Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int Endod J ; 57(7): 787-803, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38340038

RESUMEN

BACKGROUND: 'Periodontitis' refers to periodontal destruction of connective tissue attachment and bone, in response to microorganisms forming subgingival biofilms on the root surface, while 'apical periodontitis' refers to periapical inflammatory processes occurring in response to microorganisms within the root canal system. The treatment of both diseases is based on the elimination of the bacterial challenge, though its predictability depends on the ability of disrupting these biofilms, what may need adjunctive antibacterial strategies, such as the next-generation antibacterial strategies (NGAS). From all the newly developed NGAS, the use of polymeric nanotechnology may pose a potential effective approach. Although some of these strategies have only been tested in vitro and in preclinical in vivo models, their use holds a great potential, and therefore, it is relevant to understand their mechanism of action and evaluate their scientific evidence of efficacy. OBJECTIVES: To explore NGAS based on polymeric nanotechnology used for the potential treatment of periodontitis and apical periodontitis. METHOD: A systemic search of scientific publications of adjunctive antimicrobial strategies using nanopolymers to treat periodontal and periapical diseases was conducted using The National Library of Medicine (MEDLINE by PubMed), The Cochrane Oral Health Group Trials Register, EMBASE and Web of Science. RESULTS: Different polymeric nanoparticles, nanofibres and nanostructured hydrogels combined with antimicrobial substances have been identified in the periodontal literature, being the most commonly used nanopolymers of polycaprolactone, poly(lactic-co-glycolic acid) and chitosan. As antimicrobials, the most frequently used have been antibiotics, though other antimicrobial substances, such as metallic ions, peptides and naturally derived products, have also been added to the nanopolymers. CONCLUSION: Polymeric nanomaterials containing antimicrobial compounds may be considered as a potential NGAS. Its relative efficacy, however, is not well understood since most of the existing evidence is derived from in vitro or preclinical in vivo studies.


Asunto(s)
Antibacterianos , Nanopartículas , Periodontitis , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología , Biopelículas/efectos de los fármacos , Polímeros , Periodontitis Periapical/microbiología , Periodontitis Periapical/terapia , Periodontitis Periapical/tratamiento farmacológico , Nanotecnología
2.
Small ; 19(11): e2206852, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36526587

RESUMEN

The 3D supramolecular framework (3D-SF) is constructed in this work through the hydrogen bond assisted self-assembly of spherical dendritic nanopolymer to regulate the flexibility, stability, and resistive switching (RS) performance of perovskite resistive random-access memory (RRAM). Herein, the 3D-SF network acts as the perovskite crystallization template to regulate the perovskite crystallization process due to its coordination interaction of functional groups with the perovskite grains, presenting the uniform, pinhole-free, and compact perovskite morphology for stable flexible RRAM. The 3D-SF network in situ stays at the perovskite intergranular boundaries to crosslink the perovskite grains. The RS performance of 3D-SF-modified perovskite RRAM device is evidently improved to the ON/OFF ratio of 105 , the cycle number of 500 times, and the data retention time of 104 s. The 50-days exposure of unencapsulated RRAM device at ambient environment still makes the ON/OFF ratio to be kept at ≈104 , indicating the potential of long-term stable multilevel storage in the high-density data storage. The bending action under different radius also does not change the RS performance due to the excellent bending-resistant ability of 3D-SF-modified perovskite film. This work explores a novel polymer additive strategy to construct the 3D supramolecular framework for stable flexible perovskite optoelectronic devices.

3.
Chemistry ; 29(66): e202302125, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37673787

RESUMEN

Iron-based nanomaterials have shown great promise for tumor ferrotherapy in recent years. However, nanoparticle-induced ferroptosis has low therapeutic efficacy owing to unsatisfactory Fenton reaction activity in a typical tumor microenvironment. In this study, NIR light-activated Fe/PPy-RGD nanopolymers were developed to combine photothermal therapy and ferrotherapy and achieve enhanced antitumor activity. Importantly, Fe/PPy-RGD exhibited excellent therapeutic performance under NIR light activation both in vitro and in vivo. Under irradiation with NIR light, the heat generated by Fe/PPy-RGD not only induced a therapeutic photothermal effect but also enhanced the release of iron ions and the Fenton reaction by inducing ferroptosis. Additionally, by virtue of RGD conjugation and its ultrasmall size, Fe/PPy-RGD could effectively accumulate at tumor sites in living mice after systemic administration and could be monitored via MR imaging. Hence, this study provides a promising approach for integrating ferrotherapy with photothermal therapy to achieve enhanced tumor treatment.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , Fototerapia/métodos , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Imagen por Resonancia Magnética , Hierro , Oligopéptidos , Microambiente Tumoral
4.
J Nanobiotechnology ; 20(1): 182, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35392922

RESUMEN

BACKGROUND: Citrus production and trading are seriously affected by fungal decays worldwide; the green mold infection by Penicillium digitatum could be the most disastrous. The substitutions of chemical and synthetic fungicides with effectual natural alternatives are global demands; plant extract from pomegranates peels (PPE), biosynthesized selenium nanoparticles with PPE (PPE/SeNPs) and chitosan nanoparticles (NCT) were suggested as efficacious fungicidal agents/nanocomposites to control P. digitatum strains. METHOD: PPE from Punica granatum was extracted and employed directly for synthesizing SeNPs, whereas NCT was produced using ionic gelation method of chitosan extracted from white prawn (Fenneropenaeus indicus) shells. The physiochemical, biochemical and structural characterization of generated molecules were conducted using infra-red spectroscopy, particles' size (Ps) and charge assessment and electron microscopes imaging. Antifungal potentialities were investigated in vitro and in infected fruits with P. digitatum by applying NCT nanocomposites-based edible coating. RESULTS: The synthesis of PPE-synthesized SeNPs and NCT was successfully achieved, the molecular bonding in synthesized agents/composites were proved with infrared spectroscopy to have both biochemical and physical interactions. The nanoparticles had 82.72, 9.41 and 85.17 nm mean diameters for NCT, PPE/SeNPs and NCT/PPE/SeNPs nanocomposites, respectively. The nanoparticles had homogenous spherical shapes and good distribution attributes. The entire agents/nanocomposites exhibited potent fungicidal potentialities toward P. digitatum isolates; NCT/PPE/SeNPs nanocomposite was the most forceful and significantly exceeded the fungicidal action of standard fungicide. The direct treatment of fungal mycelia with NCT/PPE/SeNPs nanocomposite led to remarkable lysis and deformations of P. digitatum hyphae within 12 h of treatment. The coating of infected orange with NCT-based edible coatings reduced the green mold infection signs by 91.7, 95.4 and 100%, for NCT, NCT/PPE and NCT/PPE/SeNPs based coating solutions, respectively. CONCLUSIONS: NCT, PPE-synthesized SeNPs, and their innovative nanocomposites NCT/PPE/SeNPs are convincingly recommended for formulating effectual antifungal and edible coatings to eliminate postharvest fungal pathogen, both with protection from their invasion or with destructing their existing infections.


Asunto(s)
Quitosano , Citrus , Películas Comestibles , Fungicidas Industriales , Nanopartículas , Granada (Fruta) , Selenio , Antifúngicos/farmacología , Quitosano/química , Frutas/química , Frutas/microbiología , Fungicidas Industriales/análisis , Fungicidas Industriales/farmacología , Selenio/farmacología
5.
Environ Monit Assess ; 192(6): 367, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415329

RESUMEN

We aimed to develop a molecularly imprinted polymeric systems with using penicillin G as a template molecule for removal of the antibiotic residues from environmental samples. Firstly, Pen-G-imprinted poly (2-hydroxyethyl methacrylate-N-methacryloyl-L-alanine) [p(HEMA-MAAL)] nanopolymers were synthesized by surfactant-free emulsion polymerization method. Then, template molecule (Pen-G) was extracted from nanopolymers. Synthesized nanopolymers were characterized by different methods such as Fourier-transform infrared spectroscopy (FTIR), elemental and zeta-size analysis, scanning electron microscope (SEM), and surface area calculations. Nanopolymers have 60.38 nm average size and 1034.22 m2/g specific surface area. System parameters on Pen-G adsorption onto Pen-G imprint nanopolymers were investigated at different conditions. The specific adsorption value (Qmax) of molecularly impirinted p(HEMA-MAAL) nanopolymers was found 71.91 g/g for Pen-G in 5 mg/mL Pen-G initial concentration. Pen-G adsorption of molecularly imprinted nanopolymers was 15 times more than non-imprinted polymer. It is shown that obtained p(HEMA-MAAL) nanopolymer was a reuseable product which protected its adsorption capacity of 98.9% after 5th adsorption-desorption cycle. In conclusion, we suggest a method to develop a nanostructure, selective, low-cost molecularly imprinted polymeric systems with using penicillin G as a template molecule for removal of the antibiotic residues.


Asunto(s)
Monitoreo del Ambiente , Modelos Químicos , Impresión Molecular , Nanoestructuras , Penicilina G/química , Adsorción , Polímeros
6.
Clin Oral Investig ; 21(9): 2695-2707, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28214952

RESUMEN

OBJECTIVE: The objective of the study is characterization of novel calcium and zinc-loaded electrospun matrices to be used for periodontal regeneration. MATERIALS AND METHODS: A polymethylmetacrylate-based membrane was calcium or zinc loaded. Matrices were characterized morphologically by atomic force and scanning electron microscopy and mechanically probed by a nanoindenter. Biomimetic calcium phosphate precipitation on polymeric tissues was assessed. Cell viability tests were performed using oral mucosa fibroblasts. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests or by ANOVA and Student-Newman-Keuls multiple comparisons. RESULTS: Zinc and calcium loading on matrices did not modify their morphology but increased nanomechanical properties and decreased nanoroughness. Precipitation of calcium and phosphate on the matrix surfaces was observed in zinc-loaded specimens. Matrices were found to be non-toxic to cells in all the assays. Calcium- and zinc-loaded scaffolds presented a very low cytotoxic effect. CONCLUSIONS: Zinc-loaded membranes permit cell viability and promoted mineral precipitation in physiological conditions. Based on the tested nanomechanical properties and scaffold architecture, the proposed membranes may be suitable for cell proliferation. CLINICAL RELEVANCE: The ability of zinc-loaded matrices to promote precipitation of calcium phosphate deposits, together with their observed non-toxicity and its surface chemistry allowing covalent binding of proteins, may offer new strategies for periodontal regeneration.


Asunto(s)
Materiales Biocompatibles/farmacología , Materiales Biomiméticos/farmacología , Fosfatos de Calcio/farmacología , Fibroblastos/citología , Mucosa Bucal/citología , Ingeniería de Tejidos/instrumentación , Andamios del Tejido , Zinc/farmacología , Supervivencia Celular , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Polimetil Metacrilato/química
7.
Clin Oral Investig ; 20(9): 2411-2420, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26832781

RESUMEN

INTRODUCTION: Demineralized collagen fibers at the hybrid layer are susceptible to degradation. Remineralization may aid to improve bond longevity. OBJECTIVES: The aim of the present study was to infiltrate zinc and calcium-loaded polymeric nanoparticles into demineralized dentin to facilitate hybrid layer remineralization. MATERIALS AND METHODS: Zinc or calcium-loaded polymeric nanoparticles were infiltrated into etched dentin, and Single Bond Adhesive was applied. Bond strength was tested after 24 h and 6 months storage. Nanomechanical properties, dye-assisted confocal laser microscopy, and Masson's trichrome staining evaluation were performed to assess for the hybrid layer morphology, permeability, and remineralization ability after 24 h and 3 months. Data were analyzed by ANOVA and Student-Newman-Keuls multiple comparisons tests (p < 0.05). RESULTS: Immediate bond strength was not affected by nanoparticles infiltration (25 to 30 MPa), while after 6 months, bond strengths were maintained (22 to 24 MPa). After 3 months, permeability occurred only in specimens in which nanoparticles were not infiltrated. Dentin remineralization, at the bottom of the hybrid layer, was observed in all groups. After microscopy analysis, zinc-loaded nanoparticles were shown to facilitate calcium deposition throughout the entire hybrid layer. Young's modulus at the hybrid layer increased from 2.09 to 3.25 GPa after 3 months, in specimens with zinc nanoparticles; meanwhile, these values were reduced from 1.66 to 0.49 GPa, in the control group. CONCLUSION: Infiltration of polymeric nanoparticles into demineralized dentin increased long-term bond strengths. Zinc-loaded nanoparticles facilitate dentin remineralization within the complete resin-dentin interface. CLINICAL RELEVANCE: Resin-dentin bond longevity and dentin remineralization at the hybrid layer were facilitated by zinc-loaded nanoparticles.


Asunto(s)
Recubrimientos Dentinarios/química , Dentina/química , Nanopartículas/química , Cementos de Resina/química , Remineralización Dental , Zinc/química , Grabado Ácido Dental , Calcio/química , Recubrimiento Dental Adhesivo , Módulo de Elasticidad , Humanos , Ensayo de Materiales , Microscopía Confocal , Tercer Molar , Coloración y Etiquetado , Propiedades de Superficie , Resistencia a la Tracción
8.
Dent Mater ; 40(8): 1296-1304, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871528

RESUMEN

OBJECTIVE: To evaluate whether nanoparticles (NPs) functionalized with Tideglusib (TDg, NP-12), and deposited on titanium surfaces, would counteract the effect of bacterial lipopolysaccharide (LPS) on osteoblasts. METHODS: Experimental groups were: (a) Titanium discs (TiD), (b) TiD covered with undoped NPs (Un-NPs) and (c) TiD covered with TDg-doped NPs (TDg-NPs). Human primary osteoblasts were cultured onto these discs, in the presence or absence of bacterial LPS. Cell proliferation was assessed by MTT-assay and differentiation by measuring the alkaline phosphatase activity. Mineral nodule formation was assessed by the alizarin red test. Real-time quantitative polymerase chain reaction was used to study the expression of Runx-2, OSX, ALP, OSC, OPG, RANKL, Col-I, BMP-2, BMP-7, TGF-ß1, VEGF, TGF-ßR1, TGF-ßR2, and TGF-ßR3 genes. Osteoblasts morphology was studied by Scanning Electron Microscopy. One-way ANOVA or Kruskal-Wallis and Bonferroni multiple comparisons tests were carried out (p < 0.05). RESULTS: TDg-NPs enhanced osteoblasts proliferation. Similarly, this group increased ALP production and mineral nodules formation. TDg-NPs on titanium discs resulted in overexpression of the proliferative genes, OSC and OSX, regardless of LPS activity. In the absence of LPS, TDg-NPs up-regulated Runx2, COL-I, ALP, BMP2 and BMP7 genes. OPG/RANKL gene ratios were increased about 2500 and 4,000-fold by TDg-NPs, when LPS was added or not, respectively. In contact with the TDg-NPs osteoblasts demonstrated an elongated spindle-shaped morphology with extracellular matrix production. SIGNIFICANCE: TDg-NPs on titanium discs counteracted the detrimental effect of LPS by preventing the decrease on osteoblasts proliferation and mineralization, and produced an overexpression of proliferative and bone-promoting genes on human primary osteoblasts.


Asunto(s)
Proliferación Celular , Lipopolisacáridos , Nanopartículas , Osteoblastos , Titanio , Osteoblastos/efectos de los fármacos , Lipopolisacáridos/farmacología , Humanos , Nanopartículas/química , Titanio/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fosfatasa Alcalina/metabolismo , Propiedades de Superficie , Diferenciación Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Microscopía Electrónica de Rastreo
9.
Beilstein J Nanotechnol ; 15: 1189-1196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355301

RESUMEN

Nanopolymers represent a significant group of delivery vehicles for hydrophobic drugs. In particular, dual stimuli-responsive smart polymer nanomaterials might be extremely useful for drug delivery and release. We analyzed the possibility to include the known antitumor drug doxorubicin (DOX), which has antimitotic and antiproliferative effects, in a nanopolymer complex. Thus, doxorubicin-loaded temperature- and pH-sensitive smart nanopolymers (DOX-SNPs) were produced. Characterizations of the synthesized nanostructures were carried out including zeta potential measurements, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The loading capacity of the nanopolymers for DOX was investigated, and encapsulation and release studies were carried out. In a final step, the cytotoxicity of the DOX-nanopolymer complexes against the HeLa cancer cell line at different concentrations and incubation times was studied. The DOX release depended on temperature and pH value of the release medium, with the highest release at pH 6.0 and 41 °C. This effect was similar to that observed for the commercial liposomal formulation of doxorubicin Doxil. The obtained results demonstrated that smart nanopolymers can be efficiently used to create new types of doxorubicin-based drugs.

10.
Sci Total Environ ; 806(Pt 1): 150491, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844312

RESUMEN

Polymethylmethacrylate (PMMA) production has increased almost 20% over the last years. With its release into the aquatic environment, its breakdown or degradation to nano dimensions (nanoplastics-NPLs) due to biological and physical/mechanical action is, theoretically, anticipated. The occurrence of PMMA-NPLs in aquatic ecosystems may thus cause adverse effects particularly to early life stages of amphibians, which may be in contact with PMMA-NPLs suspended in the water column or deposited in upper layers of the sediments. Accordingly, this work aimed at assessing the effects of PMMA-NPLs to aquatic early life stages of the model anuran species Xenopus laevis. To attain this objective, two types of toxicity assays were carried out by exposing embryos [Nieuwkoop and Faber (NF) stage 8-11] or tadpoles (NF 45) to three concentrations of PMMA-NPLs (1, 100 and 1000 µg/L): i) 96-h embryo teratogenicity assay, where survival, malformation, and total body length (BL) of embryos were assessed; and ii) 48-h feeding rate assay, where survival, feeding (FR), malformations and growth rates (body weight-BW and BL) of tadpoles were evaluated. PMMA-NPLs exposure had no significant effects on mortality, malformations of X. laevis embryos but BL was lower at 1000 µg PMMA-NPLs/L. In tadpoles, no effects on survival or FR were observed after exposure to PMMA-NPLs, but significant changes occured in BW and BL. Moreover, anatomical changes in the abdominal region (externalization of the gut) were observed in 62.5% of the tadpoles exposed to 1000 µg PMMA-NPLs/L. Despite the lack of knowledge regarding the environmental levels of NPLs, it is expected that sediments constitute a sink for these contaminants, where they can become available for organisms that, like tadpoles, feed on the organic matter at the surface of sediments. Considering the continuous release and subsequent accumulation of PMMA, the malformations obtained in the feeding assays suggest that, in the future, these nano-polymers may constitute a risk for aquatic life stages of amphibians.


Asunto(s)
Microplásticos , Polimetil Metacrilato , Animales , Ecosistema , Larva , Polimetil Metacrilato/toxicidad , Xenopus laevis
11.
Polymers (Basel) ; 14(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36235920

RESUMEN

Various therapies for osteoporosis successfully reduce bone loss and fractures, but they mostly do not contribute to new bone structures and adversely affect patients. Shilajit is a natural mineral substance comprised of multi-components, with proved efficacy to improve immunity, antioxidant activity, and disease resistance. In the present study, various effects of shilajit water extract (SWE) on bone development and its management were determined in experimental glucocorticoid-induced osteoporotic rats. The fabrication of nanochitosan (NCT) and NCT conjugation with SWE were conducted and evaluated as enhanced formulations for treating osteoporosis. NCT and SWE/NCT had mean particle diameters of 196.4 and 248.4 nm, respectively, with high positivity charging and stability. The biochemical and anti-osteoporotic effects of SWE and SWE/NCT conjugates were investigated on different groups of compromised rats. Five groups each including six adult albino female rats were formed and treated for a duration of eight weeks with SWE and SWE/NCT conjugate. Significantly improved serum calcium, phosphorus, osteocalcin, and calcitonin levels but decreased hydrogen peroxide, IL-6, and antioxidant biomarkers were recorded in all SWE- and SWE/NCT-treated groups; the SWE/NCT treatment was most effectual treatment. These results suggest that SWE and SWE/NCT may cause anti-osteoporotic activity by reducing oxidative stress, IL-6, and H2O2 while restoring antioxidant levels. The conjugation of SWE onto NCT is highly recommended for augmenting their activities.

12.
Polymers (Basel) ; 14(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35631998

RESUMEN

The protection of persimmon fruits (Diospyros kaki L.) from postharvest fungal infestation with Alternaria alternata (A. alternate; black rot) is a major agricultural and economic demand worldwide. Edible coatings (ECs) based on biopolymers and phytocompounds were proposed to maintain fruit quality, especially with nanomaterials' applications. Chitosan nanoparticles (NCt), rosmarinic acid bio-mediated selenium nanoparticles (RA/SeNPs) and their composites were produced, characterized and evaluated as ECs for managing persimmon black rot. The constructed NCt, RA/SeNPs and NCt/RA/SeNPs composite had diminished particles' size diameters. The ECs solution of 1% NCt and NCt/RA/SeNPs composite led to a significant reduction of A. alternata radial growth in vitro, with 77.4 and 97.2%, respectively. The most powerful ECs formula contained 10 mg/mL from NCt/RA/SeNPs composite, which significantly reduced fungal growth than imazalil fungicide. The coating of persimmon with nanoparticles-based ECs resulted in a significant reduction of black rot disease severity and incidence in artificially infected fruits; the treatment with 1% of NCt/RA/SeNPs could completely (100%) hinder disease incidence and severity in coated fruits, whereas imazalil reduced them by 88.6 and 73.4%, respectively. The firmness of fruits is greatly augmented after ECs treatments, particularly with formulated coatings with 1% NCt/RA/SeNPs composite, which maintain fruits firmness by 85.7%. The produced ECs in the current study, based on NCt/RA/SeNPs composite, are greatly recommended as innovatively constructed human-friendly matrix to suppress the postharvest destructive fungi (A. alternata) and maintain the shelf-life and quality of persimmon fruits.

13.
Environ Sci Pollut Res Int ; 28(9): 10977-10987, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33106907

RESUMEN

This work describes the production/characterization of low molar mass chitosan nanoparticles derived from waste shrimp shells (SSC), as well as from a commercial chitosan (CC). The production of low molar mass nanochitosan employed thermal shock, alternating between 100 °C and ambient temperature, followed by grinding the dry material (SSC and CC) in a ball mill, producing around 500 g of nanochitosan per batch. A highlight of the methodology employed is that it enables nanochitosan to be obtained even from a low quality commercial raw material. All particles had diameters smaller than 223 nm, with an average diameter below 25 nm (determined by DLS), while reductions of molar mass were between 8.4-fold and 13.5-fold. The depolymerization process resulted in a reduction in crystallinity of 38.1 to 25.4% and 55.6 to 25.9% in the CC and SSC samples, respectively. The production of nanochitosans was also confirmed by TEM through the observation of crystalline domains with diameters between 5 and 10 nm. This work perfectly reproduces the results on bench scale from previous research. The simple and inexpensive processes enable easy scale-up, representing an important advance in the production chain of biopolymers. Graphical abstract.


Asunto(s)
Quitosano , Nanopartículas , Animales , Crustáceos , Peso Molecular
14.
Environ Technol ; : 1-11, 2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34057402

RESUMEN

Polymers are highly promising materials for capturing carbon dioxide (CO2), a greenhouse gas. Hence in this work, we prepared phyllosilicate supported mesoporous polymer via reversible addition-fragmentation chain transfer (RAFT) polymerisation, which is the one among the controlled radical polymerisation. The mesoporous material anchored on dodecanethiol trithiocarbonate acts as a chain transfer agent (CTA) for the polymerisation of chloromethyl styrene and further conversion to quaternary ammonium compound which is effective to trap CO2 using tertiary amine. The synthesised porous phyllosilicate/polymer nanocomposites have been characterised by using various analytical tools. The CO2 sorption experiments were carried out by passing CO2 onto the synthesised porous phyllosilicate/polymer nanocomposites. The sorption kinetics was monitored by X-Ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) spectra in the presence of carbonate were obtained by reaction of quaternary ammonium hydroxide and CO2. The phyllosilicate anchored macromolecular CTA (macro-CTA) and the surface-initiated polymer nanocomposites encompassed apparent surface areas of 94.5 and 26.8 m2 g-1, respectively. In addition, the total pore volumes calculated for the macro-CTA and polymer were found to be 0.27 and 0.095 cm3g-1, while the average pore sizes were 14.24 and 11.46 nm, respectively. The CO2 sorption capacity of the phyllosilicate/polymer nanocomposites, monitored at different temperatures, is the fastest for 25°C but slower for the sample treated at 50°C which may due to the dipole and quadrupole interaction.

15.
Anticancer Agents Med Chem ; 21(17): 2288-2296, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33438559

RESUMEN

BACKGROUND: Tumors are still among the major challenges to human health. Tumor-targeted therapy is an effective way to treat tumors based on precise medical models. Sialic acid (SA) is overexpressed on the surface of tumor cells, and Phenyl Boric Acid (PBA) can specifically bind to SA. However, studies on the use of PBA in tumor-targeted therapy are few. OBJECTIVE: To summarize and analyze the characteristics and influencing factors of tumor targeted therapy in recent years, and the influencing factors of phenyl boric acid modified polymers in tumor targeted therapy, such as hydrogen ion concentration (pH), Adenosine Triphosphate (ATP), and sugars. This paper describes the application of phenyl boric acid partially functionalized nano-polymers in various types of targeted tumors, such as breast cancer, lung adenocarcinoma, liver cancer, and so forth. In order to further improve the basic research and clinical workers' understanding of nano-preparations and tumor targeted therapy. At the same time, it is also expected to promote the development value of phenyl boric acid. METHODS: The findings on tumor-targeted therapy and the role of partially functionalized polymers with PBA in different tumors at home and abroad has been analyzed and summarized in recent years. RESULTS: Tumor-targeted therapy is a promising treatment for tumors. PBA promotes the treatment of tumors using SA, which is highly expressed on the surface of tumor cells. CONCLUSION: Tumor-targeted therapy has shown great prospects for clinical application in recent years. PBA is beneficial as a member of the drug loading system. Further studies are still needed to promote its development and application.


Asunto(s)
Antineoplásicos/farmacología , Ácidos Bóricos/farmacología , Neoplasias/tratamiento farmacológico , Polímeros/farmacología , Antineoplásicos/química , Ácidos Bóricos/química , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias/patología , Polímeros/química
16.
J Dent ; 98: 103359, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380133

RESUMEN

OBJECTIVES: To assess the surface characteristics and composition that may enhance osteoblasts viability on novel electrospun composite membranes (organic polymer/silicon dioxide nanoparticles). METHODS: Membranes are composed by a novel polymer blend, the mixture of two hydrophilic copolymers 2-hydroxyethylmethacrylate-co-methylmethacrylate and 2-hydroxyethylacrylate-co-methylacrylate, and they are doped with silicon dioxide nanoparticles. Then the membranes were functionalized with zinc or doxycycline. The membranes were morphologically characterized by atomic force and scanning electron microscopy (FESEM), and mechanically probed using a nanoindenter. Biomimetic calcium phosphate precipitation on polymeric tissues was assessed. Cell viability tests were performed using human osteosarcoma cells. Cells morphology was also studied by FESEM. Data were analyzed by ANOVA, Student-Newman-Keuls and Student t tests (p < 0.05). RESULTS: Silica doping of membranes enhanced bioactivity and increased mechanical properties. Membranes morphology and mechanical properties were similar to those of trabecular bone. Zinc and doxycycline doping did not exert changes but it increased novel membranes bioactivity. Membranes were found to permit osteoblasts proliferation. Silica-doping favored cells proliferation and spreading. As soon as 24 h after the seeding, cells in silica-doped membranes were firmly attached to experimental tissues trough filopodia, connected to each other. The cells produced collagen and minerals onto the surfaces. CONCLUSIONS: Silica nanoparticles enhanced surface properties and osteoblasts viability on electrospun membranes. CLINICAL SIGNIFICANCE: The ability of silica-doped matrices to promote precipitation of calcium phosphate, together with their mechanical properties, observed non-toxicity, stimulating effect on osteoblasts and its surface chemistry allowing covalent binding of proteins, offer a potential strategy for bone regeneration applications.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Materiales Biocompatibles/farmacología , Proliferación Celular , Colágeno , Humanos , Osteoblastos , Dióxido de Silicio , Ingeniería de Tejidos , Andamios del Tejido
17.
Expert Rev Clin Immunol ; 16(5): 513-525, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32343153

RESUMEN

INTRODUCTION: For several years now, medicine has been benefiting from the contribution of nanoparticles (NPs) technology for both diagnosis and therapy. They can be used as adjuvants, being capable per se of immune-modulating activity, or as carriers for molecules to be transported to a specific target, eventually loaded with specific ligands favoring specific uptake. AREAS COVERED: The review focuses on experimental use of NPs as adjuvants/carriers for allergen immunotherapy (AIT). Human clinical trials conducted so far are discussed. EXPERT OPINION: Results of experimental studies and recent clinical trials support the use of NPs as carrier/adjuvant in AIT. Comparisons between NP-based and classical AIT are needed, to show the usefulness of the NP-based approach. However, there are still unsolved problems: the persistence of non-degradable NPs with possible toxicological consequences, and the formation of the protein corona around the NPs, which could alter their activity and fate. Virus-like particles seem the most promising NPs for allergy treatment, as for other vaccines. Over the next decade, NP-based AIT will be largely used to treat allergic disorders.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Portadores de Fármacos/uso terapéutico , Hipersensibilidad/terapia , Inmunoterapia , Nanopartículas/uso terapéutico , Animales , Humanos , Hipersensibilidad/inmunología
18.
Adv Pharm Bull ; 10(1): 1-12, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32002356

RESUMEN

An ideal colon specific drug delivery system needs to perform multiple functions like greater bio availability, less toxicity and higher therapeutic efficacy, all of which require high degree of smartness. This article focuses on the overview of the stimuli-responsive polymers and various nanodrug delivery systems which have found applications in colon specific delivery of drugs as this system provide a link between therapeutic need and drug delivery. These polymers exhibit a non-linear response to a small stimulus leading to a macroscopic alteration in their structure/properties. Stimuli responsive polymers display a significant physio chemical change in response to small changes in their environment (temperature, pH, light etc.). Colonic drug delivery has gained increased importance in treating diseases like Crohn's disease, ulcerative colitis, colon cancer etc. The expansion in the development of polymers based system with greater flexibility, versatility and unexplored potential enables new opportunities for them in uplifting bio medicine. Applying the concepts of smartness in the context of clinically relevant therapeutic and diagnostic systems, it can prelude in a new era of 'smart' therapeutics that can improve the health care fields. In particular, due to its high sensitivity to the stimuli, this system has been identified as a sensible platform for releasing drug at suitable site and at appropriate time.

19.
Carbohydr Polym ; 237: 116146, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32241450

RESUMEN

The collaborative endeavor in tissue engineering is to fabricate a bio-mimetic extracellular matrix to assist tissue regeneration. Thus, a novel injectable tissue scaffold was fabricated by exploring nanotailored hyaluronic acid (nHA) and methylcellulose (MC) (nHAMC) along with pristine HA based MC scaffold (HAMC). nHA with particle size ∼22 ±â€¯5.3 nm were obtained and nHAMC displayed a honeycomb-like 3D microporous architecture. Nano-HA bestowed better gel strength, physico-rheological and biological properties than HA. It creditably reduced the high content of salt to reduce the gelation temperature of MC. The properties ameliorated with increased in-corporation of nano-HA. The addition of salt showed more prominent effect on gelation temperature of nHAMC than in HAMC; and salting-out effect was dependent on nHA/HA content. Biocompatible nHAMC assisted adequate cell adherence and proliferation with more extended protrusions with better migration rate than control. Thus, biomodulatory effect of nanotailored glycosaminoglycan could be asserted to design an efficient thermo-responsive scaffold.


Asunto(s)
Materiales Biocompatibles , Ácido Hialurónico , Hidrogeles , Metilcelulosa , Andamios del Tejido , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Hemólisis/efectos de los fármacos , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Metilcelulosa/química , Metilcelulosa/farmacología , Reología , Cicatrización de Heridas/efectos de los fármacos
20.
Materials (Basel) ; 13(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192021

RESUMEN

The paper explores the possibility of covering the mortar with the lightweight aggregate by the nanopolymer silane and siloxane as surface hydrophobisation. The investigation involved the mortars with two types of hydrophobic agents diluted with water in a ratio of 1:4 and 1:8. Mortar wetting properties were determined by measuring the absorbability, water vapor diffusion, contact angle (CA) and surface free energy (SFE) of their structure. Surface micro-roughness and 2D topography were evaluated. Scanning electron microscopy (SEM) has shown the microstructure and distribution of pores in mortars. The reduction in absorbency after the first day of testing by 87% was shown. An improvement in frost resistance after 25 cycles by 97% and an 18-fold decrease in weight loss after the sulphate crystallization test were observed. The hydrophobic coating reduces the SFE of mortars and increases the CA. In the case of using silanes, a 9-fold increase CA was observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA