Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chem Biodivers ; 21(7): e202400492, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38700281

RESUMEN

Inflammation represents the inherent protective reaction of the human body to various harmful agents and noxious stimuli. Standard anti-inflammatory therapy including nonsteroidal anti-inflammatory drugs are associated with several side effects. In the past decades, people rely on medicinal plants for the treatment of inflammation. The traditional utilization of medicinal plants is regarded as a safe, cost-effective, and broadly accepted approach. In this study, anti-inflammatory activity of plants traditionally utilized by the D'harawal people in Australia has been assessed in vitro. Eighty Australian native plants were screened based on the Dharawal Pharmacopeia for their inhibitory effect on the nitric oxide (NO) production in lipopolysaccharides (LPS) and interferon (IFN)-γ stimulated RAW 264.7 murine macrophages for their anti-inflammatory activity. From the eighty ethanolic extracts screened, seventeen displayed potent NO inhibition with an IC50 recorded below 15 µg/mL. The aim of this review was to utilise the ethnopharmacological knowledge and to correlate the anti-inflammatory activity of the seventeen plants with either their known or unknown phytochemicals reported in the literature. In doing so, we have created a snapshot of Australian native plant candidates that warrant further chemical investigation associated with their anti-inflammatory activity.


Asunto(s)
Antiinflamatorios , Lipopolisacáridos , Óxido Nítrico , Extractos Vegetales , Plantas Medicinales , Ratones , Australia , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Animales , Células RAW 264.7 , Plantas Medicinales/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Humanos , Etnofarmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Interferón gamma/metabolismo
2.
J Environ Manage ; 358: 120892, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663082

RESUMEN

Biological approaches via biomolecular extracts of bacteria, fungi, or plants have recently been introduced as an alternative approach to synthesizing less or nontoxic nanomaterials, compared to conventional physical and chemical approaches. Among these biological methods, plant-mediated approaches (phytosynthesis) are reported to be highly beneficial for large-scale, nontoxic nanomaterial synthesis. However, plant-mediated synthesis of nanomaterials using native plant extract can lead to bioprospecting issues and deforestation challenges. On the other hand, non-native or invasive plants are non-indigenous to a particular geographic location that can grow and spread rapidly, ultimately disrupting the local and endogenous plant communities or ecosystems. Thus, controlling or eradicating these non-native plants before they damage the ecosystem is necessary. Even though mechanical, chemical, and biological approaches are available to control non-native plants, all these methods possess certain limitations, such as environmental toxicity, disturbance in the nutrient cycle, and loss of genetic integrity. Therefore, non-native plants were recently proposed as a novel sustainable source of phytochemicals for preparing nanomaterials via green chemistry, mainly metallic nanoparticles, as an alternative to native, agriculture-based, or medicinal plants. This work aims to cover a literature gap on plant-mediated bionanomaterial synthesis with an overview and bibliography analysis of non-native plants via novel data mining and advanced visualization tools. In addition, the potential of non-native plants as a sustainable, green chemistry-based alternative for bionanomaterial preparation for maintaining ecological balance, the mechanism of formation via phytochemicals, and their possible applications to promote their control and spread were also discussed. The bibliography analysis revealed that only an average of 4 articles have been published in the last 10 years (2013-2023) on non-native/invasive plants for nanomaterial synthesis, which shows the significance of this article.


Asunto(s)
Extractos Vegetales , Extractos Vegetales/química , Nanoestructuras , Ecosistema , Tecnología Química Verde
3.
Molecules ; 29(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38999095

RESUMEN

Propolis is a bee product mainly consisting of plant resins and is used by bees to maintain the structural integrity of the colony. Propolis is known to contribute to bee health via its antimicrobial activity and is a valued product for human use owing to its nutritional and medicinal properties. Propolis is often characterised into seven categories depending on the resin source. New Zealand propolis is typically assumed as being poplar-type propolis, but few studies have chemically characterised New Zealand propolis to confirm or reject this assumption. Here, for the first time, we characterise propolis originating from different regions in New Zealand based on its volatile organic compounds, using gas chromatography coupled with mass spectrometry (GC-MS). To support this characterisation, we also collected and analysed resin samples from a variety of resin-producing plants (both native to New Zealand and introduced). Our findings suggest that bees mainly use poplar as a resin source, but also utilize native plant species to produce propolis. While regional variation did not allow for clear separation between samples, some patterns emerged, with samples from some regions having more chemical complexity and a higher contribution from native species (as suggested by a higher number of compounds unique to native species resin). Further studies are needed to accurately identify the botanical sources contributing to these samples. It may be also of interest to explore the biological activity of regional propolis samples and their potential nutritional or medicinal benefits.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Própolis , Compuestos Orgánicos Volátiles , Própolis/química , Nueva Zelanda , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Abejas/química , Animales , Resinas de Plantas/química
4.
Environ Monit Assess ; 196(6): 541, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735978

RESUMEN

Metal pollution in water, soil, and vegetation is an emerging environmental issue. Therefore, this study investigated the abundance of heavy metals (HMs) within roots and shoots of native plant species i.e., Bromus pectinatus, Cynodon dactylon, Poa annua, Euphorbia heliscopa, Anagallis arvensis, and Stellaria media grown in the adjoining area of municipal wastewater channels of a Pakistani city of Abbottabad. HMs concentrations (mg L-1) in municipal wastewater were: chromium (Cr) (0.55) > nickel (Ni) (0.09) > lead (Pb) (0.07) > cadmium (Cd) (0.03). Accumulation of HMs in both roots and shoots of plant species varied as B. pectinatus > C. dactylon > P. annua > E. heliscopa > A. arvensis > S. media. Irrespective of the plant species, roots exhibited higher concentrations of HMs than shoots. Higher amount of Cr (131.70 mg kg-1) was detected in the roots of B. pectinatus and the lowest amount (81 mg kg-1) in A. arvensis, Highest Cd concentration was found in the shoot of B. pectinatus and the lowest in the E. heliscopa. The highest concentration of Ni was found in the roots of S. media (37.40 mg kg-1) and the shoot of C. dactylon (15.70 mg kg-1) whereas the lowest Ni concentration was achieved in the roots of A. arvensis (12.10 mg kg-1) and the shoot of E. heliscopa (5.90 mg kg-1). The concentration of HMs in individual plant species was less than 1000 mg kg-1. Considering the higher values (> 1) of biological concentration factor (BCF), biological accumulation co-efficient (BAC), and translocation factor (TF), B. pectinatus and S. media species showed greater potential for HMs accumulation than other species. Therefore, these plants might be helpful for the remediation of HM-contaminated soil.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Raíces de Plantas , Contaminantes del Suelo , Aguas Residuales , Contaminantes Químicos del Agua , Metales Pesados/metabolismo , Aguas Residuales/química , Raíces de Plantas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Pakistán , Contaminantes del Suelo/metabolismo , Brotes de la Planta/metabolismo , Plantas/metabolismo
5.
Risk Anal ; 43(3): 467-479, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35318710

RESUMEN

Huge economic costs and ecological impacts of invasive alien species (IAS) in the protected areas (PAs) worldwide make their timely prediction and potential risk assessment of central importance for effective management. While the preborder weed risk assessment framework has been extensively evaluated and implemented, the postborder species risk assessment framework has not been subjected to the same degree of scrutiny. Here we used a rather more realistic modified version of the Australian Weed Risk framework (AWRM) for Dachigam National Park (DNP) in Kashmir Himalaya against 84 plant species, including 55 alien species and 29 fast spreading native species, for risk analysis. We found two very high-risk species, three high-risk species, 10 medium-risk species, 29 low-risk species, and 40 negligible-risk species in the DNP. The containment scores accordingly ranged from 14.4 to 293.5 comprising of 27 species that can be contained with very high feasibility, 23 species with high feasibility, 14 species with medium feasibility, and 12 species which cannot be contained easily thereby having low feasibility of containment (FOC) score. However, eight species which have a negligible FOC score are difficult to contain within their infestation sites. Our results demonstrate the merit of the AWRM with a caution that the necessary region-specific modifications may help in its better implementation. Overall, these results provide quite a promising tool in the hands of protected area managers to timely and effectively deal with the problem of plant invasions.


Asunto(s)
Ecosistema , Parques Recreativos , Australia , Especies Introducidas , Plantas , Medición de Riesgo
6.
J Environ Manage ; 345: 118939, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37688962

RESUMEN

Biological invasion poses a major threat to biodiversity and conservation efforts in protected areas. The Greater Shennongjia Area (GSA) is one of China's 16 key areas for biodiversity, as stated in the China National Biodiversity Conservation Strategy and Action Plan. However, the local authorities lack appropriate data on the extent and impact of exotic species in protected areas, as well as lack the capacity and motivation to properly plan for exotic species strategy and action plan to support both prevention, control as well as management of exotic plants in their jurisdiction. In addition, while most previous studies have focused on exotic species in protected areas, little effort has been devoted to specifying which environmental factors contribute to the difference between protected and non-protected areas. Here, we explored the current distribution pattern of the richness and abundance of exotic species in relation to environmental variables within the GSA. In total, we found 84 exotic plant species, of which 41 exotic species within the protected areas, in 64 genera and 27 families, predominately from Asteraceae, Fabaceae, and Poaceae. The generalized linear mixed models (GLMMs) revealed that the protection status and the distance to human settlements were the most important predictors of exotic plant richness and abundance in the GSA. Our results showed that the average exotic plant richness and coverage in the protected areas were 22% and 31% lower than outside the protected areas, respectively. Such differences were probably the result of anthropogenic activities (e.g., proximity to human settlements and the proportion of cropland). Although protected areas provide an important barrier against plant invasions, invasion may be a tricky issue for protected area management in the future. The Alliance of Protected areas in Western Hubei and Eastern Chongqing will need to further consider stringent control and management strategies for the entry of exotic species into protected areas to effectively maintain the continuity and integrity of the GSA's biodiversity and ecosystems. Our results provided guidance and support to enhance the capacity of scientific and effective management and sustainable development of the Shennongjia World Natural Heritage Site and other protected areas.


Asunto(s)
Efectos Antropogénicos , Asteraceae , Humanos , Ecosistema , Biodiversidad , Poaceae
7.
Glob Chang Biol ; 28(18): 5453-5468, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35665574

RESUMEN

Approximately 17% of the land worldwide is considered highly vulnerable to non-native plant invasion, which can dramatically alter nutrient cycles and influence greenhouse gas (GHG) emissions in terrestrial and wetland ecosystems. However, a systematic investigation of the impact of non-native plant invasion on GHG dynamics at a global scale has not yet been conducted, making it impossible to predict the exact biological feedback of non-native plant invasion to global climate change. Here, we compiled 273 paired observational cases from 94 peer-reviewed articles to evaluate the effects of plant invasion on GHG emissions and to identify the associated key drivers. Non-native plant invasion significantly increased methane (CH4 ) emissions from 129 kg CH4 ha-1  year-1 in natural wetlands to 217 kg CH4 ha-1  year-1 in invaded wetlands. Plant invasion showed a significant tendency to increase CH4 uptakes from 2.95 to 3.64 kg CH4 ha-1  year-1 in terrestrial ecosystems. Invasive plant species also significantly increased nitrous oxide (N2 O) emissions in grasslands from an average of 0.76 kg N2 O ha-1  year-1 in native sites to 1.35 kg N2 O ha-1  year-1 but did not affect N2 O emissions in forests or wetlands. Soil organic carbon, mean annual air temperature (MAT), and nitrogenous deposition (N_DEP) were the key factors responsible for the changes in wetland CH4 emissions due to plant invasion. The responses of terrestrial CH4 uptake rates to plant invasion were mainly driven by MAT, soil NH4 + , and soil moisture. Soil NO3 - , mean annual precipitation, and N_DEP affected terrestrial N2 O emissions in response to plant invasion. Our meta-analysis not only sheds light on the stimulatory effects of plant invasion on GHG emissions from wetland and terrestrial ecosystems but also improves our current understanding of the mechanisms underlying the responses of GHG emissions to plant invasion.


Asunto(s)
Gases de Efecto Invernadero , Óxido Nitroso , Carbono , Dióxido de Carbono/análisis , Cambio Climático , Ecosistema , Especies Introducidas , Metano/análisis , Nitrógeno , Óxido Nitroso/análisis , Suelo , Humedales
8.
Oecologia ; 198(3): 773-783, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35201380

RESUMEN

In human-modified landscapes, understanding how habitat characteristics influence the diversity and composition of beneficial organisms is critical to conservation efforts and modeling ecosystem services. Assessing turnover, or the magnitude of change in species composition across sites or through time, is crucial to said efforts, yet is often overlooked. For pollinators such as wild bees, variables influencing temporal turnover, particularly across seasons within a year, remain poorly understood. To investigate how local and landscape characteristics correlate with bee diversity and turnover across seasons, we recorded wild bee and flowering ornamental plant assemblages at 13 plant nurseries in California between spring and autumn over 2 years. Nurseries cultivate a broad diversity of flowering plant species that differ widely across sites and seasons, providing an opportunity to test for correlations between turnover and diversity of plants and bees. As expected, we documented strong seasonal trends in wild bee diversity and composition. We found that local habitat factors, such as increased cultivation of native plants, were positively associated with bee diversity in sweep netting collections, whereas we detected moderate influences of landscape level factors such as proportion of surrounding natural area in passive trap collections. We also detected a moderate positive correlation between the magnitude of turnover in plant species and that of bee species (as number of taxa gained) across consecutive seasons. Our results have implications for the conservation of wild bees in ornamental plant landscapes, and highlight the utility of plant nurseries for investigating hypotheses related to diversity and turnover in plant-pollinator systems.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Abejas , Jardines , Plantas , Polinización , Estaciones del Año
9.
Symbiosis ; 86(1): 123-132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368327

RESUMEN

The vegetation in the Arabian Peninsula experiences drought, heat, soil salinity, and low fertility, mainly due to low phosphorus (P) availability. The beneficial mycorrhizal symbiosis between plants and arbuscular mycorrhizal fungi (AMF) is a key factor supporting plant growth under such environmental conditions. Therefore, AMF strains isolated from these soils might be useful as biotechnological tools for agriculture and revegetation practices in the region. Here we present a pioneering program to isolate, identify, and apply AMF isolated from rhizosphere soils of agricultural and natural habitats, namely date palm plantations and five native desert plants, respectively in the Southern Arabian Peninsula. We established taxonomically unique AMF species as single-spore cultures as part of an expanding collection of AMF strains adapted to arid ecosystems. Preliminary experiments were conducted to evaluate the abilities of these AMF strains to promote seedling growth of a main crop Phoenix dactylifera L. and a common plant Prosopis cineraria L. (Druce) in the Arabian Peninsula. The results showed that inoculation with certain AMF species enhanced the growth of both plants, highlighting the potential of these fungi as part of sustainable land use practices in this region.

10.
J Environ Manage ; 311: 114832, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35303596

RESUMEN

Native emergent and floating plants; local reed grass (Phragmites karka) and water hyacinth (Eichhornia crassipes), respectively, were used to treat textile wastewater using an integrated emergent-floating planted reactor (IEFPR) system at hydraulic retention times (HRTs) of 8, 14, and 19 days. Real textile effluent having characteristics of 1686.3 ADMI for colour, 535 mg/L for total suspended solid (TSS), 647.7 mg/L for chemical oxygen demand (COD) and 124 mg/L for biochemical oxygen demand (BOD) was used throughout this study. The IEFPR system experienced maximum removal of colour (94.8%, HRT 14 days, day 3), TSS (92.7%, HRT 19 days, day 7), and COD (96.6%, HRT 8 days, day 5) at different HRT and exposure time. The process conditions (HRT and exposure time) were optimized for maximum colour, TSS and COD removal from textile effluent by employing response surface methodology (RSM). The optimization has resulted 100% removal of colour, 87% removal of TSS and 100% removal of COD at HRT of 8 days and exposure time of 5 days, with 0.984 desirability. The integrated plant-assisted treatment system showed reliable performance in treating textile wastewater at optimum operational conditions to improve effluent quality before disposal into water bodies or being recycled into the process. The potential of phytoremediator (produced plant biomass) to be utilized as resources for bioenergy or to be converted into value added products (adsorbent or biochar) provides an alternative to management strategy for better environmental sustainability.

11.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164183

RESUMEN

BACKGROUND: Despite research on the molecular bases of Alzheimer's disease (AD), effective therapies against its progression are still needed. Recent studies have shown direct links between AD progression and neurovascular dysfunction, highlighting it as a potential target for new therapeutics development. In this work, we screened and evaluated the inhibitory effect of natural compounds from native Peruvian plants against tau protein, amyloid beta, and angiotensin II type 1 receptor (AT1R) pathologic AD markers. METHODS: We applied in silico analysis, such as virtual screening, molecular docking, molecular dynamics simulation (MD), and MM/GBSA estimation, to identify metabolites from Peruvian plants with inhibitory properties, and compared them to nicotinamide, telmisartan, and grapeseed extract drugs in clinical trials. RESULTS: Our results demonstrated the increased bioactivity of three plants' metabolites against tau protein, amyloid beta, and AT1R. The MD simulations indicated the stability of the AT1R:floribundic acid, amyloid beta:rutin, and tau:brassicasterol systems. A polypharmaceutical potential was observed for rutin due to its high affinity to AT1R, amyloid beta, and tau. The metabolite floribundic acid showed bioactivity against the AT1R and tau, and the metabolite brassicasterol showed bioactivity against the amyloid beta and tau. CONCLUSIONS: This study has identified molecules from native Peruvian plants that have the potential to bind three pathologic markers of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Descubrimiento de Drogas , Fitoquímicos/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/química , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Humanos , Simulación del Acoplamiento Molecular , Perú , Fitoquímicos/química , Plantas/química , Receptor de Angiotensina Tipo 1/metabolismo , Proteínas tau/antagonistas & inhibidores , Proteínas tau/metabolismo
12.
Ecol Lett ; 24(8): 1735-1737, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34142422

RESUMEN

When analyzing biotic resistance/diversity-invasibility, including predictors of species richness may result in a false negative correlation between native and non-native richness. However, reanalysis of vegetation surveys shows that the negative effect of native richness is statistically significant whether or not predictors of species richness are included.


Asunto(s)
Biodiversidad , Especies Introducidas , Ecosistema
13.
Proc Natl Acad Sci U S A ; 115(45): 11549-11554, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348792

RESUMEN

Human-dominated landscapes represent one of the most rapidly expanding and least-understood ecosystems on earth. Yet, we know little about which features in these landscapes promote sustainable wildlife populations. Historically, in urban areas, landowners have converted native plant communities into habitats dominated by nonnative species that are not susceptible to pest damage and require little maintenance. However, nonnative plants are also poor at supporting insects that are critical food resources for higher order consumers. Despite the logical connection, no study has examined the impact of nonnative plants on subsequent population responses of vertebrate consumers. Here, we demonstrate that residential yards dominated by nonnative plants have lower arthropod abundance, forcing resident Carolina chickadees (Poecile carolinensis) to switch diets to less preferred prey and produce fewer young, or forgo reproduction in nonnative sites altogether. This leads to lower reproductive success and unsustainable population growth in these yards compared with those with >70% native plant biomass. Our results reveal that properties landscaped with nonnative plants function as population sinks for insectivorous birds. To promote sustainable food webs, urban planners and private landowners should prioritize native plant species.


Asunto(s)
Artrópodos/fisiología , Eulipotyphla/fisiología , Cadena Alimentaria , Especies Introducidas , Passeriformes/fisiología , Reproducción/fisiología , Animales , Artrópodos/clasificación , Tamaño de la Nidada , Conservación de los Recursos Naturales , District of Columbia , Ecosistema , Aptitud Genética/fisiología , Longevidad , Plantas
14.
Int J Phytoremediation ; 23(7): 726-735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33380178

RESUMEN

Grass species native to South American can have mechanisms to tolerate copper (Cu) excess, which improves their use to phytoremediate Cu-contaminated soils . The aims of the present study are to assess the tolerance of grass species native to South American grasslands to copper-contaminated soils, as well as their adaptive responses under high Cu-stressed condition and to identify native grass species presenting the highest potential to be used for phytoremediation purposes. Soil samples were air-dried and their acidity, phosphorus and potassium levels were corrected, and the samples were incubated. Three Cu levels were used in the experiment: natural (Dose 0), with added of 40 mg kg-1 of Cu and with added of 80 mg kg-1 of Cu. Three Axonopus affinis, Paspalum notatum and Paspalum plicatulum seedlings were transferred to 5-L pots filled with soil in August and grown for 121 days. Soil solution was collected during cultivation with the aid of Rhizon lysimeters. Main concentrations of cations and anions, dissolved organic carbon and pH in the soil solution were analyzed and the ionic speciation was carried out. Cu toxicity impaired the growth of grass species native to South America, since Cu excess led to both changes in root morphology and nutritional unbalance. Among all assessed native species, Paspalum plicatulum was the one presenting the greatest potential to phytostabilize in Cu-contaminated soils, since it mainly accumulates Cu absorbed in the roots; therefore, its intercropping with grapevines is can be beneficial in Cu-contaminated soils.


Asunto(s)
Cobre , Contaminantes del Suelo , Biodegradación Ambiental , Cobre/análisis , Pradera , Suelo , Contaminantes del Suelo/análisis
15.
Int J Phytoremediation ; 23(8): 866-889, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33403862

RESUMEN

Anthropogenic and industrial wastewater (IWW) could be an additional future source of water to support the needs of the people of the State of Qatar. New lagoons have been built using modern technologies to optimize water use and waste recycling, as well as increasing the green spaces around the country. To achieve successful development of these new lagoons, lessons should be learned from the old ponds by examining their biodiversity, ecology, and the roles played by aquatic plants and algae to remediate wastewaters at these ponds. The perspectives of using IWW (from oil and gas activities), that is currently pumped deep into the ground are presented. Instead of causing great damage to groundwater, IWW can be stored in artificial ponds prepared for ridding it of all impurities and pollutants of various types, organic and inorganic, thereby making it serviceable for various human uses. Phycoremediation, bioremediation, and phytoremediation methods adopted by algae, bacteria and aquatic native plants are discussed, and special attention should be paid to those that proved successful in removing heavy metals and degrading organic compounds. At least three native plants namely: Amaranthus viridis, Phragmites australis, and Typha domingensis should be paid special attention, since these plants are efficient in remediation of arsenic and mercury; elements found abundantly in wastewater of gas activities. Some promising modern and innovative experiences and biotechnologies to develop efficient transgenic plants and microorganisms in removing and degrading pollutants are discussed, as an important strategy to keep the ecosystem clean and safe. Novelty statementIndustrial wastewater (IWW) could be an alternative source of water at the Arabian Gulf region. Currently, IWW is pumped deep into the ground causing a great damage to groundwater; little information about this issue has been reported. Such IWW can be stored in artificial ponds designed for ridding them of all impurities of various types; various remediation methods can be used. Modern biotechnology to develop transgenic plants and microorganisms to enhance these remediation methods can be adopted.


Asunto(s)
Ecosistema , Estanques , Biodegradación Ambiental , Biodiversidad , Qatar , Agua
16.
J Environ Manage ; 281: 111882, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33421937

RESUMEN

Three of the primary functions of green roofs in urban areas are to delay rainwater runoff, moderate building temperatures, and ameliorate the urban heat island (UHI) effect. A major impediment to the survival of plants on an unirrigated extensive green roof (EGR) is the harsh rooftop environment, including high temperatures and limited water during dry periods. Factors that influence EGR thermal and hydrologic performance include the albedo (reflectivity) of the roof and the composition of the green roof substrate (growing media). In this study we used white, reflective shading structures and three different media formulations to evaluate EGR thermal and hydrologic performance in the Pacific Northwest, USA. Shading significantly reduced daytime mean and maximum EGR media temperatures and significantly increased nighttime mean and minimum temperatures, which may provide energy benefits to buildings. Mean media moisture was greater in shaded trays than in exposed (unshaded) trays but differences were not statistically significant. Warmer nighttime media temperatures and lack of dew formation in shaded trays may have partially compensated for greater daytime evaporation from exposed trays. Media composition did not significantly influence media temperature or moisture. Results of this study suggest that adding shade structures to green roofs will combine thermal, hydrologic, and ecological benefits, and help achieve temperature and light regimes that allow for greater plant diversity on EGRs.


Asunto(s)
Conservación de los Recursos Naturales , Calor , Ciudades , Noroeste de Estados Unidos , Temperatura
17.
Molecules ; 26(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34299388

RESUMEN

In a project designed to investigate the specific and infraspecific taxa of Matthiola endemic to Sicily (Italy) as new potential sources of bioactive compounds in this work, the infraspecific taxa of Matthiola fruticulosa were studied, namely, subsp. fruticulosa and subsp. coronopifolia. HPLC-PDA/ESI-MS and SPME-GC/MS analyses of hydroalcoholic extracts obtained from the aerial parts of the two subspecies led to the detection of 51 phenolics and 61 volatile components, highlighting a quite different qualitative-quantitative profile. The antioxidant properties of the extracts were explored through in vitro methods: 1,1-diphenyl-2-picrylhydrazyl (DPPH), reducing power and Fe2+ chelating activity assays. The results of the antioxidant tests showed that the extracts possess a different antioxidant ability: particularly, the extract of M. fruticulosa subsp. fruticulosa exhibited higher radical scavenging activity than that of subsp. coronopifolia (IC50 = 1.25 ± 0.02 mg/mL and 2.86 ± 0.05 mg/mL), which in turn displayed better chelating properties (IC50 = 1.49 ± 0.01 mg/mL and 0.63 ± 0.01 mg/mL). Lastly, Artemia salina lethality bioassay was performed for toxicity assessment. The results of the bioassay showed lack of toxicity against brine shrimp larvae for both extracts. The data presented indicate the infraspecific taxa of M. fruticulosa as new and safe sources of antioxidant compounds.


Asunto(s)
Antioxidantes/toxicidad , Brassicaceae/química , Larva/crecimiento & desarrollo , Fitoquímicos/análisis , Fitoquímicos/toxicidad , Extractos Vegetales/toxicidad , Animales , Artemia , Larva/efectos de los fármacos , Sicilia , Pruebas de Toxicidad
18.
Environ Manage ; 67(6): 1060-1074, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33733684

RESUMEN

Environmental practitioners must understand those they collaborate with to implement programs that are both socially and ecologically effective. Practitioners who understand decision-makers' perspectives are better able to collaborate to lower political, financial, and cultural obstacles. In this study, we surveyed decision-makers involved with a voluntary environmental program in Iowa, USA. Iowa counties can choose to manage their roadside vegetation using an ecological approach, called integrated roadside vegetation management. Key decision-makers who decide whether a county has a roadside program are the county board of supervisors and the county conservation board. We used a mixed-mode design to survey the conservation board directors and chairs of the board of supervisors in each county. Our main goals were to understand the decision-makers' perceived benefits and barriers to having a roadside program in their counties, as well as the key factors influencing their decisions about roadside vegetation management. Safety, maintenance cost savings, and erosion control were the main factors that influenced decision-making, while pollinators and other wildlife received the least consideration. However, decision-makers in counties with a roadside vegetation manager were more influenced by pollinators and other wildlife compared to their counterparts in counties without a roadside vegetation manager. The main barriers to having a program include a lack of resources or other concerns being a higher priority. Emphasizing safety, cost savings, and erosion control benefits of roadside programs, and identifying ways to lower startup costs may increase buy-in with county decision-makers.


Asunto(s)
Conservación de los Recursos Naturales , Toma de Decisiones , Iowa
19.
Environ Geochem Health ; 42(1): 209-219, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31152287

RESUMEN

A field study was carried out to estimate the variations in the concentrations of macro- and trace elements in the rhizosphere soil and in roots and leaves of three widely distributed plant species-couch grass, plantain, and yarrow collected simultaneously from two sites characterized by different soil parameters. Main attention was paid to environmental (soil characteristics) and phylogenetic (plant species) factors that can influence on the concentrations of different elements in the plants and in soils. Both the factors cannot be considered as independent, although their contribution to the plant elemental composition may be different. There were statistically significant differences between concentrations of C, N, and H and 13 macro- and trace elements in the soils collected from the two sites. The concentrations of many chemical elements in the rhizosphere soil of the three plant species collected from the same site were often different. The differences in the characteristics of the soils at the sites resulted in differences between the concentrations of several elements in the plants growing at the sites. However, this was only one of the reasons of significant difference between the concentrations of macro- and trace elements in the same plant species collected from the sites. Couch grass, plantain, and yarrow had different reactions on the soil characteristics. The elemental composition of each plant species was unique although they grew at the same place and were collected simultaneously. Among the plants, yarrow was more tolerant to varying environmental conditions than plantain and couch grass.


Asunto(s)
Plantas/metabolismo , Suelo/química , Oligoelementos/análisis , Oligoelementos/farmacocinética , Achillea/metabolismo , Bioacumulación , Carbono/análisis , Metales/análisis , Metales/farmacocinética , Nitrógeno/análisis , Filogenia , Hojas de la Planta/química , Raíces de Plantas/química , Plantago/metabolismo , Poaceae/metabolismo , Rizosfera , Federación de Rusia , Especificidad de la Especie
20.
Ecology ; 100(1): e02542, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30341991

RESUMEN

This dataset provides the Global Naturalized Alien Flora (GloNAF) database, version 1.2. GloNAF represents a data compendium on the occurrence and identity of naturalized alien vascular plant taxa across geographic regions (e.g. countries, states, provinces, districts, islands) around the globe. The dataset includes 13,939 taxa and covers 1,029 regions (including 381 islands). The dataset is based on 210 data sources. For each taxon-by-region combination, we provide information on whether the taxon is considered to be naturalized in the specific region (i.e. has established self-sustaining populations in the wild). Non-native taxa are marked as "alien", when it is not clear whether they are naturalized. To facilitate alignment with other plant databases, we provide for each taxon the name as given in the original data source and the standardized taxon and family names used by The Plant List Version 1.1 (http://www.theplantlist.org/). We provide an ESRI shapefile including polygons for each region and information on whether it is an island or a mainland region, the country and the Taxonomic Databases Working Group (TDWG) regions it is part of (TDWG levels 1-4). We also provide several variables that can be used to filter the data according to quality and completeness of alien taxon lists, which vary among the combinations of regions and data sources. A previous version of the GloNAF dataset (version 1.1) has already been used in several studies on, for example, historical spatial flows of taxa between continents and geographical patterns and determinants of naturalization across different taxonomic groups. We intend the updated and expanded GloNAF version presented here to be a global resource useful for studying plant invasions and changes in biodiversity from regional to global scales. We release these data into the public domain under a Creative Commons Zero license waiver (https://creativecommons.org/share-your-work/public-domain/cc0/). When you use the data in your publication, we request that you cite this data paper. If GloNAF is a major part of the data analyzed in your study, you should consider inviting the GloNAF core team (see Metadata S1: Originators in the Overall project description) as collaborators. If you plan to use the GloNAF dataset, we encourage you to contact the GloNAF core team to check whether there have been recent updates of the dataset, and whether similar analyses are already ongoing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA