RESUMEN
Designing plasmonic nanoparticles for biomedical photoacoustic (PA) imaging involves tailoring material properties at the nanometer scale. A key in developing plasmonic PA contrast nanoagents is to engineer their enhanced optical responses in the near-infrared wavelength range, as well as heat transfer properties and photostability. This study introduces anisotropic plasmonic nanosphere aggregates with close interparticle proximity as photostable and efficient contrast agent for PA imaging. Silver (Ag), among plasmonic metals, is particularly attractive due to its strongest optical response and highest heat conductivity. Our results demonstrate that close interparticle proximity in silver nanoaggregates (AgNAs), spatially confined within a polymer shell layer, leads to blackbody-like optical absorption, resulting in robust PA signals through efficient pulsed heat generation and transfer. Additionally, our AgNAs exhibit a high photodamage threshold highlighting their potential to outperform conventional plasmonic contrast agents for high-contrast PA imaging over multiple imaging sessions. Furthermore, we demonstrate the capability of the AgNAs for molecular PA cancer imaging in vivo by incorporating a tumor-targeting peptide moiety.
RESUMEN
Advance in the design of molecular photoswitches - adapters that convert light into changes at molecular level - opens up exciting possibilities in preparing smart polymers, drugs photoactivated inside humans, or light-fueled nanomachines that might in the future operate in our bloodstream. Hemipiperazines are recently reported biocompatible molecular photoswitches based on cyclic dipeptides. Here we report a multistimuli-responsive hemipiperazine-based switch that reacts on light, solvents, acidity, or metal ions. Its photoequilibration is controlled by the intramolecular hydrogen bonding pattern. The compound can be used as a mid-nanomolar photoswitchable fluorescent sensor for zinc and cadmium ions, applicable to monitor environmental pollution in real time.
RESUMEN
Asthma is a common chronic disease affecting the airways in the lungs. The receptors of allergic cytokines, including interleukin (IL)-4, IL-5, and IL-13, trigger the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which involves the pathogenesis of asthma. GDC-0214 is a JAK inhibitor that was developed as a potent and selective target for the treatment of asthma, specifically targeting the lungs. While inhaled GDC-0214 is a promising novel treatment option against asthma, improvement is still needed to achieve increased potency of the powder formulation and a reduced number of capsules containing powder to be inhaled. In this study, high-potency amorphous powder formulations containing GDC-0214 nanoaggregates for dry powder inhalation were developed using particle engineering technology, thin film freezing (TFF). A high dose per capsule was successfully achieved by enhancing the solubility of GDC-0214 and powder conditioning. Lactose and/or leucine as excipients exhibited optimum stability and aerosolization of GDC-0214 nanoaggregates, and aerosolization of the dose was independent of air flow through the device between 2 and 6 kPa pressure drops. In the rat PK study, formulation F20, which contains 80% GDC-0214 and 20% lactose, resulted in the highest AUC0-24h in the lungs with the lowest AUC0-24h in the plasma that corresponds to a 4.8-fold higher ratio of the lung-to-plasma exposures compared to micronized crystalline GDC-0214 powder administered by dry powder inhalation. Therefore, GDC-0214 nanoaggregates produced by TFF provided an improved dry powder for inhalation that can lead to enhanced therapeutic efficacy with a lower risk of systemic toxicity.
Asunto(s)
Asma , Inhibidores de las Cinasas Janus , Ratas , Animales , Polvos/química , Congelación , Lactosa , Administración por Inhalación , Asma/tratamiento farmacológico , Inhaladores de Polvo Seco , Tamaño de la Partícula , Aerosoles y Gotitas RespiratoriasRESUMEN
Recent developments in antimicrobial peptides (AMPs) have focused on the rational design of short sequences with less than 20 amino acids due to their relatively low synthesis costs and ease of correlation of the structure-function relationship. However, gaps remain in the understanding of how short cationic AMPs interact with the bacterial outer and inner membranes to affect their antimicrobial efficacy and dynamic killing. The membrane-lytic actions of two designed AMPs, G(IIKK)3 I-NH2 (G3 ) and G(IIKK)4 I-NH2 (G4 ), and previously-studied controls GLLDLLKLLLKAAG-NH2 (LDKA, biomimetic) and GIGAVLKVLTTGLPALISWIKRKR-NH2 (Melittin, natural) are examined. The mechanistic processes of membrane damage and the disruption strength of the four AMPs are characterized by molecular dynamics simulations and experimental measurements including neutron reflection and scattering. The results from the combined studies are characterized with distinctly different intramembrane nanoaggregates formed upon AMP-specific binding, reflecting clear influences of AMP sequence, charge and the chemistry of the inner and outer membranes. G3 and G4 display different nanoaggregation with the outer and inner membranes, and the smaller sizes and further extent of insertion of the intramembrane nanoaggregates into bacterial membranes correlate well with their greater antimicrobial efficacy and faster dynamic killing. This work demonstrates the crucial roles of intramembrane nanoaggregates in optimizing antimicrobial efficacy and dynamic killing.
Asunto(s)
Antiinfecciosos , Péptidos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Antiinfecciosos/farmacología , Bacterias , Simulación de Dinámica MolecularRESUMEN
Drug resistance has a major impact on the treatment of several cancers. This is mainly due to the overexpression of cellular drug efflux proteins. Hence, drug-delivery systems that can avoid this resistance are needed. We report PR10, a progesterone-cationic lipid conjugate, as a self-assembling nanoaggregate that delivers a drug cargo of etoposide, a topoisomerase inhibitor, selectively to cancer cells. In this study, we observed that etoposide nanoaggregates (P : E) caused selective and enhanced toxicity in etoposide-resistant CT26 cancer cells (IC50 9â µM) compared to when etoposide (IC50 >20â µM) was used alone. Concurrently, no toxicity was observed in etoposide-sensitive HEK293 cells for P : E treatment (IC50 >20â µM). The P : E-treated cancer cells seem to have no effect on ABCB1 expression, but etoposide-treated cells exhibited a twofold increase in ABCB1 expression, a potent efflux protein for several xenobiotic compounds. This observation supports the notion that the enhanced toxicity of P : E nanoaggregates is due to their ability to keep the expression of ABCB1 low, thus allowing longer intracellular residence of etoposide. In a BALB/c orthotopic colorectal cancer model, the nanoaggregates led to enhanced survival (45â days) compared to etoposide-treated mice (39â days). These findings suggest that PR10 could be used as a potential cancer-selective etoposide delivery vehicle to treat several etoposide-resistant cancers with fewer side effects due to the nonspecific toxicity of the drug.
Asunto(s)
Neoplasias Colorrectales , Progesterona , Ratones , Humanos , Animales , Etopósido/farmacología , Etopósido/uso terapéutico , Etopósido/metabolismo , Células HEK293 , Neoplasias Colorrectales/tratamiento farmacológico , LípidosRESUMEN
Iron oxyhydroxide nanoparticle reactivity has been widely investigated, yet little is still known on how particle aggregation controls the mobility and transport of environmental compounds. Here, we examine how aggregates of goethite (α-FeOOH) nanoparticle deposited on 100-300 µm quartz particles (GagCS) alter the transport of two emerging contaminants and two naturally occurring inorganic ligands-silicates and phosphates. Bromide tracer experiments showed no water fractionation into mobile and immobile water zones in an individual goethite-coated sand (GCS) column, whereas around 10% of the total water was immobile in a GagCS column. Reactive compounds were, in contrast, considerably more mobile and affected by diffusion-limited processes. A new simulation approach coupling the mobile-immobile equation with surface complexation reactions to surface reactive sites suggests that â¼90% of the binding sites were likely within the intra-aggregate zones, and that the mass transfer between mobile and immobile fractions was the rate-limited step. The diffusion-controlled processes also affected synergetic and competitive binding, which have otherwise been observed for organic and inorganic compounds at goethite surfaces. These results thereby call for more attention on transport studies, where tracer or conservative tests are often used to describe the reactive transport of environmentally relevant molecules.
Asunto(s)
Compuestos de Hierro , Minerales , Compuestos de Hierro/química , Simulación por Computador , DifusiónRESUMEN
HBDI-like chromophores represent a novel set of biomimetic switches mimicking the fluorophore of the green fluorescent protein that are currently studied with the hope to expand the molecular switch/motor toolbox. However, until now members capable of absorbing visible light in their neutral (i. e. non-anionic) form have not been reported. In this contribution we report the preparation of an HBDI-like chromophore based on a 3-phenylbenzofulvene scaffold capable of absorbing blue light and photoisomerizing on the picosecond timescale. More specifically, we show that double-bond photoisomerization occurs in both the E-to-Z and Z-to-E directions and that these can be controlled by irradiating with blue and UV light, respectively. Finally, as a preliminary applicative result, we report the incorporation of the chromophore in an amphiphilic molecule and demonstrate the formation of a visible-light-sensitive nanoaggregated state in water.
Asunto(s)
Luz , Proteínas Fluorescentes Verdes/químicaRESUMEN
In this study, the molecular packing structure of solution-processed phenyl-C61-butyric acid methyl ester (PCBM) thin film was manipulated by varying the volume ratio of chlorobenzene (CB) to bromobenzene (BrB) from 100:0 to 50:50, which largely influences the device performance of the PCBM/perovskite heterojunction solar cells. Absorbance spectra, photoluminescence spectra, atomic force microscopic images and contact angle images were used to investigate the molecular packing structure effects of the PCBM thin films on the device performance of the inverted perovskite solar cells. Our experimental results show that the formation of PCBM aggregates and the contact quality at the PCBM/perovksite interface significantly influence the open-circuit voltage, short-circuit current density and fill factor of the resultant solar cells simultaneously. It is noted that the PCE of the encapsulated inverted CH3NH3PbI3(MAPbI3) solar cells exhibited a stable and high power conversion efficiency of 18%.
RESUMEN
In the endeavor of extending the clinical use of photodynamic therapy (PDT) for the treatment of superficial cancers and other neoplastic diseases, deeper knowledge and control of the subcellular processes that determine the response of photosensitizers (PS) are needed. Recent strategies in this direction involve the use of activatable and nanostructured PS. Here, both capacities have been tuned in two dendritic zinc(II) phthalocyanine (ZnPc) derivatives, either asymmetrically or symmetrically substituted with 3 and 12 copies of the carbohydrate sialic acid (SA), respectively. Interestingly, the amphiphilic ZnPc-SA biohybrid (1) self-assembles into well-defined nanoaggregates in aqueous solution, facilitating cellular internalization and transport whereas the PS remains inactive. Within the cells, these nanostructured hybrids localize in the lysosomes, as usually happens for anionic and hydrophilic aggregated PS. Yet, in contrast to most of them (e. g., compound 2), hybrid 1 recovers the capacity for photoinduced ROS generation within the target organelles due to its amphiphilic character; this allows disruption of aggregation when the compound is inserted into the lysosomal membrane, with the concomitant highly efficient PDT response.
Asunto(s)
Compuestos Organometálicos , Fotoquimioterapia , Línea Celular Tumoral , Interacciones Hidrofóbicas e Hidrofílicas , Fármacos Fotosensibilizantes/uso terapéutico , ZincRESUMEN
In this study, we prepared ferulic acid (FA) and paclitaxel (PTX) co-loaded polyamidoamine (PAMAM) dendrimers conjugated with arginyl-glycyl-aspartic acid (RGD) to overcome P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). FA was released in greater extent (80%) from the outer layer of the dendrimers compared with PTX (70%) from the interior of the dendrimers. FA improved intracellular availability of PTX via P-gp modulation in drug-resistant cells. In vitro drug uptake data show higher PTX delivery with RGD-PAMAM-FP than with PAMAM-FP in drug resistant KB CH-R 8-5 cell lines. This indicates that RGD facilitates intracellular PTX accumulation through active targeting in multidrug-resistant KB CH-R 8-5 cells. The terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick-end labeling assay data and membrane potential analysis in mitochondria confirm the enhanced anticancer potential of RGD-PAMAM-FP nanoaggregates in drug-resistant cells. We also confirmed by the increased protein levels of proapoptotic factors such as caspase 3, caspase 9, p53, and Bax after treatment with RGD-PAMAM-FP nanoaggregates and also downregulates antiapoptotic factors. Hence, FA-PTX co-loaded, RGD-functionalized PAMAM G4.5 dendrimers may be considered as an effective therapeutic strategy to induce apoptosis in P-gp-overexpressing, multidrug-resistant cells.
Asunto(s)
Ácidos Cumáricos , Dendrímeros , Sistemas de Liberación de Medicamentos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Neoplasias , Paclitaxel , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Dendrímeros/química , Dendrímeros/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Paclitaxel/química , Paclitaxel/farmacologíaRESUMEN
Poor aqueous drug solubility represents a major challenge in oral drug delivery. A novel approach to overcome this challenge is drug amorphization inside a tablet, that is, on-demand drug amorphization. The amorphous form is a thermodynamically instable, disordered solid-state with increased dissolution rate and solubility compared to its crystalline counterpart. During on-demand drug amorphization, the drug molecularly disperses into a polymer to form an amorphous solid at elevated temperatures inside a tablet. This study investigates, for the first time, the utilization of photothermal plasmonic nanoparticles for on-demand drug amorphization as a new pharmaceutical application. For this, near-IR photothermal plasmonic nanoparticles were tableted together with a crystalline drug (celecoxib) and a polymer (polyvinylpyrrolidone). The tablets were subjected to a near-IR laser at different intensities and durations to study the rate of drug amorphization under each condition. During laser irradiation, the plasmonic nanoparticles homogeneously heated the tablet. The temperature was directly related to the rate and degree of amorphization. Exposure times as low as 180 s at 1.12 W cm-2 laser intensity with only 0.25 wt % plasmonic nanoparticles and up to 50 wt % drug load resulted in complete drug amorphization. Therefore, near-IR photothermal plasmonic nanoparticles are promising excipients for on-demand drug amorphization with laser irradiation.
Asunto(s)
Celecoxib/química , Composición de Medicamentos/métodos , Excipientes/efectos de la radiación , Rayos Láser , Nanopartículas/efectos de la radiación , Composición de Medicamentos/instrumentación , Excipientes/química , Nanopartículas/química , Povidona/química , Solubilidad/efectos de la radiación , ComprimidosRESUMEN
Nanoparticles offer targeted delivery of drugs with minimal toxicity to surrounding healthy tissue and have great potential in the management of human papillomavirus (HPV)-related diseases. We synthesized lipid-modified AS1411 aptamers capable of forming nanoaggregates in solution containing Mg2+. The nanoaggregates presented suitable properties for pharmaceutical applications such as small size (100â¯nm), negative charge, and drug release. The nanoaggregates were loaded with acridine orange derivative C8 for its specific delivery into cervical cancer cell lines and HPV-positive tissue biopsies. This improved inhibition of HeLa proliferation and cell uptake without significantly affecting healthy cells. Finally, the nanoaggregates were incorporated in a gel formulation with promising tissue retention properties aiming at developing a local delivery strategy of the nanoaggregates in the female genital tract. Collectively, these findings suggest that the nanoformulation protocol has great potential for the delivery of both anticancer and antiviral agents, becoming a novel modality for cervical cancer management.
Asunto(s)
Antineoplásicos , Antivirales , Aptámeros de Nucleótidos , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Oligodesoxirribonucleótidos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antivirales/química , Antivirales/farmacocinética , Antivirales/farmacología , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacocinética , Aptámeros de Nucleótidos/farmacología , Femenino , Células HeLa , Humanos , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/farmacocinética , Oligodesoxirribonucleótidos/farmacología , Neoplasias del Cuello Uterino/metabolismoRESUMEN
An activatable nanoprobe for imaging breast cancer metastases through near infrared-I (NIR-I)/NIR-II fluorescence imaging and multispectral optoacoustic tomography (MSOT) imaging was designed. With a dihydroxanthene moiety serving as the electron donor, quinolinium as the electron acceptor and nitrobenzyloxydiphenylamino as the recognition element, the probe can specifically respond to nitroreductase and transform into an activated D-π-A structure with a NIR emission band extending beyond 900â nm. The activated nanoprobe exhibits NIR emission enhanced by aggregation-induced emission (AIE) and produces strong optoacoustic signal. The nanoprobe was used to detect and image metastases from the orthotopic breast tumors to lymph nodes and then to lung in two breast cancer mouse models. Moreover, the nanoprobe can monitor the treatment efficacy during chemotherapeutic course through fluorescence and MSOT imaging.
Asunto(s)
Neoplasias de la Mama/diagnóstico , Imagen Óptica/métodos , Técnicas Fotoacústicas/métodos , Animales , Colorantes Fluorescentes , Humanos , Rayos Infrarrojos , Ratones , Nanoestructuras , Metástasis de la Neoplasia/diagnóstico , Tomografía/métodosRESUMEN
Despite decades-long extensive research, probes that provide a comprehensive description of the lipid membrane microenvironment are still lacking. Here, a "smart" pyrene-terpyridine probe for multiparametric sensing of lipid membranes is reported. The complexity of the associated local microenvironment can be described by the distinct features of the probe fluorescence. The self-assembly of the probe molecules in phospholipid bilayers was sensitive to membrane order and phase state. The self-assembled probes showed a unique emission, influenced by dye-dye interactions and excited-state charge transfer. Moreover, this emission was sensitive to interfacial hydration, with very specific changes in emission wavelengths and fluorescence lifetimes upon variation of lipid compositions and properties. In parallel, changes in the lipid order and hydration affected the ground-state interactions in the dye aggregates and, thus, could be measured through ratiometric changes in the excitation and emission readouts. In addition, fluorescence anisotropy measurements provided another way to study the nature of dye aggregates in lipid bilayers. Overall, this report demonstrates how multiple aspects of the membrane microenvironment can be sensed through the unique fluorescence signatures of this "smart" probe in lipid membranes, and it establishes a new paradigm in lipid-membrane sensing.
Asunto(s)
Colorantes Fluorescentes/química , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Polarización de Fluorescencia , Colorantes Fluorescentes/metabolismo , Membrana Dobles de Lípidos/metabolismo , Pirenos/química , Espectrometría de Fluorescencia , Agua/químicaRESUMEN
Invasive pulmonary aspergillosis is a deadly fungal infection with a high mortality rate, particularly in patients having undergone transplant surgery. Voriconazole, a triazole antifungal pharmaceutical product, is considered as a first-line therapy for invasive pulmonary aspergillosis, and exhibits efficacy even for patients who have failed other antifungal drug therapies. The objective of this study is to develop high potency nanoaggregates of crystalline voriconazole composition for dry powder inhalation using the particle engineering process, thin film freezing. In this study, mannitol at low concentrations acted as a surface texture-modifying agent, and we evaluated the physicochemical and aerodynamic properties of the voriconazole formulations containing different amounts of mannitol. In vitro aerosol performance data demonstrated that powder formulations consisting of 90 to 97% (w/w) voriconazole were the optimum for inhalation with a fine particle fraction (% of delivered dose) as high as 73.6 ± 3.2% and mass median aerodynamic diameter of 3.03 ± 0.17 µm when delivered by a commercially available device. The thin film freezing process enabled phase-separated submicron crystalline mannitol to be oriented such as to modify the surface texture of the crystalline voriconazole nanoaggregates, thus enhancing their aerosolization. Addition of as low as 3% (w/w) mannitol significantly increased the fine particle fraction (% of metered dose) of voriconazole nanoaggregates when compared to compositions without mannitol (40.8% vs 24.6%, respectively). The aerosol performance of the voriconazole nanoaggregates with 5% (w/w) mannitol was maintained for 13 months at 25 °C/60% RH. Therefore, voriconazole nanoaggregates having low amounts of surface texture-modifying mannitol made by thin film freezing are a feasible local treatment option for invasive pulmonary aspergillosis with high aerosolization efficiency and drug loading for dry powder inhalation.
Asunto(s)
Aerosoles/química , Antifúngicos/química , Composición de Medicamentos/métodos , Inhaladores de Polvo Seco , Polvos/química , Voriconazol/química , Administración por Inhalación , Antifúngicos/uso terapéutico , Cristalización , Diseño de Fármacos , Liberación de Fármacos , Estabilidad de Medicamentos , Excipientes/química , Estudios de Factibilidad , Humanos , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Manitol/química , Tamaño de la Partícula , Voriconazol/uso terapéuticoRESUMEN
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal-metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal-metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.
RESUMEN
The crystalline sponge method (CSM) is primarily used for structural determination by single-crystal X-ray diffraction of a single analyte encapsulated inside a porous MOF. As the host-guest systems often show severe disorder, reliable crystallographic determination is demanding; thus the dynamics of the guest entering and the formation of nanoconfined molecular aggregates has not been in the spotlight. Now, the concept is investigated of the CSM for monitoring the structural evolution of nanoconfined supramolecular aggregates of eugenol guests with displacement of DMF inside the cavities of the flexible MOF, PUM168. The interpretation of the electron density provides a series of unique detailed snapshots depicting the supramolecular guest aggregation, thus showing the tight interplay between the host flexible skeleton and the molecular guests through the DMF-to-eugenol exchange process.
RESUMEN
Efficient organic photosensitizers are attractive for cancer cell ablation in photodynamic therapy. Bright fluorescent photosensitizers are highly desirable for simultaneous imaging and therapy. However, due to fundamental competition between emission and singlet oxygen generation, design attempts to increase singlet oxygen generation almost always leads to the loss of fluorescence. Herein, it is shown for the first time that nanocrystallization enables a simultaneous and significant increase in the brightness and singlet oxygen generation of an organic photosensitizer. Spectroscopic studies show simultaneous enhancement in the visible light absorption and fluorescence after nanocrystallization. The enhanced absorption of visible light in nanocrystals is found to translate directly to the enhanced singlet oxygen production, which shows a higher ability to kill HeLa cells as compared to their amorphous counterpart.
RESUMEN
Organic luminescent materials with the ability to reversibly switch the luminescence when subjected to external stimuli have attracted considerable interest in recent years. However, the examples of luminescent materials that exhibit multiresponsive properties are rarely reported. In this work, a new stimuli-responsive dye P1 is designed and synthesized with two identical chromophores of naphthalimide, one at each side of an amidoamine-based spacer. This amide-rich molecule offers many possibilities for forming intra- and intermolecular hydrogen bond interactions. Particularly, P1 has an intrinsic property of cocrystallizing with methanol. Compared with the pristine P1 sample, the as-prepared two-component cocrystalline material displays an exceptive deep-blue emission, which is extremely rare among naphthalimide-based molecules in the solid state. Furthermore, the target material exhibits an obvious mechanochromic fluorescent behavior and a large spectral shift under force stimuli. On the other hand, the cocrystalline material shows an unusual "turn off" thermochromic luminescence accompanied by solvent evaporation. Moreover, using external stimuli to reversibly manipulate fluorescent quantum yields is rarely reported to date. The results demonstrate the feasibility of a new design strategy for solid-state luminescence switching materials: the incorporation of solvents into organic compounds by cocrystallization to obtain a crystalline state luminescence system.
RESUMEN
Background: 4-(n-Octyloxy)aniline is a known component in the elaboration of organic materials with mesogenic properties such as N-substituted Schiff bases, perylene bisimide assemblies with a number of 2-amino-4,6-bis[4-(n-octyloxy)phenylamino]-s-triazines, amphiphilic azobenzene-containing linear-dendritic block copolymers and G-0 monomeric or dimeric dendritic liquid crystals with photochromic azobenzene mesogens. The present ab initio study explores a previously unknown use of 4-(n-octyloxy)aniline in the synthesis, structure and supramolecular behaviour of new dendritic melamines. Results: Starting from 4-(n-octyloxy)aniline, seven G-2 melamine-based dendrimers were obtained in 29-79% overall yields. Their iterative convergent- and chemoselective synthesis consisted of SN2-Ar aminations of cyanuric chloride and final triple N-acylations and Williamson etherifications (â G-2 covalent trimers) or stoichiometric carboxyl/amino 1:3 neutralisations (â G-2 ionic trimers). These transformations connected G-1 chloro- and amino-termini dendrons to m-trivalent cores (triazin-2,4,6-triyl and benzene-1,3,5-triyl units) or tripodands (central building blocks), such as N-substituted melamines with 4-hydroxyphenyl or phenyl-4-oxyalkanoic motifs. Owing to the diversity of cores and central building blocks, the structural assortment of the dendritic series was disclosed by solvation effects (affecting reactivity), rotational stereodynamism and self-organisation phenomena (determining a vaulted and/or propeller macromolecular shape in solution). DFT calculations (in solution), (VT) NMR and IR (KBr) spectroscopy supported these assignments. TEM analysis revealed the ability of the title compounds towards self-assembling into homogeneously packed spherical nano-aggregates. Conclusions: The (non)covalent synthesis and step-by-step structural elucidation of novel G-2 melamine dendrimers based on 4-(n-octyloxy)aniline are reported. Our study demonstrates the crucial influence of the nature (covalent vs ionic) of the dendritic construction in tandem with that of its central building blocks on the aptitude of dendrimers to self-organise in solution and to self-assembly in the solid state.