Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 697
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 183(2): 457-473.e20, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32979320

RESUMEN

Rubisco, the key enzyme of CO2 fixation in photosynthesis, is prone to inactivation by inhibitory sugar phosphates. Inhibited Rubisco undergoes conformational repair by the hexameric AAA+ chaperone Rubisco activase (Rca) in a process that is not well understood. Here, we performed a structural and mechanistic analysis of cyanobacterial Rca, a close homolog of plant Rca. In the Rca:Rubisco complex, Rca is positioned over the Rubisco catalytic site under repair and pulls the N-terminal tail of the large Rubisco subunit (RbcL) into the hexamer pore. Simultaneous displacement of the C terminus of the adjacent RbcL opens the catalytic site for inhibitor release. An alternative interaction of Rca with Rubisco is mediated by C-terminal domains that resemble the small Rubisco subunit. These domains, together with the N-terminal AAA+ hexamer, ensure that Rca is packaged with Rubisco into carboxysomes. The cyanobacterial Rca is a dual-purpose protein with functions in Rubisco repair and carboxysome organization.


Asunto(s)
Cianobacterias/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Orgánulos/metabolismo , Fotosíntesis/fisiología , Ribulosa-Bifosfato Carboxilasa/fisiología , Activador de Tejido Plasminógeno/química , Activador de Tejido Plasminógeno/metabolismo
2.
Plant J ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133822

RESUMEN

UV-B radiation can induce the accumulation of many secondary metabolites, including flavonoids, in plants to protect them from oxidative damage. BRI1-EMS-SUPPRESSOR1 (BES1) has been shown to mediate the biosynthesis of flavonoids in response to UV-B. However, the detailed mechanism by which it acts still needs to be further elucidated. Here, we revealed that UV-B significantly inhibited the transcription of multiple transcription factor genes in tobacco, including NtMYB27, which was subsequently shown to be a repressor of flavonoids synthesis in tobacco. We further demonstrated that NtBES1 directly binds to the E-box motifs present in the promoter of NtMYB27 to mediate its transcriptional repression upon UV-B exposure. The UV-B-repressed NtMYB27 could bind to the ACCT-containing element (ACE) in the promoters of Nt4CL and NtCHS and served as a modulator that promoted the biosynthesis of lignin and chlorogenic acid (CGA) but inhibited the accumulation of flavonoids in tobacco. The expression of NtMYB27 was also significantly repressed by heat stress, suggesting its putative roles in regulating heat-induced flavonoids accumulation. Taken together, our results revealed the role of NtBES1 and NtMYB27 in regulating the synthesis of flavonoids during the plant response to UV-B radiation in tobacco.

3.
Plant J ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39040005

RESUMEN

The outcome of certain plant-virus interaction is symptom recovery, which is accompanied with the emergence of asymptomatic tissues in which the virus accumulation decreased dramatically. This phenomenon shows the potential to reveal critical molecular factors for controlling viral disease. MicroRNAs act as master regulators in plant growth, development, and immunity. However, the mechanism by which miRNA participates in regulating symptom recovery remains largely unknown. Here, we reported that miR172 was scavenged in the recovered tissue of tobacco mosaic virus (TMV)-infected Nicotiana tabacum plants. Overexpression of miR172 promoted TMV infection, whereas silencing of miR172 inhibited TMV infection. Then, TARGET OF EAT3 (TOE3), an APETALA2 transcription factor, was identified as a downstream target of miR172. Overexpression of NtTOE3 significantly improved plant resistance to TMV infection, while knockout of NtTOE3 facilitated virus infection. Furthermore, transcriptome analysis indicated that TOE3 promoted the expression of defense-related genes, such as KL1 and MLP43. Overexpression of these genes conferred resistance of plant against TMV infection. Importantly, results of dual-luciferase assay, chromatin immunoprecipitation-quantitative PCR, and electrophoretic mobility shift assay proved that TOE3 activated the transcription of KL1 and MLP43 by binding their promoters. Moreover, overexpression of rTOE3 (the miR172-resistant form of TOE3) significantly reduced TMV accumulation compared to the overexpression of TOE3 (the normal form of TOE3) in miR172 overexpressing Nicotiana benthamiana plants. Taken together, our study reveals the pivotal role of miR172/TOE3 module in regulating plant immunity and in the establishment of recovery in virus-infected tobacco plants, elucidating a regulatory mechanism integrating plant growth, development, and immune response.

4.
Plant J ; 117(2): 541-560, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37932864

RESUMEN

Carotenoids are isoprenoid pigments indispensable for photosynthesis. Moreover, they are the precursor of apocarotenoids, which include the phytohormones abscisic acid (ABA) and strigolactones (SLs) as well as retrograde signaling molecules and growth regulators, such as ß-cyclocitral and zaxinone. Here, we show that the application of the volatile apocarotenoid ß-ionone (ß-I) to Arabidopsis plants at micromolar concentrations caused a global reprogramming of gene expression, affecting thousands of transcripts involved in stress tolerance, growth, hormone metabolism, pathogen defense, and photosynthesis. This transcriptional reprogramming changes, along with induced changes in the level of the phytohormones ABA, jasmonic acid, and salicylic acid, led to enhanced Arabidopsis resistance to the widespread necrotrophic fungus Botrytis cinerea (B.c.) that causes the gray mold disease in many crop species and spoilage of harvested fruits. Pre-treatment of tobacco and tomato plants with ß-I followed by inoculation with B.c. confirmed the effect of ß-I in increasing the resistance to this pathogen in crop plants. Moreover, we observed reduced susceptibility to B.c. in fruits of transgenic tomato plants overexpressing LYCOPENE ß-CYCLASE, which contains elevated levels of endogenous ß-I, providing a further evidence for its effect on B.c. infestation. Our work unraveled ß-I as a further carotenoid-derived regulatory metabolite and indicates the possibility of establishing this natural volatile as an environmentally friendly bio-fungicide to control B.c.


Asunto(s)
Arabidopsis , Norisoprenoides , Solanum lycopersicum , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Transcriptoma , Ácido Abscísico , Botrytis/metabolismo , Plantas Modificadas Genéticamente/genética , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
5.
Plant J ; 119(5): 2437-2449, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39031552

RESUMEN

Achieving optimally balanced gene expression within synthetic operons requires regulatory elements capable of providing a spectrum of expression levels. In this study, we investigate the expression of gfp reporter gene in tobacco chloroplasts, guided by variants of the plastid atpH 5' UTR, which harbors a binding site for PPR10, a protein that activates atpH at the posttranscriptional level. Our findings reveal that endogenous tobacco PPR10 confers distinct levels of reporter activation when coupled with the tobacco and maize atpH 5' UTRs in different design contexts. Notably, high GFP expression was not coupled to the stabilization of monocistronic gfp transcripts in dicistronic reporter lines, adding to the evidence that PPR10 activates translation via a mechanism that is independent of its stabilization of monocistronic transcripts. Furthermore, the incorporation of a tRNA upstream of the UTR nearly abolishes gfp mRNA (and GFP protein), presumably by promoting such rapid RNA cleavage and 5' exonucleolytic degradation that PPR10 had insufficient time to bind and protect gfp RNA, resulting in a substantial reduction in GFP accumulation. When combined with a mutant atpH 5' UTR, the tRNA leads to an exceptionally low level of transgene expression. Collectively, this approach allows for tuning of reporter gene expression across a wide range, spanning from a mere 0.02-25% of the total soluble cellular protein. These findings highlight the potential of employing cis-elements from heterologous species and expand the toolbox available for plastid synthetic biology applications requiring multigene expression at varying levels.


Asunto(s)
Regiones no Traducidas 5' , Cloroplastos , Regulación de la Expresión Génica de las Plantas , Nicotiana , Operón , Nicotiana/genética , Nicotiana/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Operón/genética , Regiones no Traducidas 5'/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Genes Reporteros , Plantas Modificadas Genéticamente , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Plant J ; 119(2): 720-734, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713838

RESUMEN

The RNA regulatory network is a complex and dynamic regulation in plant cells involved in mRNA modification, translation, and degradation. Ras-GAP SH3 domain-binding protein (G3BP) is a scaffold protein for the assembly of stress granules (SGs) and is considered an antiviral component in mammals. However, the function of G3BP during virus infection in plants is still largely unknown. In this study, four members of the G3BP-like proteins (NtG3BPLs) were identified in Nicotiana tabacum and the expression levels of NtG3BPL1 were upregulated during chilli veinal mottle virus (ChiVMV) infection. NtG3BPL1 was localized in the nucleus and cytoplasm, forming cytoplasmic granules under transient high-temperature treatment, whereas the abundance of cytoplasmic granules was decreased under ChiVMV infection. Overexpression of NtG3BPL1 inhibited ChiVMV infection and delayed the onset of symptoms, whereas knockout of NtG3BPL1 promoted ChiVMV infection. In addition, NtG3BPL1 directly interacted with ChiVMV 6K2 protein, whereas 6K2 protein had no effect on NtG3BPL1-derived cytoplasmic granules. Further studies revealed that the expression of NtG3BPL1 reduced the chloroplast localization of 6K2-GFP and the NtG3BPL1-6K2 interaction complex was localized in the cytoplasm. Furthermore, NtG3BPL1 promoted the degradation of 6K2 through autophagy pathway, and the accumulation of 6K2 and ChiVMV was affected by autophagy activation or inhibition in plants. Taken together, our results demonstrate that NtG3BPL1 plays a positive role in tobacco resistance against ChiVMV infection, revealing a novel mechanism of plant G3BP in antiviral strategy.


Asunto(s)
Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Nicotiana/virología , Nicotiana/genética , Nicotiana/metabolismo , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Potyvirus/fisiología
7.
Proc Natl Acad Sci U S A ; 119(15): e2120081119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35380896

RESUMEN

Plastid-mediated RNA interference (PM-RNAi) has emerged as a promising strategy for pest control. Expression from the plastid genome of stable double-stranded RNAs (dsRNAs) targeted against essential insect genes can effectively control some herbivorous beetles, but little is known about the efficacy of the transplastomic approach in other groups of pest insects, especially nonchewing insects that do not consume large amounts of leaf material. Here we have investigated the susceptibility of the western flower thrip (WFT, Frankliniella occidentalis), a notorious pest in greenhouses and open fields, to PM-RNAi. We show that WFTs ingest chloroplasts and take up plastid-expressed dsRNAs. We generated a series of transplastomic tobacco plants expressing dsRNAs and hairpin RNAs (hpRNAs) targeted against four essential WFT genes. Unexpectedly, we discovered plastid genome instability in transplastomic plants expressing hpRNAs, suggesting that dsRNA cassettes are preferable over hpRNA cassettes when designing PM-RNAi strategies. Feeding studies revealed that, unlike nuclear transgenic plants, transplastomic plants induced a potent RNAi response in WFTs, causing efficient suppression of the targeted genes and high insect mortality. Our study extends the application range of PM-RNAi technology to an important group of nonchewing insects, reveals design principles for the construction of dsRNA-expressing transplastomic plants, and provides an efficient approach to control one of the toughest insect pests in agriculture and horticulture.


Asunto(s)
Control Biológico de Vectores , Plastidios , Interferencia de ARN , ARN de Planta , Thysanoptera , Animales , Control Biológico de Vectores/métodos , Plastidios/genética , ARN Bicatenario , ARN de Planta/genética , Thysanoptera/genética , Nicotiana/genética , Nicotiana/parasitología
8.
Plant J ; 116(6): 1696-1716, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37713307

RESUMEN

We investigated the basis for better performance of transgenic Nicotiana tabacum plants with G6PDH-isoenzyme replacement in the cytosol (Xanthi::cP2::cytRNAi, Scharte et al., 2009). After six generations of selfing, infiltration of Phytophthora nicotianae zoospores into source leaves confirmed that defence responses (ROS, callose) are accelerated, showing as fast cell death of the infected tissue. Yet, stress-related hormone profiles resembled susceptible Xanthi and not resistant cultivar SNN, hinting at mainly metabolic adjustments in the transgenic lines. Leaves of non-stressed plants contained twofold elevated fructose-2,6-bisphosphate (F2,6P2 ) levels, leading to partial sugar retention (soluble sugars, starch) and elevated hexose-to-sucrose ratios, but also more lipids. Above-ground biomass lay in between susceptible Xanthi and resistant SNN, with photo-assimilates preferentially allocated to inflorescences. Seeds were heavier with higher lipid-to-carbohydrate ratios, resulting in increased harvest yields - also under water limitation. Abiotic stress tolerance (salt, drought) was improved during germination, and in floated leaf disks of non-stressed plants. In leaves of salt-watered plants, proline accumulated to higher levels during illumination, concomitant with efficient NADP(H) use and recycling. Non-stressed plants showed enhanced PSII-induction kinetics (upon dark-light transition) with little differences at the stationary phase. Leaf exudates contained 10% less sucrose, similar amino acids, but more fatty acids - especially in the light. Export of specific fatty acids via the phloem may contribute to both, earlier flowering and higher seed yields of the Xanthi-cP2 lines. Apparently, metabolic priming by F2,6P2 -combined with sustained NADP(H) turnover-bypasses the genetically fixed growth-defence trade-off, rendering tobacco plants more stress-resilient and productive.


Asunto(s)
Isoenzimas , Nicotiana , Isoenzimas/metabolismo , Nicotiana/genética , NADP/metabolismo , Semillas/genética , Semillas/metabolismo , Sacarosa/metabolismo , Ácidos Grasos/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Hojas de la Planta/metabolismo
9.
BMC Genomics ; 25(1): 671, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970011

RESUMEN

BACKGROUND: The dirigent (DIR) genes encode proteins that act as crucial regulators of plant lignin biosynthesis. In Solanaceae species, members of the DIR gene family are intricately related to plant growth and development, playing a key role in responding to various biotic and abiotic stresses. It will be of great application significance to analyze the DIR gene family and expression profile under various pathogen stresses in Solanaceae species. RESULTS: A total of 57 tobacco NtDIRs and 33 potato StDIRs were identified based on their respective genome sequences. Phylogenetic analysis of DIR genes in tobacco, potato, eggplant and Arabidopsis thaliana revealed three distinct subgroups (DIR-a, DIR-b/d and DIR-e). Gene structure and conserved motif analysis showed that a high degree of conservation in both exon/intron organization and protein motifs among tobacco and potato DIR genes, especially within members of the same subfamily. Total 8 pairs of tandem duplication genes (3 pairs in tobacco, 5 pairs in potato) and 13 pairs of segmental duplication genes (6 pairs in tobacco, 7 pairs in potato) were identified based on the analysis of gene duplication events. Cis-regulatory elements of the DIR promoters participated in hormone response, stress responses, circadian control, endosperm expression, and meristem expression. Transcriptomic data analysis under biotic stress revealed diverse response patterns among DIR gene family members to pathogens, indicating their functional divergence. After 96 h post-inoculation with Ralstonia solanacearum L. (Ras), tobacco seedlings exhibited typical symptoms of tobacco bacterial wilt. The qRT-PCR analysis of 11 selected NtDIR genes displayed differential expression pattern in response to the bacterial pathogen Ras infection. Using line 392278 of potato as material, typical symptoms of potato late blight manifested on the seedling leaves under Phytophthora infestans infection. The qRT-PCR analysis of 5 selected StDIR genes showed up-regulation in response to pathogen infection. Notably, three clustered genes (NtDIR2, NtDIR4, StDIR3) exhibited a robust response to pathogen infection, highlighting their essential roles in disease resistance. CONCLUSION: The genome-wide identification, evolutionary analysis, and expression profiling of DIR genes in response to various pathogen infection in tobacco and potato have provided valuable insights into the roles of these genes under various stress conditions. Our results could provide a basis for further functional analysis of the DIR gene family under pathogen infection conditions.


Asunto(s)
Evolución Molecular , Familia de Multigenes , Nicotiana , Filogenia , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Nicotiana/genética , Nicotiana/microbiología , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Estrés Fisiológico/genética , Regiones Promotoras Genéticas , Duplicación de Gen , Ralstonia solanacearum , Genes de Plantas
10.
BMC Genomics ; 25(1): 320, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549066

RESUMEN

BACKGROUND: Stigma exsertion is an essential agricultural trait that can promote cross-pollination to improve hybrid seed production efficiency. However, the molecular mechanism controlling stigma exsertion remains unknown. RESULTS: In this study, the Nicotiana tabacum cv. K326 and its two homonuclear-heteroplasmic lines, MSK326 (male-sterile) and MSK326SE (male-sterile and stigma exserted), were used to investigate the mechanism of tobacco stigma exsertion. A comparison of the flowers between the three lines showed that the stigma exsertion of MSK326SE was mainly due to corolla shortening. Therefore, the corollas of the three lines were sampled and presented for RNA-seq analysis, which found 338 candidate genes that may cause corolla shortening. These genes were equally expressed in K326 and MSK326, but differentially expressed in MSK326SE. Among these 338 genes, 15 were involved in hormone synthesis or signal transduction pathways. Consistently, the content of auxin, dihydrozeatin, gibberellin, and jasmonic acid was significantly decreased in the MSK326SE corolla, whereas abscisic acid levels were significantly increased. Additionally, seven genes involved in cell division, cell cycle, or cell expansion were identified. Protein-protein interaction network analysis identified 45 nodes and 79 protein interactions, and the largest module contained 20 nodes and 52 protein interactions, mainly involved in the hormone signal transduction and pathogen defensive pathways. Furthermore, a putative hub gene coding a serine/threonine-protein kinase was identified for the network. CONCLUSIONS: Our results suggest that hormones may play a key role in regulating tobacco stigma exsertion induced by corolla shortening.


Asunto(s)
Nicotiana , Transcriptoma , Nicotiana/genética , Revelación , Ácidos Indolacéticos/metabolismo , Hormonas/metabolismo , Flores/metabolismo
11.
Biochem Biophys Res Commun ; 734: 150465, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39088980

RESUMEN

Redox regulations and antioxidant defence play a central role in the acclimation of plants to their environment. Glutathione represents an essential component of the cellular antioxidant defence system, which keeps levels of reactive oxygen species (ROS) under control. High-performance liquid chromatography (HPLC) separation with fluorescence detection is a sensitive method that enables analysis of reduced and oxidised glutathione levels in small samples of plant tissues or plant cell culture. We aimed to optimise the method to obtain more accurate information about the total level of glutathione and the proportion of the reduced form (GSH) by choosing the most suitable reduction reagent and the conditions under which the reduction occurs. The applicability of the developed method was verified by analysing tobacco cells treated with hydrogen peroxide, which caused a decrease in the GSH/total glutathione ratio. Significant changes in the level of glutathione as well as in the GSH/total glutathione ratio were also observed during tobacco cell culture development.

12.
BMC Plant Biol ; 24(1): 655, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987695

RESUMEN

BACKGROUND: Biochar, a carbon-rich source and natural growth stimulant, is usually produced by the pyrolysis of agricultural biomass. It is widely used to enhance plant growth, enzyme activity, and crop productivity. However, there are no conclusive studies on how different levels of biochar application influence these systems. METHODS AND RESULTS: The present study elucidated the dose-dependent effects of biochar application on the physiological performance, enzyme activity, and dry matter accumulation of tobacco plants via field experiments. In addition, transcriptome analysis was performed on 60-day-old (early growth stage) and 100-day-old (late growth stage) tobacco leaves to determine the changes in transcript levels at the molecular level under various biochar application levels (0, 600, and 1800 kg/ha). The results demonstrated that optimum biochar application enhances plant growth, regulates enzymatic activity, and promotes biomass accumulation in tobacco plants, while higher biochar doses had adverse effects. Furthermore, transcriptome analysis revealed a total of 6561 differentially expressed genes (DEGs) that were up- or down-regulated in the groupwise comparison under different treatments. KEGG pathways analysis demonstrated that carbon fixation in photosynthetic organisms (ko00710), photosynthesis (ko00195), and starch and sucrose metabolism (ko00500) pathways were significantly up-regulated under the optimal biochar dosage (600 kg/ha) and down-regulated under the higher biochar dosage (1800 kg/ha). CONCLUSION: Collectively, these results indicate that biochar application at an optimal rate (600 kg/ha) could positively affect photosynthesis and carbon fixation, which in turn increased the synthesis and accumulation of sucrose and starch, thus promoting the growth and dry matter accumulation of tobacco plants. However, a higher biochar dosage (1800 kg/ha) disturbs the crucial source-sink balance of organic compounds and inhibits the growth of tobacco plants.


Asunto(s)
Carbón Orgánico , Perfilación de la Expresión Génica , Nicotiana , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/efectos de los fármacos , Transcriptoma , Biomasa , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Fotosíntesis/efectos de los fármacos
13.
BMC Plant Biol ; 24(1): 102, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38331761

RESUMEN

Polyphenol oxidases (PPOs) are type-3 copper enzymes and are involved in many biological processes. However, the potential functions of PPOs in pollination are not fully understood. In this work, we have screened 13 PPO members in Nicotiana. tabacum (named NtPPO1-13, NtPPOs) to explore their characteristics and functions in pollination. The results show that NtPPOs are closely related to PPOs in Solanaceae and share conserved domains except NtPPO4. Generally, NtPPOs are diversely expressed in different tissues and are distributed in pistil and male gametes. Specifically, NtPPO9 and NtPPO10 are highly expressed in the pistil and mature anther. In addition, the expression levels and enzyme activities of NtPPOs are increased after N. tabacum self-pollination. Knockdown of NtPPOs would affect pollen growth after pollination, and the purines and flavonoid compounds are accumulated in self-pollinated pistil. Altogether, our findings demonstrate that NtPPOs potentially play a role in the pollen tube growth after pollination through purines and flavonoid compounds, and will provide new insights into the role of PPOs in plant reproduction.


Asunto(s)
Nicotiana , Polinización , Nicotiana/genética , Polinización/genética , Tubo Polínico , Flores , Flavonoides/metabolismo , Purinas/metabolismo
14.
Planta ; 259(3): 61, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319406

RESUMEN

MAIN CONCLUSION: Agrobacterium-mediated transformation of Nicotiana tabacum, using an intragenic T-DNA region derived entirely from the N. tabacum genome, results in the equivalence of micro-translocations within genomes. Intragenic Agrobacterium-mediated gene transfer was achieved in Nicotiana tabacum using a T-DNA composed entirely of N. tabacum DNA, including T-DNA borders and the acetohydroxyacid synthase gene conferring resistance to sulfonylurea herbicides. Genomic analysis of a resulting plant, with single locus inheritance of herbicide resistance, identified a single insertion of the intragenic T-DNA on chromosome 5. The insertion event was composed of three N. tabacum DNA fragments from other chromosomes, as assembled on the T-DNA vector. This validates that intragenic transformation of plants can mimic micro-translocations within genomes, with the absence of foreign DNA.


Asunto(s)
Acetolactato Sintasa , Reordenamiento Génico , Translocación Genética , ADN , Agrobacterium/genética , Nicotiana/genética
15.
Plant Biotechnol J ; 22(4): 960-969, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38059318

RESUMEN

Inducible expression systems can overcome the trade-off between high-level transgene expression and its pleiotropic effects on plant growth. In addition, they can facilitate the expression of biochemical pathways that produce toxic metabolites. Although a few inducible expression systems for the control of transgene expression in plastids have been developed, they all depend on chemical inducers and/or nuclear transgenes. Here we report a temperature-inducible expression system for plastids that is based on the bacteriophage λ leftward and rightward promoters (pL/pR) and the temperature-sensitive repressor cI857. We show that the expression of green fluorescent protein (GFP) in plastids can be efficiently repressed by cI857 under normal growth conditions, and becomes induced over time upon exposure to elevated temperatures in a light-dependent process. We further demonstrate that by introducing into plastids an expression system based on the bacteriophage T7 RNA polymerase, the temperature-dependent accumulation of GFP increased further and was ~24 times higher than expression driven by the pL/pR promoter alone, reaching ~0.48% of the total soluble protein. In conclusion, our heat-inducible expression system provides a new tool for the external control of plastid (trans) gene expression that is cost-effective and does not depend on chemical inducers.


Asunto(s)
Calor , Plastidios , Regiones Promotoras Genéticas/genética , Transgenes/genética , Expresión Génica , Plastidios/genética , Plastidios/metabolismo
16.
New Phytol ; 242(6): 2453-2463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38567702

RESUMEN

CO2 release in the light (RL) and its presumed source, oxidative pentose phosphate pathways, were found to be insensitive to CO2 concentration. The oxidative pentose phosphate pathways form glucose 6-phosphate (G6P) shunts that bypass the nonoxidative pentose phosphate reactions of the Calvin-Benson cycle. Using adenosine diphosphate glucose and uridine diphosphate glucose as proxies for labeling of G6P in the stroma and cytosol respectively, it was found that only the cytosolic shunt was active. Uridine diphosphate glucose, a proxy for cytosolic G6P, and 6-phosphogluconate (6PG) were significantly less labeled than Calvin-Benson cycle intermediates in the light. But ADP glucose, a proxy for stromal G6P, is labeled to the same degree as Calvin-Benson cycle intermediates and much greater than 6PG. A metabolically inert pool of sedoheptulose bisphosphate can slowly equilibrate keeping the label in sedoheptulose lower than in other stromal metabolites. Finally, phosphorylation of fructose 6-phosphate (F6P) in the cytosol can allow some unlabeled carbon in cytosolic F6P to dilute label in phosphenolpyruvate. The results clearly show that there is oxidative pentose phosphate pathway activity in the cytosol that provides a shunt around the nonoxidative pentose phosphate pathway reactions of the Calvin-Benson cycle and is not strongly CO2-sensitive.


Asunto(s)
Dióxido de Carbono , Oxidación-Reducción , Vía de Pentosa Fosfato , Fotosíntesis , Dióxido de Carbono/metabolismo , Glucosa-6-Fosfato/metabolismo , Citosol/metabolismo , Luz , Arabidopsis/metabolismo , Arabidopsis/fisiología
17.
J Exp Bot ; 75(8): 2351-2371, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38205848

RESUMEN

Plant senescence, as a highly integrated developmental stage, involves functional degeneration and nutrient redistribution. NAM/ATAF1/CUC (NAC) transcription factors orchestrate various senescence-related signals and mediate the fine-tuning underlying plant senescence. Previous data revealed that knockout of either NtNAC028 or NtNAC080 leads to delayed leaf senescence in tobacco (Nicotiana tabacum), which implies that NtNAC028 and NtNAC080 play respective roles in the regulation of leaf senescence, although they share 91.87% identity with each other. However, the mechanism underlying NtNAC028- and NtNAC080-regulated leaf senescence remains obscure. Here, we determined that NtNAC028 and NtNAC080 activate a putative jasmonic acid (JA) biosynthetic gene, NtLOX3, and enhance the JA level in vivo. We found that NtNAC028 and NtNAC080 interact with each other and themselves through their NA-terminal region. Remarkably, only the dimerization between NtNAC028 and NtNAC080 stimulated the transcriptional activation activity, but not the DNA binding activity of this heterodimer on NtLOX3. Metabolome analysis indicated that overexpression of either NtNAC028 or NtNAC080 augments both biosynthesis and degradation of nicotine in the senescent stages. Thus, we conclude that NtNAC028 cooperates with NtNAC080 and forms a heterodimer to enhance NtLOX3 expression and JA biosynthesis to trigger the onset of leaf senescence and impact secondary metabolism in tobacco.


Asunto(s)
Ciclopentanos , Nicotiana , Oxilipinas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nicotiana/genética , Senescencia de la Planta , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
J Exp Bot ; 75(13): 3959-3972, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38470077

RESUMEN

Water supply limitations will likely impose increasing restrictions on future crop production, underlining a need for crops that use less water per mass of yield. Water use efficiency (WUE) therefore becomes a key consideration in developing resilient and productive crops. In this study, we hypothesized that it is possible to improve WUE under drought conditions via modulation of chloroplast signals for stomatal opening by up-regulation of non-photochemical quenching (NPQ). Nicotiana tabacum plants with strong overexpression of the PsbS gene encoding PHOTOSYSTEM II SUBUNIT S, a key protein in NPQ, were grown under differing levels of drought. The PsbS-overexpressing lines lost 11% less water per unit CO2 fixed under drought and this did not have a significant effect on plant size. Depending on growth conditions, the PsbS-overexpressing lines consumed from 4-30% less water at the whole-plant level than the corresponding wild type. Leaf water and chlorophyll contents showed a positive relation with the level of NPQ. This study therefore provides proof of concept that up-regulation of NPQ can increase WUE, and as such is an important step towards future engineering of crops with improved performance under drought.


Asunto(s)
Sequías , Nicotiana , Complejo de Proteína del Fotosistema II , Regulación hacia Arriba , Agua , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiología , Agua/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Clorofila/metabolismo
19.
Phytopathology ; 114(7): 1466-1479, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38700944

RESUMEN

Xylella fastidiosa (Xf) is a quarantine plant pathogen capable of colonizing the xylem of a wide range of hosts. Currently, there is no cure able to eliminate the pathogen from a diseased plant, but several integrated strategies have been implemented for containing the spread of Xf. Nanotechnology represents an innovative strategy based on the possibility of maximizing the potential antibacterial activity by increasing the surface-to-volume ratio of nanoscale formulations. Nanoparticles based on chitosan and/or fosetyl-Al have shown different in vitro antibacterial efficacy against Xf subsp. fastidiosa (Xff) and pauca (Xfp). This work demonstrated the uptake of chitosan-coated fosetyl-Al nanocrystals (CH-nanoFos) by roots and their localization in the stems and leaves of Olea europaea plants. Additionally, the antibacterial activity of fosetyl-Al, nano-fosetyl, nano-chitosan, and CH-nanoFos was tested on Nicotiana tabacum cultivar SR1 (Petite Havana) inoculated with Xff, Xfp, or Xf subsp. multiplex (Xfm). The bacterial load was evaluated with qPCR, and the results showed that CH-nanoFos was the only treatment able to reduce the colonization of Xff, Xfm, and Xfp in tobacco plants. Additionally, the area under the disease progress curve, used to assess symptom development in tobacco plants inoculated with Xff, Xfm, and Xfp and treated with CH-nanoFos, showed a reduction in symptom development. Furthermore, the twitching assay and bacterial growth under microfluidic conditions confirmed the antibacterial activity of CH-nanoFos.


Asunto(s)
Quitosano , Nanopartículas , Nicotiana , Enfermedades de las Plantas , Xylella , Xylella/fisiología , Xylella/efectos de los fármacos , Quitosano/farmacología , Quitosano/química , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Olea/microbiología
20.
Chem Biodivers ; 21(6): e202400463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606752

RESUMEN

One novel compound, (R)-3, 6-diethoxy-4-hydroxycyclohex-3-en-1-one (1) and thirteen known compounds were isolated from the waste tobacco leaves. The structures of two compounds (1-2) were confirmed and attributed firstly by the extensive spectroscopic data, including 1D/2D NMR, IR, HR-ESI-MS, CD, and ECD spectra. Notably, seven compounds (2, 3, 9, 10, 11, 12, and 13) exhibited better tyrosinase inhibitory activity than the positive control kojic acid. The binding modes of these compounds revealed that their structure formed strong hydrogen bonds and van der Waals forces with the active sites of tyrosinase. These results indicated that waste tobacco leaves are good resources for developing tyrosinase inhibitors.


Asunto(s)
Inhibidores Enzimáticos , Monofenol Monooxigenasa , Nicotiana , Hojas de la Planta , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Hojas de la Planta/química , Nicotiana/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/aislamiento & purificación , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA