied to detect P2O74- in different real samples such as water, serum, and urine samples with acceptable results.

15.
BMC Chem ; 17(1): 83, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468925

RESUMEN

Prucalopride (PCP) is a medication used for the management of constipation via regulating bowel motions. PCP is widely used all over the world. So, novel, rapid, and highly sensitive carbon dots N-CQDs were obtained from Eruca Sativa juice via microwave approach in 4 min. The luminescence power of N-CQDs was declined by the increasing prucalopride concentration at emission 518 nm with linearity ranged from 3.00 to 200.00 ng mL-1. The luminescent antecedent was utilized for the test of PCP in human plasma with the rate of recovery extending from 95.06 to 98.40%. The new technique is an eco-friendly analytical method that can be easily applied in clinical laboratories. This assay is also simple, sensitive, and applied to therapeutic laboratories and subsequent pharmacokinetic studies in several clinical laboratories. Furthermore, the N-CQDs nano-sensor was able to distinguish the target drug from interferents commonly found in human plasma, indicating its high specificity and selectivity for PCP detection.

16.
Sci Total Environ ; 885: 163773, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37146826

RESUMEN

With the development of the petrochemical industry, a large amount of naphthenic acids in petrochemical wastewater was accumulated in the environment, causing serious environmental pollution. Most of the commonly used methods for the determination of naphthenic acids have the characteristics of high energy consumption, complicated pretreatment, long detection cycle, and the need to send samples to analytical laboratories. Therefore, it is essential to develop an efficient and low-cost field analytical method for rapidly naphthenic acids quantify. In this study, nitrogen-rich carbon quantum dots (N-CQDs) based on natural deep eutectic solvents (NADESs) was successfully synthesized by a one-step solvothermal method. The fluorescence property of carbon quantum dots was used to achieve the quantitative detection of naphthenic acids in wastewater. The prepared N-CQDs showed excellent fluorescence and stability, showed a good response to naphthenic acids and a linear relationship in the concentration range of naphthenic acids from 0.03 to 0.09 mol‧L-1. The effect of common interferents in petrochemical wastewater on the detection of naphthenic acids by N-CQDs was investigated. The results showed that N-CQDs had good specificity for the detection of naphthenic acids. N-CQDs was applied to the naphthenic acids wastewater, and the concentration of naphthenic acids in the wastewater was successfully calculated according to the fitting equation.

17.
J Colloid Interface Sci ; 610: 518-526, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34863551

RESUMEN

Owing to the exorbitant CO2 activation energy and unsatisfactory photogenerated charge separation efficiency, CO2 photoconversion still faces enormous challenges. In this study, a directional electron transfer channel has been established by decorating N-doped carbon quantum dots (N-CQDs) on the surface of Bi4MoO9 nanoparticles to ensure that more active electrons can participate in the CO2 reduction. The conduction band of Bi4MoO9 nanoparticles is calculated to be -1.55 eV versus the normal hydrogen electrode (NHE), pH = 7, which is negative enough to attain the photocatalytic CO2 reduction potential of -0.53 eV versus NHE, pH = 7. CO2 adsorption curves and in situ Fourier transform infrared spectra reveal that N-CQDs facilitate surface CO2 adsorption and activation, as well as CO desorption. In addition, steady-state photoluminescence and photoelectrochemical tests prove that the charge separation efficiency can be greatly enhanced by constructing N-CQDs/Bi4MoO9 composites. In the presence of pure water, N-CQDs/Bi4MoO9-2 composite achieved a CO yield of 16.22 µmol g-1 after 5 h Xe light illumination, which was 3.24 times higher than that of pure Bi4MoO9 (4.98 µmol g-1). This study offers a distinctive approach to the optimization of Bi4MoO9 photocatalysts and their application in energy conversion.

18.
Sci Total Environ ; 811: 152389, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34923018

RESUMEN

Trace Co2+, when present in large quantities, is harmful to the environment and therefore cannot be ignored. Inductively coupled plasma mass spectrometry (ICP-MS) is a standard method used to detect metal ions, however, detecting trace Co2+ under high saline conditions can be challenging. Similarly, existing Co2+ treatment methods are prone to secondary pollution and have high energy consumption. Therefore, it is necessary to find an efficient and non-polluting method for Co2+ detection and treatment. This study successfully synthesized nitrogen-rich carbon quantum dots (N-CQDs) based on natural deep eutectic solvents (NADES) using a one-step solvothermal method. The prepared N-CQDs exhibited excellent fluorescence and high salt tolerance. The simultaneous detection and treatment of trace Co2+ in water under high salinity conditions were achieved for the first time. The response of the N-CQDs to Co2+ under saline condition was linear in the range of 5-250 µM with a limit of detection (LOD) of 1.2269 µM. Feasibility of practical application was assessed by quantitative detection of Co2+ in real water samples. Furthermore, the N-CQDs can treat Co2+, and the removal rate was 99.98%.


Asunto(s)
Puntos Cuánticos , Carbono , Disolventes Eutécticos Profundos , Nitrógeno , Espectrometría de Fluorescencia
19.
J Hazard Mater ; 432: 128759, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35349850

RESUMEN

Green bismuth-based photocatalysts have attracted extensive attention in the field of PPCPs photodegradation. The improved carrier separation efficiency still remains a key factor to enhance photocatalytic performance. Herein, N-doped biomass carbon quantum dots (N-CQDs) decorated p-n heterojunction photocatalyst BiO2-x/BiOCl was prepared using a facile ion-etching strategy, and it displayed a markedly enhanced catalytic activity in the photodegradation of sulfonamide antibiotics. Calculated by the differential charge density, the doped N-CQDs could gather photogenerated electrons, which indicated that the introduction of N-CQDs into BiO2-x/BiOCl would effectively inhibit the recombination of photogenerated charge carriers. In addition, photocatalytic performance and density functional theory (DFT) calculation results revealed that the photogenerated electrons tended to transfer from p-BiOCl to n-BiO2-x through N-CQDs, which could generate ·O2- and photogenerated h+ to oxidize the target pollutants. Benefiting from the synergistic effect of accelerated separation of e--h+ in p-n heterojunction and the electron-rich performance of N-CQDs, the superb TOC removal efficiencies (89.40% within 120 min visible-light irradiation) and toxicity reduction performance of photodegradation intermediates were achieved. As a consequence, this work will provide a design of high-quality photocatalysts and a green-promising strategy for bismuth-based photocatalysts in the water treatment of PPCPs.


Asunto(s)
Bismuto , Contaminantes Ambientales , Catálisis , Luz , Fotólisis
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 257: 119774, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33872952

RESUMEN

In this study, an environmentally friendly and water-soluble nitrogen-doped carbon quantum dots (N-CQDs) with quantum yield (QY) of 8.59% were prepared by one-step hydrothermal synthesis without any chemical reagent using the leaves of prunus lannesiana as precursors. The properties and quality of N-CQDs were investigated by Ultraviolet-visible absorption spectroscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential, high-resolution transmission electron microscopy and fluorescence spectroscopy. The fluorescence of the prepared N-CQDs can be quenched by Fe3+ through the synergistic effect of the formation of non-fluorescent complex and internal filtration effect (IFE) between Fe3+ and N-CQDs. And the quenched fluorescence can be "turned on" after adding ascorbic acid (AA) because Fe3+ can be released from the surface of N-CQDs through the redox reaction between AA and Fe3+. While the restored fluorescence can be "turned off" again by hydrogen peroxide (H2O2) due to the re-oxidation of Fe2+ to Fe3+. So, the three inputs "logic gate" is achieved and the "on-off-on-off" continuous response fluorescence sensor is formed, which can be applied for the continuous detection of Fe3+, AA and H2O2 with the linear range of 40-260 µM, 10-200 µM and 40-140 µM, respectively. Finally, the sensor was successfully applied to determine Fe3+, AA and H2O2 in real samples with the satisfactory recoveries (95.35%-104.10%) and repeatability (relative standard deviation (RSD) ≤ 1.68%). The continuous response fluorescence sensor prepared by simple green synthesis route has the characteristics of fast response, acceptable sensitivity and good selectivity.


Asunto(s)
Prunus , Puntos Cuánticos , Carbono , Peróxido de Hidrógeno , Límite de Detección , Nitrógeno , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA