RESUMEN
Herein, organocatalytically achieved polarity reversal of cationic bromine is presented. The proven bromocation source N-bromosuccinimide (NBS) was converted to a superior bromoanion reagent by H/Br exchange with a secondary amine, substantiated with spectroscopic and computational evidence. The concept has further been used in a successfully accelerated organocatalyzed dibromination of olefins in a non-hazardous, commercially viable process with a wide range of substrate scope. The reactivity of key entities observed through NMR kinetics and reaction acceleration using only 10â mol % of catalyst account for its major success. The nucleophilicity of the bromoanion was found to be superior in comparison to other nucleophiles such as MeOH and H2 O also the protocol dominates over the competing allylic bromination reaction.
RESUMEN
Hydantoin-N-halamine derivatives conjugated on polystyrene beads are promising disinfectants with broad antimicrobial activity affected by the gradual release of oxidizing halogen in water. The objective of this work was to identify and test of hydantoin-like molecules possessing urea moiety, which may provide N-haloamines releasing oxidizing halogens when exposed to water at different rates and release profiles for tailored antimicrobial agents. In this work, several hydantoin (five member ring) and for the first time reported, uracil (six member ring) derivatives have been conjugated to polystyrene beads and tested for their lasting antimicrobial activity. Four molecules of each series were conjugated onto polystyrene beads from the reaction of the N-potassium hydantoin or uracil derivatives onto chloromethylated polystyrene beads. A distinct difference in bromine loading capacity and release profiles was found for the different conjugated derivatives. All tested materials exhibit strong antimicrobial activity against Escherichia coli and bacteriophages MS2 of 7 and ~4 log reduction, respectively. These results highlight the antimicrobial potential of halogenated cyclic molecules containing urea groups as water disinfection agents.