Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 22(12): 4114-4123, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27081764

RESUMEN

Extreme climate events are predicted to become more frequent and intense. Their ecological impacts, particularly on carbon cycling, can differ in relation to ecosystem sensitivity. Peatlands, being characterized by peat accumulation under waterlogged conditions, can be particularly sensitive to climate extremes if the climate event increases soil oxygenation. However, a mechanistic understanding of peatland responses to persistent climate extremes is still lacking, particularly in terms of aboveground-belowground feedback. Here, we present the results of a transplantation experiment of peat mesocosms from high to low altitude in order to simulate, during 3 years, a mean annual temperature c. 5 °C higher and a mean annual precipitation c. 60% lower. Specifically, we aim at understanding the intensity of changes for a set of biogeochemical processes and their feedback on carbon accumulation. In the transplanted mesocosms, plant productivity showed a species-specific response depending on plant growth forms, with a significant decrease (c. 60%) in peat moss productivity. Soil respiration almost doubled and Q10 halved in the transplanted mesocosms in combination with an increase in activity of soil enzymes. Spectroscopic characterization of peat chemistry in the transplanted mesocosms confirmed the deepening of soil oxygenation which, in turn, stimulated microbial decomposition. After 3 years, soil carbon stock increased only in the control mesocosms whereas a reduction in mean annual carbon accumulation of c. 30% was observed in the transplanted mesocosms. Based on the above information, a structural equation model was built to provide a mechanistic understanding of the causal connections between peat moisture, vegetation response, soil respiration and carbon accumulation. This study identifies, in the feedback between plant and microbial responses, the primary pathways explaining the reduction in carbon accumulation in response to recurring climate extremes in peat soils.


Asunto(s)
Ciclo del Carbono , Carbono/análisis , Temperatura , Humedales , Clima , Suelo/química
2.
Soil Biol Biochem ; 103: 300-307, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28042178

RESUMEN

Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ13C, Δ14C, δ15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ13C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small modifications in SOM chemistry result from an interplay of enhanced microbial decomposition of SOM and increased root litter input in the warmed plots. Overall, stable functional SOM pool sizes indicate that soil warming had similarly affected easily decomposable and stabilized SOM of this C-rich forest soil.

3.
PeerJ ; 6: e4575, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29632744

RESUMEN

Recent advances have allowed for greater investigation into microbial regulation of mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM) may influence methylmercury (MeHg) production both through chemical interactions and through substrate effects on microbiomes. We conducted microcosm experiments in two disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments) to examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl2) on microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the greater relative capacity for mercury methylation in vegetated over unvegetated sediments. Further, our work shows how mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate produced substantially more MeHg than unamended microcosms. We also demonstrate (1) changes in microbiome structure towards Clostridia, (2) metagenomic shifts toward fermentation, and (3) degradation of complex DOM; all of which coincide with elevated net MeHg production in unvegetated microcosms receiving leachate. Together, our work shows the influence of wetland vegetation in controlling MeHg production in the Great Lakes region and provides evidence that this may be due to both enhanced microbial activity as well as differences in microbiome composition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA