Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 268: 110666, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32510431

RESUMEN

The worlds' coral reefs are declining due to the combined effects of natural disturbances and anthropogenic pressures including thermal coral bleaching associated with global climate change. Nearshore corals are receiving increased anthropogenic stress from coastal development and nutrient run-off. Considering forecast increases in global temperatures, greater understanding of drivers of recovery on nearshore coral reefs following widespread bleaching events is required to inform management of local stressors. The west Pilbara coral reefs, with cross-shelf turbidity gradients coupled with a large nearby dredging program and recent history of repeated coral bleaching due to heat stress, represent an opportune location to study recovery from multiple disturbances. Mean coral cover at west Pilbara reefs was monitored from 2009 to 2018 and declined from 45% in 2009 to 5% in 2014 following three heat waves. Recruitment and juvenile abundance of corals were monitored from 2014 to 2018 and were combined with biological and physical data to identify which variables enhanced or hindered early-stage coral recovery of all hard corals and separately for the acroporids, the genera principally responsible for recovery in the short-term (<7 years). From 2014 to 2018, coral cover increased from 5 to 10% but recovery varied widely among sites (0-13%). Hard coral cover typically recovered most at shallower sites that had higher abundance of herbivorous fish, less macroalgae, and lower turbidity. Similarly, acroporid corals recovered most at sites with lower turbidity and macroalgal cover. Juvenile acroporid densities were a good indicator of recovery at least two years after they were recorded. However, recruitment to settlement tiles was not a good predictor of total coral or acroporid recovery. This study shows that coral recovery can be slower in areas of high turbidity and the rate may be reduced by local pressures, such as dredging. Management should focus on improving or maintaining local water quality to increase the likelihood of coral recovery under climate stress. Further, in turbid environments, juvenile coral density predicts early coral recovery better than recruits on tiles and may be a more cost-effective technique for monitoring recovery potential.


Asunto(s)
Antozoos , Algas Marinas , Animales , Cambio Climático , Arrecifes de Coral , Peces
2.
Virus Res ; 281: 197934, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32199831

RESUMEN

The Ord River Irrigation Area (ORIA) produces annual crops during the dry season (April to October), and perennial crops all-year-round, and is located in tropical northwestern Australia. Sandalwood plantations cover 50 % of the ORIA's cropping area. Aphids cause major crop losses through transmission of viruses causing debilitating diseases and direct feeding damage. During 2016-2017, in both dry and wet seasons a total of 3320 leaf samples were collected from diverse types of sites on cultivated and uncultivated land and 1248 (38 %) of them were from aphid-colonized plants. In addition, aphids were found at 236 of 355 sampling sites. The 62 plant species sampled came from 23 families 19 of which contained aphid-colonized species. Aphid hosts included introduced weeds, Australian native plants, and volunteer or planted crop plants. Six aphid species were identified by light microscopy and CO1 gene sequencing, but there was no within species nucleotide sequence diversity. Aphis nerii, Hysteroneura setariae, Rhopalosiphum maidis and Schoutedenia ralumensis each colonized 1-3 plant species from a single plant family. A. craccivora colonized 14 species in five plant families. A. gossypii was the most polyphagous species colonizing 19 species in 11 plant families. A. gossypii, A. craccivora, A. nerii and S. ralumensis were found in both wet and dry seasons. Because of A. craccivora's prevalence and high incidences on understory weeds and host trees, sandalwood plantations were important reservoirs for aphid spread to wild and crop plant hosts growing in cultivated and uncultivated land. Alternative hosts growing in rural bushland, irrigation channel banks, vacant or fallow land, and orchard plantation understories also constituted significant aphid reservoirs. This study provides new knowledge of the ecology of aphid vector species not only in the ORIA but also in tropical northern Australia generally. It represents one of relatively few investigations on aphid ecology in tropical environments worldwide.


Asunto(s)
Áfidos/fisiología , Insectos Vectores/fisiología , Enfermedades de las Plantas , Animales , Australia , Productos Agrícolas , Estaciones del Año , Especificidad de la Especie
3.
Evol Appl ; 2(2): 222-33, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-25567863

RESUMEN

Understanding the evolutionary processes that have shaped existing patterns of genetic diversity of reef-building corals over broad scales is required to inform long-term conservation planning. Genetic structure and diversity of the mass-spawning hard coral, Acropora tenuis, were assessed with seven DNA microsatellite loci from a series of isolated and discontinuous coastal and offshore reef systems in northwest Australia. Significant subdivision was detected among all sites (F ST = 0.062, R ST = 0.090), with the majority of this variation due to genetic differentiation among reef systems. In addition, genetic divergence was detected between the coastal and offshore zones that cannot be adequately explained by geographic distance, indicating that transport of larvae between these zones via large-scale oceanic currents is rare even over time frames that account for connectivity over multiple generations. Significant differences in the amount of genetic diversity at each system were also detected, with higher diversity observed on the lower latitude reefs. The implications are that these reef systems of northwest Australia are not only demographically independent, but that they will also have to rely on their own genetic diversity to adapt to environmental change over the next few decades to centuries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA