Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Saudi Pharm J ; 30(6): 655-668, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35812139

RESUMEN

Most vaccines approved by regulatory bodies are administered via intramuscular or subcutaneous injections and have shortcomings, such as the risk of needle-associated blood infections, pain and swelling at the injection site. Orally administered vaccines are of interest, as they elicit both systemic and mucosal immunities, in which mucosal immunity would neutralize the mucosa invading pathogen before the onset of an infection. Hence, oral vaccination can eliminate the injection associated adverse effects and enhance the person's compliance. Conventional approaches to manufacturing oral vaccines, such as coacervation, spray drying, and membrane emulsification, tend to alter the structural proteins in vaccines that result from high temperature, organic and toxic solvents during production. Electrohydrodynamic processes, specifically electrospraying, could solve these challenges, as it also modulates antigen release and has a high loading efficiency. This review will highlight the mucosal immunity and biological basis of the gastrointestinal immune system, different oral vaccine delivery approaches, and the application of electrospraying in vaccines development.

2.
Kidney Int ; 100(2): 364-376, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33961870

RESUMEN

Dysregulation of mucosal immunity may play a role in the pathogenesis of IgA nephropathy (IgAN). However, it is unclear whether the nasal-associated lymphoid tissue (NALT) or gut-associated lymphatic tissue is the major induction site of nephritogenic IgA synthesis. To examine whether exogenous mucosal antigens exacerbate the pathogenesis of IgAN, we assessed the disease phenotypes of IgAN-onset ddY mice housed germ-free. These mice were transferred to a specific pathogen-free environment and divided into three groups: challenged with the Toll-like receptor 9 (TLR9) ligand CpG-oligodeoxynucleotide, fecal transplantation, and the untreated control group. The levels of aberrantly glycosylated IgA and IgG-IgA immune complexes were measured in the serum and supernatant of cultured cells purified from the NALT, mesenteric lymph nodes, and Peyer's patch. Although the germ-free IgAN-onset ddY mice did not develop IgAN, they showed aggravation of kidney injury with mesangial IgA deposition after transfer to the specific pathogen-free state. The NALT cells produced more aberrantly glycosylated IgA than those from the mesenteric lymph node and Peyer's patch, resulting in induction of IgG-IgA immune complexes formation. Additionally, TLR9 enhanced the production of nephritogenic IgA and IgG-IgA immune complexes by nasal-associated lymphoid but not gut-associated lymphatic cells. Furthermore, the germ-free IgAN-onset ddY mice nasally immunized with CpG-oligonucleotide showed aggravation of kidney injury with mesangial IgA deposition, whereas those that received fecal transplants did not develop IgAN. Thus, NALT is the major induction site of the production of aberrantly glycosylated IgA in murine IgAN.


Asunto(s)
Glomerulonefritis por IGA , Animales , Mesangio Glomerular , Inmunoglobulina A , Tejido Linfoide , Ratones , Ratones Endogámicos
3.
Int Immunol ; 32(8): 559-568, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32347929

RESUMEN

Nasal mucosal tissues are equipped with physical barriers, mucus and cilia, on their surface. The mucus layer captures inhaled materials, and the cilia remove the inhaled materials from the epithelial layer by asymmetrical beating. The effect of nasal physical barriers on the vaccine efficacy remains to be investigated. Tubulin tyrosine ligase-like family, member 1 (Ttll1) is an essential enzyme for appropriate movement of the cilia on respiratory epithelium, and its deficiency (Ttll1-KO) leads to mucus accumulation in the nasal cavity. Here, when mice were intra-nasally immunized with pneumococcal surface protein A (PspA, as vaccine antigen) together with cholera toxin (CT, as mucosal adjuvant), Ttll1-KO mice showed higher levels of PspA-specific IgA in the nasal wash and increased numbers of PspA-specific IgA-producing plasma cells in the nasal passages when compared with Ttll1 hetero (He) mice. Mucus removal by N-acetylcysteine did not affect the enhanced immune responses in Ttll1-KO mice versus Ttll1-He mice. Immunohistological and flow cytometry analyses revealed that retention time of PspA in the nasal cavity in Ttll1-KO mice was longer than that in Ttll1-He mice. Consistently, uptake of PspA by dendritic cells was higher in the nasopharynx-associated lymphoid tissue (NALT) of Ttll1-KO mice than that of Ttll1-He mice. These results indicate that the ciliary function of removing vaccine antigen from the NALT epithelial layer is a critical determinant of the efficacy of nasal vaccine.


Asunto(s)
Antígenos/inmunología , Proteínas Bacterianas/inmunología , Toxina del Cólera/inmunología , Vacunas contra el Cólera/inmunología , Inmunoglobulina A/inmunología , Mucosa Nasal/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptido Sintasas/deficiencia , Péptido Sintasas/inmunología
4.
Semin Immunol ; 30: 12-27, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28807539

RESUMEN

Immunity is established by a fine balance to discriminate between self and non-self. In addition, mucosal surfaces have the unique ability to establish and maintain a state of tolerance also against non-self constituents such as those represented by the large numbers of commensals populating mucosal surfaces and food-derived or air-borne antigens. Recent years have seen a dramatic expansion in our understanding of the basic mechanisms and the involved cellular and molecular players orchestrating mucosal tolerance. As a direct outgrowth, promising prophylactic and therapeutic models for mucosal tolerance induction against usually innocuous antigens (derived from food and aeroallergen sources) have been developed. A major theme in the past years was the introduction of improved formulations and novel adjuvants into such allergy vaccines. This review article describes basic mechanisms of mucosal tolerance induction and contrasts the peculiarities but also the interdependence of the gut and respiratory tract associated lymphoid tissues in that context. Particular emphasis is put on delineating the current prophylactic and therapeutic strategies to study and improve mucosal tolerance induction in allergy.


Asunto(s)
Alérgenos/inmunología , Desensibilización Inmunológica/métodos , Hipersensibilidad/inmunología , Tolerancia Inmunológica , Intestinos/inmunología , Membrana Mucosa/inmunología , Sistema Respiratorio/inmunología , Alérgenos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Humanos , Hipersensibilidad/terapia , Inmunidad Mucosa , Ratones
5.
Fish Shellfish Immunol ; 104: 165-171, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32497724

RESUMEN

Like terrestrial vertebrates, bony fishes have a nasopharynx-associated lymphoid tissue (NALT) that protects the host against invading pathogens. Despite nasal immunity being a relatively new field in fish immunology, the investigation of nasal immune systems has already illuminated fundamental aspects of teleost mucosal immune systems as well as neuroimmunology. In this review, we highlight the importance of nasal infections in bony fish and the progress that has been made towards understanding how fish respond locally and systemically to nasal infection or vaccination. We also want to highlight the complex interactions between neurons and immune cells that occur in the olfactory organ during the course of an immune response. We predict that similar neuroimmune interactions govern immune responses at all mucosal tissues in bony fish. Understanding the principles of mucosal immune responses in teleost NALT has therefore revealed important aspects of fish mucosal immunity that are critical for mucosal vaccination in aquaculture.


Asunto(s)
Enfermedades de los Peces/inmunología , Inmunidad Mucosa , Neuroinmunomodulación , Enfermedades Nasales/veterinaria , Vacunación/veterinaria , Animales , Peces , Nariz/inmunología , Enfermedades Nasales/inmunología , Vacunas/inmunología
6.
Eur J Immunol ; 48(6): 965-974, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29543979

RESUMEN

Nasopharyngeal colonization with Streptococcus pneumoniae (the pneumococcus) is known to mount protective adaptive immune responses in rodents and humans. However, the cellular response of the nasopharyngeal compartment to pneumococcal colonization and its importance for the ensuing adaptive immune response is only partially defined. Here we show that nasopharyngeal colonization with S. pneumoniae triggered substantial expansion of both integrin αE (CD103) positive dendritic cells (DC) and T lymphocytes in nasopharynx, nasal-associated lymphoid tissue (NALT) and cervical lymph nodes (CLN) of WT mice. However, nasopharyngeal de-colonization and pneumococcus-specific antibody responses were similar between WT and CD103 KO mice or Batf3 KO mice. Also, naïve WT mice passively immunized with antiserum from previously colonized WT and CD103 KO mice were similarly protected against invasive pneumococcal disease (IPD). In summary, the data show that CD103 is dispensable for pneumococcal colonization-induced adaptive immune responses in mice.


Asunto(s)
Antígenos CD/metabolismo , Células Dendríticas/inmunología , Cadenas alfa de Integrinas/metabolismo , Tejido Linfoide/inmunología , Enfermedades Nasofaríngeas/inmunología , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/fisiología , Linfocitos T/inmunología , Inmunidad Adaptativa , Animales , Anticuerpos Antibacterianos/metabolismo , Antígenos CD/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Cadenas alfa de Integrinas/genética , Activación de Linfocitos , Tejido Linfoide/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Represoras/genética
7.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29563292

RESUMEN

There is increasing interest recently in developing intranasal vaccines against respiratory tract infections. The antibody response is critical for vaccine-induced protection, and T follicular helper cells (TFH) are considered important for mediating the antibody response. Most data supporting the role for TFH in the antibody response are from animal studies, and direct evidence from humans is limited, apart from the presence of TFH-like cells in blood. We studied the activation and induction of TFH and their role in the anti-influenza antibody response induced by a live-attenuated influenza vaccine (LAIV) in human nasopharynx-associated lymphoid tissue (NALT). TFH activation in adenotonsillar tissues was analyzed by flow cytometry, and anti-hemagglutinin (anti-HA) antibodies were examined following LAIV stimulation of tonsillar mononuclear cells (MNC). Induction of antigen-specific TFH by LAIV was studied by flow cytometry analysis of induced TFH and CD154 expression. LAIV induced TFH proliferation, which correlated with anti-HA antibody production, and TFH were shown to be critical for the antibody response. Induction of TFH from naive T cells by LAIV was shown in newly induced TFH expressing BCL6 and CD21, followed by the detection of anti-HA antibodies. Antigen specificity of LAIV-induced TFH was demonstrated by expression of the antigen-specific T cell activation marker CD154 upon challenge by H1N1 virus antigen or HA. LAIV-induced TFH differentiation was inhibited by BCL6, interleukin-21 (IL-21), ICOS, and CD40 signaling blocking, and that diminished anti-HA antibody production. In conclusion, we demonstrated the induction by LAIV of antigen-specific TFH in human NALT that provide critical support for the anti-influenza antibody response. Promoting antigen-specific TFH in NALT by use of intranasal vaccines may provide an effective vaccination strategy against respiratory infections in humans.IMPORTANCE Airway infections, such as influenza, are common in humans. Intranasal vaccination has been considered a biologically relevant and effective way of immunization against airway infection. The vaccine-induced antibody response is crucial for protection against infection. Recent data from animal studies suggest that one type of T cells, TFH, are important for the antibody response. However, data on whether TFH-mediated help for antibody production operates in humans are limited due to the lack of access to human immune tissue containing TFH In this study, we demonstrate the induction of TFH in human immune tissue, providing critical support for the anti-influenza antibody response, by use of an intranasal influenza vaccine. Our findings provide direct evidence that TFH play a critical role in vaccine-induced immunity in humans and suggest a novel strategy for promoting such cells by use of intranasal vaccines against respiratory infections.


Asunto(s)
Anticuerpos Antivirales/inmunología , Hemaglutininas Virales/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Activación de Linfocitos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas Atenuadas/inmunología , Administración Intranasal , Adolescente , Adulto , Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Antígenos CD40/antagonistas & inhibidores , Ligando de CD40/biosíntesis , Células Cultivadas , Niño , Preescolar , Humanos , Inmunidad Mucosa/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/antagonistas & inhibidores , Gripe Humana/prevención & control , Gripe Humana/virología , Interleucinas/antagonistas & inhibidores , Membrana Mucosa/inmunología , Nasofaringe/inmunología , Proteínas Proto-Oncogénicas c-bcl-6/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-6/biosíntesis , Receptores de Complemento 3d/biosíntesis , Adulto Joven
8.
BMC Immunol ; 19(1): 5, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29368640

RESUMEN

BACKGROUND: The lymphatic vascular pattern in the head of mice has rarely been studied, due to problems of sectioning and immunostaining of complex bony structures. Therefore, the association of head lymphoid tissues with the lymphatics has remained unknown although the mouse is the most often used species in immunology. RESULTS: Here, we studied the association of nasal and nasolacrimal duct lymphatics with lymphoid aggregates in 14-day-old and 2-month-old mice. We performed paraffin sectioning of whole, decalcified heads, and immunostaining with the lymphatic endothelial cell-specific antibodies Lyve-1 and Podoplanin. Most parts of the nasal mucous membrane do not contain any lymphatics. Only the region of the inferior turbinates contains lymphatic networks, which are connected to those of the palatine. Nose-associated lymphoid tissue (NALT) is restricted to the basal parts of the nose, which contain lymphatics. NALT is continued occipitally and can be found at both sides along the sphenoidal sinus, again in close association with lymphatic networks. Nasal lymphatics are connected to those of the ocular region via a lymphatic network along the nasolacrimal duct (NLD). By this means, lacrimal duct-associated lymphoid tissue (LDALT) has a dense supply with lymphatics. CONCLUSIONS: NALT and LDALT play a key role in the immune system of the mouse head, where they function as primary recognition sites for antigens. Using the dense lymphatic networks along the NLD described in this study, these antigens reach lymphatics near the palatine and are further drained to lymph nodes of the head and neck region. NALT and LDALT develop in immediate vicinity of lymphatic vessels. Therefore, we suggest a causative connection of lymphatic vessels and the development of lymphoid tissues.


Asunto(s)
Aparato Lagrimal/inmunología , Vasos Linfáticos/inmunología , Tejido Linfoide/inmunología , Mucosa Nasal/inmunología , Conducto Nasolagrimal/inmunología , Animales , Humanos , Inmunidad Mucosa/inmunología , Aparato Lagrimal/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Vasos Linfáticos/metabolismo , Tejido Linfoide/metabolismo , Ratones Endogámicos , Mucosa Nasal/metabolismo , Conducto Nasolagrimal/metabolismo
9.
Eur J Immunol ; 47(3): 540-551, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28101913

RESUMEN

Nasopharyngeal colonization with Streptococcus pneumoniae (Spn) is an important precondition for the development of pneumococcal pneumonia. At the same time, nasopharyngeal colonization with Spn has been shown to mount adaptive immune responses against Spn in mice and humans. Cellular responses of the nasopharyngeal compartment, including the nasal-associated lymphoid tissue, to pneumococcal colonization and their importance for developing adaptive immune responses are poorly defined. We show that nasopharyngeal colonization with S. pneumoniae led to substantial expansion of dendritic cells (DCs) both in nasopharyngeal tissue and nasal-associated lymphoid tissue of mice. Depletion of DCs achieved by either diphtheria toxin (DT) treatment of chimeric zDC+/DTR mice, or by use of FMS-like tyrosine kinase 3 ligand (Flt3L) KO mice exhibiting congenitally reduced DC pool sizes, significantly diminished antibody responses after colonization with Spn, along with impaired protective immunity against invasive pneumococcal disease. Collectively, the data show that classical DCs contribute to pneumococcal colonization induced adaptive immune responses against invasive pneumococcal disease in two different mouse models. These data may be useful for future nasopharyngeal vaccination strategies against pneumococcal diseases in humans.


Asunto(s)
Células Dendríticas/fisiología , Nasofaringe/inmunología , Neumonía Neumocócica/inmunología , Streptococcus pneumoniae/inmunología , Inmunidad Adaptativa , Animales , Formación de Anticuerpos/genética , Proliferación Celular/genética , Células Cultivadas , Células Dendríticas/microbiología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nasofaringe/microbiología , Streptococcus pneumoniae/crecimiento & desarrollo , Tirosina Quinasa 3 Similar a fms/genética
10.
Parasite Immunol ; 40(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29243267

RESUMEN

We investigated whether intranasal immunization with amoebic lysates plus cholera toxin modified the populations of T and B lymphocytes, macrophages and dendritic cells by flow cytometry from nose-associated lymphoid tissue (NALT), cervical lymph nodes (CN), nasal passages (NP) and spleen (SP). In all immunized groups, the percentage of CD4 was higher than CD8 cells. CD45 was increased in B cells from mice immunized. We observed IgA antibody-forming cell (IgA-AFC) response, mainly in NALT and NP. Macrophages from NP and CN expressed the highest levels of CD80 and CD86 in N. fowleri lysates with either CT or CT alone immunized mice, whereas dendritic cells expressed high levels of CD80 and CD86 in all compartment from immunized mice. These were lower than those expressed by macrophages. Only in SP from CT-immunized mice, these costimulatory molecules were increased. These results suggest that N. fowleri and CT antigens are taking by APCs, and therefore, protective immunity depends on interactions between APCs and T cells from NP and CN. Consequently, CD4 cells stimulate the differentiation from B lymphocytes to AFC IgA-positive; antibody that we previously found interacting with trophozoites in the nasal lumen avoiding the N. fowleri attachment to nasal epithelium.


Asunto(s)
Administración Intranasal , Antígenos de Protozoos/administración & dosificación , Naegleria fowleri/fisiología , Mucosa Nasal/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Antígenos de Protozoos/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Toxina del Cólera/administración & dosificación , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos BALB C , Naegleria fowleri/crecimiento & desarrollo , Naegleria fowleri/inmunología , Mucosa Nasal/citología
11.
J Immunoassay Immunochem ; 39(1): 43-57, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29144192

RESUMEN

Characterising the immune cells of the head-associated lymphoid tissues (HALT) and trachea during maturation in young birds is critical to understanding the immunological responses to avian respiratory diseases and vaccines. Selected mucosal leukocytes of the conjunctiva-associated lymphoid tissue (CALT), Harderian gland (HG), nasal-associated lymphoid tissue (NALT) and trachea from 4-, 6-, 8-, and 10-week-old chickens were enumerated and phenotyped. HG, NALT, and trachea cellularity increased as the birds aged with cell viability varying by tissue. The results showed that the T cell subset numbers, but not B cell numbers, increased in the mucosal tissues of chickens during aging.


Asunto(s)
Inmunidad Mucosa/inmunología , Leucocitos/citología , Tejido Linfoide/citología , Tráquea/citología , Animales , Supervivencia Celular , Células Cultivadas , Pollos , Femenino , Leucocitos/inmunología , Tejido Linfoide/inmunología , Masculino , Tráquea/inmunología
12.
Cell Immunol ; 302: 58-62, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26868716

RESUMEN

During nasal immune responses, lymphocytes activated in the nasopharynx-associated lymphoid tissue (NALT) are thought to traffic to the nasal mucosa. Here we found a prominent infiltration of CD4(+) memory T cells into the nasal mucosa in a mouse model of allergic rhinitis. CCR3 and CCR10 mRNA was increased in the NALT, and CCR3- or CCR10-expressing CD4(+) T cells were present in the nasal mucosa. CCL28, a chemokine ligand for CCR3 and CCR10, was upregulated in nasal epithelial cells. Our results suggest that memory CD4(+) T cells traffic to the nasal mucosa in a process that may involve CCL28 and its receptors CCR3 and CCR10.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Quimiocinas CC/genética , Mucosa Nasal/inmunología , Rinitis Alérgica/fisiopatología , Regulación hacia Arriba , Animales , Quimiocinas CC/metabolismo , Modelos Animales de Enfermedad , Memoria Inmunológica , Ratones , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo
13.
Cell Tissue Res ; 364(1): 175-84, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26553655

RESUMEN

Murine nasopharynx-associated lymphoid tissue (NALT), located at the base of the nasal cavity, serves as a major site for the induction of mucosal immune responses against airway antigens. The follicle-associated epithelium (FAE) covering the luminal surface of NALT is characterized by the presence of microfold cells (M cells), which take up and transport luminal antigens to lymphocytes. Glycoprotein 2 (GP2) has recently been identified as a reliable marker for M cells in Peyer's patches of the intestine. However, the expression of GP2 and other functional molecules in the M cells of NALT has not yet been examined. We have immunohistochemically detected GP2-expressing cells in the FAE of NALT and the simultaneous expression of other intestinal M-cell markers, namely Tnfaip2, CCL9, and Spi-B. These cells have been further identified as M cells because of their higher uptake capacity of luminal microbeads. Electron microscopic observations have shown that GP2-expressing cells on the FAE display morphological features typical of M cells: they possess short microvilli and microfolds on the luminal surface and are closely associated with intraepithelial lymphocytes. We have also found that the receptor activator of nuclear factor kappa-B ligand (RANKL) is expressed by stromal cells underneath the FAE, which provides its receptor RANK. The administration of RANKL markedly increases the number of GP2(+)Tnfaip2(+) cells on the NALT FAE and that of intestinal M cells. These results suggest that GP2(+)Tnfaip2(+) cells in NALT are equivalent to intestinal M cells, and that RANKL-RANK signaling induces their differentiation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Tejido Linfoide/inmunología , Faringe/inmunología , Ligando RANK/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Antígenos de Diferenciación/inmunología , Diferenciación Celular/inmunología , Proteínas Ligadas a GPI/inmunología , Regulación de la Expresión Génica/inmunología , Tejido Linfoide/citología , Ratones , Ratones Endogámicos BALB C , Faringe/citología , Ligando RANK/inmunología , Transducción de Señal/inmunología
14.
Microsc Res Tech ; 87(9): 2103-2112, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38683022

RESUMEN

The striped dolphin (Stenella coeruleoalba) is a medium-sized pelagic dolphin with a single external nasal opening (blowhole) located in the rostral and dorsal regions of the skull. The nasal cavity is divided into three sections: the olfactory, respiratory, and vestibular areas. The surface epithelium lining the regio vestibularis is the first tissue in the nose to be directly affected by environmental antigens. Cetaceans have a significant amount of mucosa-associated lymphoid tissue (MALT) located throughout their bodies. The lymphoid tissue found in the nasal mucosa is known as nose- or nasopharynx-associated lymphoid tissue (NALT). NALT has not yet been studied in dolphins, but it has been identified and documented in humans and laboratory rodents. This study utilized toll-like receptor 2 (TLR2), CD4, Langerin/CD207, and inducible nitric oxide synthase to characterize, for the first time, immune cells in the mucosal regio vestibularis of the S. coeruleoalba nasal cavity using confocal microscopy immunofluorescence techniques. The findings revealed scattered immune cells immunoreactive to the tested antibodies, present in both the epithelial tissue lining the nasal cavity vestibulum and the underlying connective tissue. This study enhances our comprehension of the immune system of cetaceans. RESEARCH HIGHLIGHTS: This study provides new insights into NALT in S. coeruleoalba. This research deepens the knowledge of the skin of cetaceans.


Asunto(s)
Inmunohistoquímica , Tejido Linfoide , Cavidad Nasal , Stenella , Animales , Cavidad Nasal/anatomía & histología , Tejido Linfoide/anatomía & histología , Stenella/anatomía & histología , Mucosa Nasal , Microscopía Confocal , Óxido Nítrico Sintasa de Tipo II/metabolismo , Antígenos CD4/metabolismo , Antígenos CD4/análisis , Delfines/anatomía & histología
15.
Microorganisms ; 12(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203562

RESUMEN

Prochlorococcus, a cyanobacteria genus of the smallest and most abundant oceanic phototrophs, encompasses ecotype strains adapted to high-light (HL) and low-light (LL) niches. To elucidate the adaptive evolution of this genus, we analyzed 40 Prochlorococcus marinus ORFeomes, including two cornerstone strains, MED4 and NATL1A. Employing deep learning with robust statistical methods, we detected new protein family distributions in the strains and identified key genes differentiating the HL and LL strains. The HL strains harbor genes (ABC-2 transporters) related to stress resistance, such as DNA repair and RNA processing, while the LL strains exhibit unique chlorophyll adaptations (ion transport proteins, HEAT repeats). Additionally, we report the finding of variable, depth-dependent endogenous viral elements in the 40 strains. To generate biological resources to experimentally study the HL and LL adaptations, we constructed the ORFeomes of two representative strains, MED4 and NATL1A synthetically, covering 99% of the annotated protein-coding sequences of the two species, totaling 3976 cloned, sequence-verified open reading frames (ORFs). These comparative genomic analyses, paired with MED4 and NATL1A ORFeomes, will facilitate future genotype-to-phenotype mappings and the systems biology exploration of Prochlorococcus ecology.

16.
Saudi J Biol Sci ; 31(3): 103941, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38327659

RESUMEN

The pH1N1 belongs to influenza A family that is sometimes transmitted to humans via contact with pigs. Human tonsillar immune cells are widely used as in vitro models to study responses to influenza viruses. In the current study, human memory (M) and naïve (N) T cells responses in mononuclear cells of tonsil (TMCs) and peripheral blood (PBMCs) were stimulated by pH1N1/sH1N1, and then stained for estimation of T cells proliferation index. Individuals with an anti-pH1N1 hemagglutination (HA) inhibition (HAI) titer of forty or greater exhibited stronger HA-specific M-CD4+ T cells responses to pH1N1 in TMCs/PBMCs than those with an HAI titer of less than forty (P < 0.01). In addition, a positive correlation was observed between proliferation indices of M-CD4+ T cells induced by exposure to sH1N1/pH1N1 (p < 0.01). Moreover, a strong correlation (p < 0.001) was detected between subjects' age and their HA-specific M-CD4+ T cells induced by pH1N1 exposure, indicating that this response was age-dependent. Finally, stimulation of TMCs with pH1N1-HA resulted in a significant M-CD8+ T cells response (p < 0.05). In conclusion, pH1N1 HA elicits a strong M-CD4+ T cells response in TMCs. Additionally, this response correlates with the response to sH1N1 suggesting cross-reactivity in T cells epitopes directed against HAs of both viral strains.

17.
Front Immunol ; 15: 1419527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286244

RESUMEN

Mucosal barrier tissues and their mucosal associated lymphoid tissues (MALT) are attractive targets for vaccines and immunotherapies due to their roles in both priming and regulating adaptive immune responses. The upper and lower respiratory mucosae, in particular, possess unique properties: a vast surface area responsible for frontline protection against inhaled pathogens but also simultaneous tight regulation of homeostasis against a continuous backdrop of non-pathogenic antigen exposure. Within the upper and lower respiratory tract, the nasal and bronchial associated lymphoid tissues (NALT and BALT, respectively) are key sites where antigen-specific immune responses are orchestrated against inhaled antigens, serving as critical training grounds for adaptive immunity. Many infectious diseases are transmitted via respiratory mucosal sites, highlighting the need for vaccines that can activate resident frontline immune protection in these tissues to block infection. While traditional parenteral vaccines that are injected tend to elicit weak immunity in mucosal tissues, mucosal vaccines (i.e., that are administered intranasally) are capable of eliciting both systemic and mucosal immunity in tandem by initiating immune responses in the MALT. In contrast, administering antigen to mucosal tissues in the absence of adjuvant or costimulatory signals can instead induce antigen-specific tolerance by exploiting regulatory mechanisms inherent to MALT, holding potential for mucosal immunotherapies to treat autoimmunity. Yet despite being well motivated by mucosal biology, development of both mucosal subunit vaccines and immunotherapies has historically been plagued by poor drug delivery across mucosal barriers, resulting in weak efficacy, short-lived responses, and to-date a lack of clinical translation. Development of engineering strategies that can overcome barriers to mucosal delivery are thus critical for translation of mucosal subunit vaccines and immunotherapies. This review covers engineering strategies to enhance mucosal uptake via active targeting and passive transport mechanisms, with a parallel focus on mechanisms of immune activation and regulation in the respiratory mucosa. By combining engineering strategies for enhanced mucosal delivery with a better understanding of immune mechanisms in the NALT and BALT, we hope to illustrate the potential of these mucosal sites as targets for immunomodulation.


Asunto(s)
Inmunidad Mucosa , Inmunomodulación , Humanos , Animales , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Tejido Linfoide/inmunología , Vacunas/inmunología , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Administración Intranasal
18.
Saudi J Biol Sci ; 30(10): 103809, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37766886

RESUMEN

Intranasal live attenuated influenza vaccine (LAIV) was used to stimulate tonsillar monocular cells (MNCs) following isolation. Haemagglutinin (HA) proteins of several influenza strains were used for the detection of HA-specific IgG, IgM and IgA antibodies using ELISA. Significant anti-sH1N1 HA IgG IgA and IgM antibody titres were detected in cell culture supernatants after stimulation (mean ± SE: 0.43 ± 0.09, mean ± SE: 0.23 ± 0.04 and mean ± SE: 0.47 ± 0.05 respectively, p < 0.01). LAIV stimulation of tonsillar MNCs induced significant IgG, IgA and IgM antibodies to the pH1N1 HA (mean ± SE:1.35 ± 0.12), (mean ± SE: 0.35 ± 0.06) and (mean ± SE: 0.58 ± 0.10) respectively, p < 0.01. Surprisingly, LAIV was shown to induce cross-reactive anti-aH5N1 HA antibodies (mean ± SE: 0.84 ± 0.20, p < 0.01) to avian influenza virus (aH5N1). Anti-H2N2 HA IgG antibody was also detected in the cell culture supernatants in a significant level after LAIV stimulation (mean ± SE: 0.93 ± 0.23, p < 0.01). High levels of anti-sH3N2 HA IgG antibody was discovered after LAIV stimulation of tonsillar MNCs, (mean ± SE: 1.2 ± 0.23p < 0.01). The current model of human nasal-associated lymphoid tissue (NALT) to evaluate B cells responses to LAIV was evident that it is a successful model to study future intranasal vaccines.

19.
Acta Trop ; 241: 106889, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36893830

RESUMEN

Trypanosoma cruzi, the agent of Chagas disease, can infect through conjunctive or oral mucosas. Therefore, the induction of mucosal immunity by vaccination is relevant not only to trigger local protection but also to stimulate both humoral and cell-mediated responses in systemic sites to control parasite dissemination. In a previous study, we demonstrated that a nasal vaccine based on a Trans-sialidase (TS) fragment plus the mucosal STING agonist c-di-AMP, was highly immunogenic and elicited prophylactic capacity. However, the immune profile induced by TS-based nasal vaccines at the nasopharyngeal-associated lymphoid tissue (NALT), the target site of nasal immunization, remains unknown. Hence, we analyzed the NALT cytokine expression generated by a TS-based vaccine plus c-di-AMP (TSdA+c-di-AMP) and their association with mucosal and systemic immunogenicity. The vaccine was administered intranasally, in 3 doses separated by 15 days each other. Control groups received TSdA, c-di-AMP, or the vehicle in a similar schedule. We demonstrated that female BALB/c mice immunized intranasally with TSdA+c-di-AMP boosted NALT expression of IFN-γ and IL-6, as well as IFN-ß and TGF-ß. TSdA+c-di-AMP increased TSdA-specific IgA secretion in the nasal passages and also in the distal intestinal mucosa. Moreover, T and B-lymphocytes from NALT-draining cervical lymph nodes and spleen showed an intense proliferation after ex-vivo stimulation with TSdA. Intranasal administration of TSdA+c-di-AMP provokes an enhancement of TSdA-specific IgG2a and IgG1 plasma antibodies, accompanied by an increase IgG2a/IgG1 ratio, indicative of a Th1-biased profile. In addition, immune plasma derived from TSdA+c-di-AMP vaccinated mice exhibit in-vivo and ex-vivo protective capacity. Lastly, TSdA+c-di-AMP nasal vaccine also promotes intense footpad swelling after local TSdA challenge. Our data support that TSdA+c-di-AMP nasal vaccine triggers a NALT mixed pattern of cytokines that were clearly associated with an evident mucosal and systemic immunogenicity. These data are useful for further understanding the immune responses elicited by the NALT following intranasal immunization and the rational design of TS-based vaccination strategies for prophylaxis against T. cruzi.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Vacunas , Femenino , Animales , Ratones , Administración Intranasal , Inmunidad Mucosa , Ganglios Linfáticos , Enfermedad de Chagas/prevención & control , Citocinas/metabolismo , Nasofaringe/metabolismo , Mucosa Intestinal/metabolismo , Inmunoglobulina G , Ratones Endogámicos BALB C
20.
Eur J Pharm Biopharm ; 187: 96-106, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37094693

RESUMEN

Raw starch microparticles (SMPs) proved efficient antigen carriers with adjuvant properties when administered via the mucosal route; however, the underlying mechanisms associated with this bioactivity are unknown. In the present study, we explored the mucoadhesion properties, fate, and toxicity of starch microparticles after mucosal administration. Nasally administered microparticles were mainly retained in nasal turbinates, reaching the nasal-associated lymphoid tissue; this step is facilitated by the ability of the microparticles to penetrate through the mucous epithelium. Likewise, we found intraduodenally administered SMPs on the small intestinal villi, follicle-associated epithelium, and Peyer's patches. Furthermore, under simulated gastric and intestinal pH conditions, we detected mucoadhesion between the SMPs and mucins, regardless of microparticle swelling. SMPs' mucoadhesion and translocation to mucosal immune responses induction sites explain the previously reported role of these microparticles as vaccine adjuvants and immunostimulants.


Asunto(s)
Inmunización , Almidón , Almidón/química , Adyuvantes Inmunológicos , Inmunidad Mucosa , Administración a través de la Mucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA