Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(8): 2596-2602, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38251930

RESUMEN

Sepsis, a life-threatening inflammatory response, demands economical, accurate, and rapid detection of biomarkers during the critical "golden hour" to reduce the patient mortality rate. Here, we demonstrate a cost-effective waveguide-enhanced nanogold-linked immunosorbent assay (WENLISA) based on nanoplasmonic waveguide biosensors for the rapid and sensitive detection of procalcitonin (PCT), a sepsis-related inflammatory biomarker. To enhance the limit of detection (LOD), we employed sandwich assays using immobilized capture antibodies and detection antibodies conjugated to gold nanoparticles to bind the target analyte, leading to a significant evanescent wave redistribution and strong nanoplasmonic absorption near the waveguide surface. Experimentally, we detected PCT for a wide linear response range of 0.1 pg/mL to 1 ng/mL with a record-low LOD of 48.7 fg/mL (3.74 fM) in 8 min. Furthermore, WENLISA has successfully identified PCT levels in the blood plasma of patients with sepsis and healthy individuals, offering a promising technology for early sepsis diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Sepsis , Humanos , Polipéptido alfa Relacionado con Calcitonina , Inmunoadsorbentes , Oro , Sepsis/diagnóstico , Biomarcadores , Anticuerpos Inmovilizados
2.
Small ; : e2403560, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212623

RESUMEN

Drug toxicity assays using conventional 2D static cultures and animal studies have limitations preventing the translation of potential drugs to the clinic. The recent development of organs-on-a-chip platforms provides promising alternatives for drug toxicity/screening assays. However, most studies conducted with these platforms only utilize single endpoint results, which do not provide real-time/ near real-time information. Here, a versatile technology is presented that integrates a 3D liver-on-a-chip with a label-free photonic crystal-total internal reflection (PC-TIR) biosensor for rapid and continuous monitoring of the status of cells. This technology can detect drug-induced liver toxicity by continuously monitoring the secretion rates and levels of albumin and glutathione S-transferase α (GST-α) of a 3D liver on-a-chip model treated with Doxorubicin. The PC-TIR biosensor is based on a one-step antibody functionalization with high specificity and a detection range of 21.7 ng mL-1 to 7.83 x 103 ng mL-1 for albumin and 2.20 ng mL-1 to 7.94 x 102 ng mL-1 for GST-α. This approach provides critical advantages for the early detection of drug toxicity and improved temporal resolution to capture transient drug effects. The proposed proof-of-concept study introduces a scalable and efficient plug-in solution for organ-on-a-chip technologies, advancing drug development and in vitro testing methods by enabling timely and accurate toxicity assessments.

3.
Nanotechnology ; 35(41)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38991516

RESUMEN

In this study, we present a nanosized biosensor based on the photobiological properties of one-dimensional (1D) topological photonic crystals (PCs). A topological structure had been designed by combining two PC structures (PC 1 and PC 2) comprised of functional material layers, Si and SiO2. These two, PC 1 and PC 2, differ in terms of the thickness and arrangement of these dielectric materials. We carried out a comparison between two distinct topological PCs: one using random PCs, and the other featuring a mirror heterostructure. Tuberculosis may be diagnosed by inserting a sensor layer into 1D topological PCs. The sensing process is based on the refractive indexes of the analytes in the sensor layer. When the 1D-topological heterostructure-based PC and its mirror-image structures are stacked together, the sensor becomes more efficient for analyte detection than the conventional PCs. The random-based topological PC outperformed the heterostructure-based topological PC in analyte sensing. Photonic media witness notable blue shifts due to the analytes' variations in refractive index. The numerical results of the sensor are computed using the transfer matrix approach. Effective results are achieved by optimizing the thicknesses of the sensor layer and dielectric layers; number of periods and incident angle. In normal incident light, the developed sensor shows a high sensitivity of 1500 nm RIU-1with a very low limit of detection in the order of 2.2 × 10-06RIU and a high-quality factor of 30 659.54.

4.
Macromol Rapid Commun ; : e2400471, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183584

RESUMEN

Molecularly imprinted silica nanoparticles (SP-MIP) are synthesized for the real-time optical detection of low-molecular-weight compounds. Azo-initiator-modified silica beads are functionalized through reversible addition-fragmentation chain transfer (RAFT) polymerization, which leads to efficient control of the grafted layer. The copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EDMA) on azo initiator-coated silica particles (≈100 nm) using chain transfer agent (2-phenylprop-2-yl-dithiobenzoate) is carried out in the presence of a target analyte molecule (l-Boc-phenylalanine anilide, l-BFA). The chemical and morphological properties of SP-MIP are characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface analysis, and thermogravimetric analysis. Finally, SP-MIP is located on the gold surface to be used as a biorecognition layer on the surface plasmon resonance spectrometer (SPR). The sensitivity, response time, and selectivity of SP-MIP are investigated by three similar analogous molecules (l-Boc-Tryptophan, l-Boc-Tyrosine, and l-Boc-Phenylalanine) and the imprinted particle surface showed excellent relative selectivity toward l-Boc-Phenylalanine (l-BFA) (k = 61), while the sensitivity is recorded as limit of detection = 1.72 × 10-4 m.

5.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38544262

RESUMEN

Optical biosensors have a significant impact on various aspects of our lives. In many applications of optical biosensors, fluidic chambers play a crucial role in facilitating controlled fluid delivery. It is essential to achieve complete liquid replacement in order to obtain accurate and reliable results. However, the configurations of fluidic chambers vary across different optical biosensors, resulting in diverse fluidic volumes and flow rates, and there are no standardized guidelines for liquid replacement. In this paper, we utilize COMSOL Multiphysics, a finite element analysis software, to investigate the optimal fluid volume required for two types of fluidic chambers in the context of the oblique-incidence reflectivity difference (OI-RD) biosensor. We found that the depth of the fluidic chamber is the most crucial factor influencing the required liquid volume, with the volume being a quadratic function of the depth. Additionally, the required fluid volume is also influenced by the positions on the substrate surface bearing samples, while the flow rate has no impact on the fluid volume.


Asunto(s)
Técnicas Biosensibles , Incidencia , Programas Informáticos , Análisis de Elementos Finitos
6.
Sensors (Basel) ; 24(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39204849

RESUMEN

Helicobacter pylori (H. pylori) is a common pathogen with a high prevalence of infection in human populations. The diagnosis of H. pylori infection is critical for its treatment, eradication, and prognosis. Biosensors have been demonstrated to be powerful for the rapid onsite detection of pathogens, particularly for point-of-care test (POCT) scenarios. In this work, we propose a novel optical biosensor, based on nanomaterial porous silicon (PSi) and photonic surface state Tamm Plasmon Polariton (TPP), for the detection of cytotoxin-associated antigen A (CagA) of H. pylori bacterium. We fabricated the PSi TPP biosensor, analyzed its optical characteristics, and demonstrated through experiments, with the sensing of the CagA antigen, that the TPP biosensor has a sensitivity of 100 pm/(ng/mL), a limit of detection of 0.05 ng/mL, and specificity in terms of positive-to-negative ratio that is greater than six. From these performance factors, it can be concluded that the TPP biosensor can serve as an effective tool for the diagnosis of H. pylori infection, either in analytical labs or in POCT applications.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Técnicas Biosensibles , Helicobacter pylori , Silicio , Técnicas Biosensibles/métodos , Silicio/química , Helicobacter pylori/inmunología , Helicobacter pylori/aislamiento & purificación , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/análisis , Proteínas Bacterianas/inmunología , Porosidad , Humanos , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/microbiología
7.
Compr Rev Food Sci Food Saf ; 23(4): e13358, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923121

RESUMEN

Low-cost, reliable, and efficient biosensors are crucial in detecting residual heavy metal ions (HMIs) in food products. At present, based on distance-induced localized surface plasmon resonance of noble metal nanoparticles, enzyme-mimetic reaction of nanozymes, and chelation reaction of metal chelators, the constructed optical sensors have attracted wide attention in HMIs detection. Besides, based on the enrichment and signal amplification strategy of nanomaterials on HMIs and the construction of electrochemical aptamer sensing platforms, the developed electrochemical biosensors have overcome the plague of low sensitivity, poor selectivity, and the inability of multiplexed detection in the optical strategy. Moreover, along with an in-depth discussion of these different types of biosensors, a detailed overview of the design and application of innovative devices based on these sensing principles was provided, including microfluidic systems, hydrogel-based platforms, and test strip technologies. Finally, the challenges that hinder commercial application have also been mentioned. Overall, this review aims to establish a theoretical foundation for developing accurate and reliable sensing technologies and devices for HMIs, thereby promoting the widespread application of biosensors in the detection of HMIs in food.


Asunto(s)
Técnicas Biosensibles , Contaminación de Alimentos , Metales Pesados , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Metales Pesados/análisis , Contaminación de Alimentos/análisis , Análisis de los Alimentos/métodos , Análisis de los Alimentos/instrumentación
8.
Crit Rev Food Sci Nutr ; 63(8): 1055-1077, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34328048

RESUMEN

Food safety is the prime area of concern that builds trust. With the prevailing advancements, it has become facile to ensure safety in almost all aspects. Technology has grown from tedious lab techniques to modern chromatographic techniques and immunoassays, progressed with more precise and rapid sensing through the advent of Biosensors. Biosensors provide an automated technology by presenting superfast, nondestructive and cost-effective detection in food analysis. SPR biosensor is an optical biosensor known for its versatility and has wider applications in food testing and analysis. It has an optical system for excitation and interrogation of surface plasmons, and a biomolecular recognition element to detect and seize the target analyte present in a sample. The optical signal detects the binding analyte, on the recognition element, which results in a change in refractive index at the surface and modifies the surface plasmons' propagation constant. SPR aids in label-free detection of various components such as adulterants, antibiotics, biomolecules, genetically modified foods, pesticides, insecticides, herbicides, microorganisms and microbial toxins in food and assures safety. The distinct advancements of SPR in food analysis have been found and discussed. The review also provides knowledge on the advantages and the key challenges encountered by SPR.


Asunto(s)
Técnicas Biosensibles , Resonancia por Plasmón de Superficie , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles/métodos , Alérgenos , Inocuidad de los Alimentos , Análisis de los Alimentos/métodos
9.
Anal Bioanal Chem ; 415(12): 2281-2289, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36952025

RESUMEN

Cadmium ion (Cd(II)) is a pernicious environmental pollutant that has been shown to contaminate agricultural lands, accumulate through the food chain, and seriously threaten human health. At present, Cd(II) monitoring is dependent on centralized instruments, necessitating the development of rapid and on-site detection platforms. Against this backdrop, the present study reports on the development of a fluorometric aptasensor designed to target Cd(II), which is achieved through the integration of strand displacement amplification (SDA) and CRISPR/Cas12a. In the absence of Cd(II), the aptamer initiates SDA, resulting in the generation of a profusion of ssDNA that activates Cas12a, leading to a substantial increase in fluorescence output. Conversely, the presence of Cd(II) curtails the SDA efficiency, culminating in a significant reduction in fluorescence output. The proposed approach has been demonstrated to enable the selective detection of Cd(II) at concentrations of 60 pM, with the performance of the aptasensor validated in real water and rice samples. The proposed platform based on aptamer-target interaction holds immense promise as a signal-amplified and precise method for the detection of Cd(II) and has the potential to transform current hazard detection practices in food samples.


Asunto(s)
Técnicas Biosensibles , Contaminantes Ambientales , Humanos , Sistemas CRISPR-Cas , Cadmio , Agricultura , ADN de Cadena Simple , Oligonucleótidos
10.
Mikrochim Acta ; 190(5): 166, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010667

RESUMEN

A high percentage of the population suffers from multiple food allergies justifying  the importance of reliable diagnostic methods. Single-analyte solutions based on the determination of specific immunoglobulins E (sIgE) are safe and fast but are generally time-consuming and expensive. Thus sustainable microanalytical methods that provide multianalyte profiling information are highly demanded. This work presents the in vitro biosensing of specific IgE levels based on a reversed-phase allergen array. The approach consists of optical biosensing supported by direct multiplex immunoassays and on-disc technology. It identifies 12 sIgE associated with food allergies in a single analysis with a low serum sample volume (25 µL). After processing captured images, specific signals for each target biomarker correlate to their concentration. The assay analytically performs well with 0.3 IU/mL and 0.41 IU/mL as the detection and quantification limits in serum, respectively. This novel method achieves excellent clinical specificity (100%) and high sensitivity (91.1%), considering the diagnosis obtained by clinical history and ImmunoCAP analysis. The results demonstrate that microanalytical systems based on allergen arrays can potentially diagnose multiple food allergies and are easily implemented in primary care laboratory settings.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Humanos , Hipersensibilidad a los Alimentos/diagnóstico , Inmunoensayo/métodos , Análisis por Micromatrices , Inmunoglobulina E
11.
Sensors (Basel) ; 23(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37837014

RESUMEN

This work presents a compact and sensitive refractive index sensor able to evaluate the concentration of an analyte in a sample. Its working principle leverages on the changes in the optical absorption features introduced by the sample itself on the evanescent waves of a light beam. The device's high compactness is achieved by embedding the sample-light interaction site and the detector in a 1 cm2 glass substrate, thanks to microelectronics technologies. High sensitivity is obtained by employing a low-noise p-i-n hydrogenated amorphous silicon junction, whose manufacture process requires only four UV lithographic steps on a glass substrate, thus ensuring low production costs. The system's capabilities are investigated by sensing the sugar content in three commercial beverages. Sensitivities of 32, 53 and 80 pA/% and limits of detection of 47, 29 and 18 ppm are achieved. The above performance is comparable with state-of-the-art results available in the literature, where more complex optical setups, expensive instrumentation and bulky devices are used.

12.
Sensors (Basel) ; 23(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36905045

RESUMEN

The primary goal of glucose sensing at the point of care is to identify glucose concentrations within the diabetes range. However, lower glucose levels also pose a severe health risk. In this paper, we propose quick, simple, and reliable glucose sensors based on the absorption and photoluminescence spectra of chitosan-capped ZnS-doped Mn nanomaterials in the range of 0.125 to 0.636 mM glucose corresponding to 2.3 mg/dL to 11.4 mg/dL. The detection limit was 0.125 mM (or 2.3 mg/dL), much lower than the hypoglycemia level of 70 mg/dL (or 3.9 mM). Chitosan-capped ZnS-doped Mn nanomaterials retain their optical properties while improving sensor stability. This study reports for the first time how the sensors' efficacy was affected by chitosan content from 0.75 to 1.5 wt.%. The results showed that 1 %wt chitosan-capped ZnS-doped Mn is the most-sensitive, -selective, and -stable material. We also put the biosensor through its paces with glucose in phosphate-buffered saline. In the same range of 0.125 to 0.636 mM, the sensors-based chitosan-coated ZnS-doped Mn had a better sensitivity than the working water environment.


Asunto(s)
Quitosano , Nanoestructuras , Puntos Cuánticos , Sulfuros , Glucosa
13.
Sensors (Basel) ; 23(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36679364

RESUMEN

This paper proposes a new optical biosensor composed of a silicon-on-insulator (SOI) p-n junction photodiode (PD) with a surface plasmon (SP) antenna. When the phase-matching condition between two lateral wavelengths of the diffracted light from the SP antenna and the waveguiding mode in the SOI PD is satisfied, we observe sharp peaks in the spectroscopic light sensitivity. Since the peak wavelength depends on the RI change around the SP antenna corresponding to the phase-matching condition, the SOI PDs with an SP antenna can be applied to the optical biosensor. The RI detection limit is evaluated in the measurements with bulk solutions, and 1.11 × 10-5 RIU (refractive index unit) can be obtained, which is comparable to that of a surface plasmon resonance (SPR) sensor, which is well known as a representative optical biosensor. In addition, the response for intermolecular bonds is estimated by the electromagnetic simulations using the finite-difference time-domain (FDTD) method to clarify its ability to detect biomolecular interactions. The results of this paper will provide new ground for high-throughput label-free biosensing, since a large number of SOI PDs with an SP antenna can be easily integrated on a single chip via an SOI complementary metal-oxide-semiconductor (CMOS) fabrication process.


Asunto(s)
Técnicas Biosensibles , Silicio , Silicio/química , Refractometría , Resonancia por Plasmón de Superficie , Dióxido de Silicio
14.
Opt Laser Technol ; 157: 108763, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36212170

RESUMEN

The coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a major public health outbreak in late 2019 and was proclaimed a global pandemic in March 2020. A reflectometric-based RNA biosensor was developed by using cysteamine-stabilized gold nanoparticles (cysAuNPs) as the colorimetric probe for bioassay of COVID-19 RNA (SARS-CoV-2 RNA) sequence. The cysAuNPs aggregated in the presence of DNA probes via cationic and anionic electrostatic attraction between the positively charged cysteamine ligands and the negatively charged sugar-phosphate backbone of DNA, whilst in the presence of target RNAs, the specific recognition between DNA probes and targets depleted the electrostatic interaction between the DNA probes and cysAuNPs signal probe, leading to dispersed particles. This has rendered a remarkable shifting in the surface plasmon resonance (SPR) on the basis of visual color change of the RNA biosensor from red to purplish hue at the wavelength of 765 nm. Optical evaluation of SARS-CoV-2 RNA by means on reflectance transduction of the RNA biosensor based on cysAuNPs optical sensing probes demonstrated rapid response time of 30 min with high sensitivity, good linearity and high reproducibility across a COVID-19 RNA concentration range of 25 nM to 200 nM, and limit of detection (LOD) at 0.12 nM. qPCR amplification of SARS-CoV-2 viral RNA showed good agreement with the proposed RNA biosensor by using spiked RNA samples of the oropharyngeal swab from COVID-19 patients. Therefore, this assay is useful for rapid and early diagnosis of COVID-19 disease including asymptomatic carriers with low viral load even in the presence of co-infection with other viruses that manifest similar respiratory symptoms.

15.
Anal Biochem ; 640: 114455, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34788604

RESUMEN

We recently demonstrated that capturing human monoclonal antibodies (hmAbs) using high affinity anti-human Fc (AHC) antibodies allows reliable characterization of antibody-antigen interactions. Here, we characterized six human Fc specific mouse monoclonal antibodies (mAbs) and compared their binding profiles with three previously characterized goat AHC polyclonal antibodies (pAbs), exhibiting properties of a good capture reagent. All six mouse AHC mAbs specifically bound with high affinity to the Fc region of hIgG1, hIgG2, hIgG4 and to 43 different hIgG variants, containing substitutions and/or mutations in the hinge and/or Fc region, that have been reported to exhibit modified antibody effector function and/or pharmacokinetics. Biacore sensor surfaces individually derivatized with mouse AHC mAbs exhibited >2.5-fold higher hIgG binding capacity compared to the three goat AHC pAb surfaces and reproducibly captured hIgG over 300 capture-regeneration cycles. The results of the capture kinetic analyses performed on 31 antibody-antigen interactions using surfaces derivatized with either of the two highest affinity AHC mAbs (REGN7942 or REGN7943) were in concordance with those performed using goat AHC pAb surfaces. Our data demonstrate that AHC mAbs such as REGN7942 and REGN7943 that have properties superior than the three goat AHC pAbs are highly valuable research reagents, especially to perform capture kinetic analyses of antibody-antigen interactions on optical biosensors.


Asunto(s)
Anticuerpos Monoclonales
16.
J Chem Inf Model ; 62(2): 232-239, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35014791

RESUMEN

Computational methods can greatly aid nucleic acid fluorescence experiments by either offering fully detailed atomic insights into the conformations and interactions present in the studied system or by providing accurate simulations of the fundamental parameters. Fluorescence-based optical biosensors show great potential for clinical diagnosis of life-altering diseases with a very high specificity. Many of the designs for such rely on the concept of Förster resonance energy transfer (FRET). Currently, the methods used experimentally make use of theoretical assumptions which fundamentally affect the results. Having a detailed atomistic overview or significant simulated parameters could improve the understanding of the calculations and provide much more accurate outcomes. However, there are many challenges that need to be addressed before standardized computational protocols can be employed. This review is meant to highlight the progress made for computational methods used to simulate FRET experiments for nucleic acid probes. Recent advances have been made in computational tools, such as force field parametrizations and improved protocols. Complementary simulations to experimental data are also comprised in the this review.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Conformación Molecular
17.
Nanomedicine ; 40: 102476, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34743019

RESUMEN

We report the design and adaptation of iron/iron oxide nanoparticle-based optical nanobiosensors for enzymes or cytokine/chemokines that are established biomarkers of lung diseases. These biomarkers comprise ADAM33, granzyme B, MMP-8, neutrophil elastase, arginase, chemokine (C-C motif) ligand 20 and interleukin-6. The synthesis of nanobiosensors for these seven biomarkers, their calibration with commercially available enzymes and cytokines/chemokines, as well as their validation using bronchoalveolar lavage (BAL) obtained from a mouse model of TLR3-mediated inflammation are discussed here. Exhaled Breath Condensate (EBC) is a minimally invasive approach for sampling airway fluid in the diagnosis and management of various lung diseases in humans (e.g., asthma, COPD and viral infections). We report the proof-of-concept of using human EBC in conjunction with nanobiosensors for diagnosis/monitoring airway inflammation. These findings suggest that, with nanosensor technology, human EBC can be utilized as a liquid biopsy to monitor inflammation/remodeling in lung disease.


Asunto(s)
Asma , Enfermedades Pulmonares , Animales , Biomarcadores , Pruebas Respiratorias , Inflamación/diagnóstico , Ratones
18.
Mikrochim Acta ; 189(10): 371, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36064809

RESUMEN

A new nano-structured platform for fluorescent analysis using PQQ-dependent glucose dehydrogenase (PQQ-GDH) was developed, particularly using a smartphone for transduction and quantification of optical signals. The PQQ-GDH enzyme was immobilized on SiO2 nanoparticles deposited on glass microfiber filter paper, providing a high load of the biocatalytic enzyme. The platform was tested and optimized for glucose determination using a wild type of the PQQ-GDH enzyme. The analysis was based on the fluorescence generated by the reduced form of phenazine methosulfate produced stoichiometrically to the glucose concentration. The fluorescent signals were generated at separate analytical spots on the paper support under wavelength (365 nm) UV excitation. The images of the analytical spots, dependent on the glucose concentration, were obtained using a photo camera of a standard smartphone. Then, the images were processed and quantified using software installed in a smartphone. The developed biocatalytic platform is the first step to assembling a large variety of biosensors using the same platform functionalized with artificial allosteric chimeric PQQ-dependent glucose dehydrogenase activated with different analytes. The future combination of the artificial enzymes, the presently developed analytical platform, and signal processing with a smartphone will lead to novel point-of-care and end-user biosensors applicable to virtually all possible analytes.


Asunto(s)
Glucosa 1-Deshidrogenasa , Cofactor PQQ , Glucosa/análisis , Dióxido de Silicio , Teléfono Inteligente
19.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142748

RESUMEN

Graphene and its derivatives show great potential for biosensing due to their extraordinary optical, electrical and physical properties. In particular, graphene and its derivatives have excellent optical properties such as broadband and tunable absorption, fluorescence bursts, and strong polarization-related effects. Optical biosensors based on graphene and its derivatives make nondestructive detection of biomolecules possible. The focus of this paper is to review the preparation of graphene and its derivatives, as well as recent advances in optical biosensors based on graphene and its derivatives. The working principle of face plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence resonance energy transfer (FRET) and colorimetric sensors are summarized, and the advantages and disadvantages of graphene and its derivatives applicable to various types of sensors are analyzed, and the methods of surface functionalization of graphene and its derivatives are introduced; these optical biosensors can be used for the detection of a range of biomolecules such as single cells, cellular secretions, proteins, nucleic acids, and antigen-antibodies; these new high-performance optical sensors are capable of detecting changes in surface structure and biomolecular interactions with the advantages of ultra-fast detection, high sensitivity, label-free, specific recognition, and the ability to respond in real-time. Problems in the current stage of application are discussed, as well as future prospects for graphene and its biosensors. Achieving the applicability, reusability and low cost of novel optical biosensors for a variety of complex environments and achieving scale-up production, which still faces serious challenges.


Asunto(s)
Técnicas Biosensibles , Grafito , Ácidos Nucleicos , Técnicas Biosensibles/métodos , Colorimetría , Grafito/química , Espectrometría Raman , Resonancia por Plasmón de Superficie
20.
Anal Biochem ; 632: 114381, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34534543

RESUMEN

Acetylcholine (ACh), the major neurotransmitter secreted by cholinergic neurons, is widely found in the peripheral and central nervous systems, and its main function is to complete the transmission of neural signals. When cholinergic neurons are impaired, the synthesis and decomposition of ACh are abnormal and the neural signalling transition is blocked. To some extent, the concentration changes of ACh reflects the occurrence and development of many kinds of nervous system diseases, such as Alzheimer's disease, Parkinson's disease, Myasthenia gravis and so on. Thus, researches of the physiological and pathological roles and the tracking of the concentration changes of ACh in vivo are significant to the prevention and treatment of these diseases. In the paper, the pathophysiological functions and the comprehensive research progress on detection methods of ACh are summarized. Specifically, the latest research and related applications of the optical and electrochemical biosensors are described, and the future development directions and challenges are prospected, which provides a reference for the detection and applications of ACh.


Asunto(s)
Acetilcolina/análisis , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA