Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 201: 105866, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685242

RESUMEN

Pea Albumin 1, subunit b (PA1b) is a 37 amino acid peptide. It was extracted from pea seeds and showed significant insecticidal activity against certain insects, such as the mosquitoes Culex pipiens and Aedes aegyptii, cereal weevils (genus Sitophilus), and certain species of aphids. Considering that pea seeds are regularly consumed by humans and mammals, PA1b is assumed to be a promising bioinsecticide with no allergenicity or toxicity to hosts. To clarify this aspect, PA1b was applied to bovine mammary epithelial cells challenged with lipopolysaccharide (LPS). The results revealed that LPS induced inflammatory cytokine tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL6) and monocyte chemoattractant protein 1 (MCP-1) secretion, while PA1b depressed these cytokines release via inhibiting NF-κB signaling activation. In addition, PA1b protected mammary epithelial cells from impairment caused by LPS, because it reduced cell membrane permeability and subsequently reconstructed mammary epithelial cell viability. Moreover, it inhibited cell apoptosis accompanied with alleviated oxidative stress. Furthermore, PA1b prevented opening of mitochondrial permeability transition pores, in turn up-regulated mitochondrial membrane potential and ATP production. Therefore, PA1b improved mitochondrial function, which contributed to re-construction of mammary epithelial cell viability. In conclusion, PA1b alleviates LPS-induced inflammation of bovine mammary epithelial cells via inhibiting NF-κB signaling activation and protects bovine mammary epithelial cells by improving mitochondrial function. PA1b is a good therapeutic survival factor for mammary epithelial cells.


Asunto(s)
Células Epiteliales , Inflamación , Lipopolisacáridos , Animales , Lipopolisacáridos/farmacología , Bovinos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Insecticidas/toxicidad , Insecticidas/farmacología , Femenino , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
Microb Cell Fact ; 22(1): 157, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592258

RESUMEN

BACKGROUND: New bioinsecticides with novel modes of action are urgently needed to minimise the environmental and safety hazards associated with the use of synthetic chemical pesticides and to combat growing levels of pesticide resistance. The pea seed albumin PA1b knottin peptide is the only known proteinaceous inhibitor of insect vacuolar adenosine triphosphatase (V-ATPase) rotary proton pumps. Oral toxicity towards insect pests and an absence of activity towards mammals makes Pa1b an attractive candidate for development as a bioinsecticide. The purpose of this study was to investigate if Pichia pastoris could be used to express a functional PA1b peptide and if it's insecticidal activity could be enhanced via engineering to produce a fusion protein comprising the pea albumin protein fused to the mannose-specific snowdrop lectin (Galanthus nivalis agglutinin; GNA). RESULTS: We report the production of a recombinant full-length pea albumin protein (designated PAF) and a fusion protein (PAF/GNA) comprised of PAF fused to the N-terminus of GNA in the yeast Pichia pastoris. PAF was orally toxic to pea (Acyrthosiphon pisum) and peach potato (Myzus persicae) aphids with respective, Day 5 LC50 values of 54 µM and 105 µM derived from dose-response assays. PAF/GNA was significantly more orally toxic as compared to PAF, with LC50 values tenfold (5 µM) and 3.3-fold (32 µM) lower for pea and peach potato aphids, respectively. By contrast, no phenotypic effects were observed for worker bumble bees (Bombus terristrus) fed PAF, GNA or PAF/GNA in acute toxicity assays. Confocal microscopy of pea aphid guts after pulse-chase feeding fluorescently labelled proteins provides evidence that enhanced efficacy of the fusion protein is attributable to localisation and retention of PAF/GNA to the gut epithelium. In contact assays the fusion protein was also found to be significantly more toxic towards A. pisum as compared to PAF, GNA or a combination of the two proteins. CONCLUSIONS: Our results suggest that GNA mediated binding to V-type ATPase pumps acts to potentiate the oral and contact aphicidal activity of PAF. This work highlights potential for the future commercial development of plant protein-based bioinsecticides that offer enhanced target specificity as compared to chemical pesticides, and compatibility with integrated pest management strategies.


Asunto(s)
Insecticidas , Plaguicidas , Animales , Abejas , Insecticidas/farmacología , Pisum sativum , Albúminas , Ingeniería de Proteínas , Mamíferos
3.
Microb Cell Fact ; 22(1): 41, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849884

RESUMEN

BACKGROUND: Pediocin PA-1 is a bacteriocin of recognized value with applications in food bio-preservation and the medical sector for the prevention of infection. To date, industrial manufacturing of pediocin PA-1 is limited by high cost and low-performance. The recent establishment of the biotechnological workhorse Corynebacterium glutamicum as recombinant host for pediocin PA-1 synthesis displays a promising starting point towards more efficient production. RESULTS: Here, we optimized the fermentative production process. Following successful simplification of the production medium, we carefully investigated the impact of dissolved oxygen, pH value, and the presence of bivalent calcium ions on pediocin production. It turned out that the formation of the peptide was strongly supported by an acidic pH of 5.7 and microaerobic conditions at a dissolved oxygen level of 2.5%. Furthermore, elevated levels of CaCl2 boosted production. The IPTG-inducible producer C. glutamicum CR099 pXMJ19 Ptac pedACDCg provided 66 mg L-1 of pediocin PA-1 in a two-phase batch process using the optimized set-up. In addition, the novel constitutive strain Ptuf pedACDCg allowed successful production without the need for IPTG. CONCLUSIONS: The achieved pediocin titer surpasses previous efforts in various microbes up to almost seven-fold, providing a valuable step to further explore and develop this important bacteriocin. In addition to its high biosynthetic performance C. glutamicum proved to be highly robust under the demanding producing conditions, suggesting its further use as host for bacteriocin production.


Asunto(s)
Bacteriocinas , Corynebacterium glutamicum , Pediocinas , Péptidos Antimicrobianos , Calcio , Corynebacterium glutamicum/genética , Isopropil Tiogalactósido , Bacteriocinas/genética , Iones , Concentración de Iones de Hidrógeno
4.
Appl Environ Microbiol ; 88(3): e0199221, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34851716

RESUMEN

Bacteriocins are ribosomally synthesized bacterial antimicrobial peptides that have a narrow spectrum of antibacterial activity against species closely related to the producers. Pediocin-like (or class IIa) bacteriocins (PLBs) exhibit antibacterial activity against several Gram-positive bacterial strains by forming pores in the cytoplasmic membrane of target cells with a specific receptor, the mannose phosphotransferase system (man-PTS). In this study, we report the cryo-electron microscopy structures of man-PTS from Listeria monocytogenes alone and its complex with pediocin PA-1, the first and most extensively studied representative PLB, at resolutions of 3.12 and 2.45 Å, respectively. The structures revealed that the binding of pediocin PA-1 opens the Core domain of man-PTS away from its Vmotif domain, creating a pore through the cytoplasmic membranes of target cells. During this process, the N-terminal ß-sheet region of pediocin PA-1 can specifically attach to the extracellular surface of the man-PTS Core domain, whereas the C-terminal half penetrates the membrane and cracks the man-PTS like a wedge. Thus, our findings shed light on a design of novel PLBs that can kill the target pathogenic bacteria. IMPORTANCE Listeria monocytogenes is a ubiquitous microorganism responsible for listeriosis, a rare but severe disease in humans, who become infected by ingesting contaminated food products (i.e., dairy, meat, fish, and vegetables): the disease has a fatality rate of 33%. Pediocin PA-1 is an important commercial additive used in food production to inhibit Listeria species. The mannose phosphotransferase system (man-PTS) is responsible for the sensitivity of Listeria monocytogenes to pediocin PA-1. In this study, we report the cryo-EM structures of man-PTS from Listeria monocytogenes alone and its complex with pediocin PA-1 at resolutions of 3.12 and 2.45 Å, respectively. Our results facilitate the understanding of the mode of action of class IIa bacteriocins as an alternative to antibiotics.


Asunto(s)
Bacteriocinas , Listeria monocytogenes , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato , Bacteriocinas/metabolismo , Microscopía por Crioelectrón , Humanos , Listeria monocytogenes/metabolismo , Manosa/metabolismo , Pediocinas/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo
5.
Arch Biochem Biophys ; 701: 108795, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33577840

RESUMEN

Ovarian cancer is the most deadly gynaecology related cancer due to its high metastasizing ability. Quercetin is the most abundant flavonoids received increased interest due to its anti-cancer properties. Although the anticancer property of quercetin is very well known, its anti-metastatic effect on metastatic ovarian cancer cells and their underlying molecular mechanism remains to be elucidated. Quercetin treatment at 50 µM and 75 µM concentration inhibit human metastatic ovarian cancer PA-1 cell survival and proliferation via inactivating PI3k/Akt, Ras/Raf pathways and EGFR expression. It also alters the expression of N-cadherin in PA-1 cells. Quercetin also decreases the secretion of gelatinase enzyme, proteolytic activity of MMP-2/-9, and both MMPs gene expression in metastatic ovarian cancer PA-1 cells. In addition to this quercetin inhibits the migration of PA-1 cells. Treatment of quercetin with PA-1 cells also downregulates the tight junctional molecules such as Claudin-4 and Claudin-11 while upregulates the expression of occludin. It is further validated by cell adhesion assay in which quercetin reduces the adhesion of PA-1 ovarian cancer cells. Results suggest that quercetin inhibits cell survival, proliferation, migration, and adhesion which plays crucial role in ovarian cancer metastasis. Hence, it could be a valuable therapeutic drug for the treatment and prevention of metastatic ovarian cancer.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Ováricas/metabolismo , Quercetina/farmacocinética , Transducción de Señal/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Metástasis de la Neoplasia , Proteínas de Neoplasias/biosíntesis , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología
6.
Pharmacol Res ; 168: 105592, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33813027

RESUMEN

Abnormal glycolytic metabolism contributes to angiogenic sprouting involved in atherogenesis. We investigated the potential anti-angiogenic properties of specific 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) inhibitors in endothelial cells (ECs). ECs were treated with PFKFB3 inhibitors (named PA-1 and PA-2) and their effects on metabolic and functional characteristics of ECs were investigated. The anti-glycolytic compound 3-(pyridinyl)- 1-(4-pyridinyl)- 2-propen-1-one (3PO) was used as reference compound. PFKFB3 expression and activity (IC50 about 3-21 nM) was inhibited upon treatment with both compounds. Glucose uptake and lactate export were measured using commercial assays and showed a partial reduction up to 40%. PFKFB3 inhibition increased intracellular lactate accumulation, and reduced expression of monocarboxylate transporters-1 (MCT1) and MCT4. Furthermore, endothelial cell migration and proliferation assays demonstrated significant reduction upon treatment with both compounds. Matrix- metalloproteinase (MMP) activity, measured by gelatin zymography, and expression was significantly reduced (up to 25%). In addition, PA compounds downregulated the expression of VCAM-1, VE-cadherin, VEGFa, VEGFR2, TGF-ß, and IL-1ß, in inflamed ECs. Finally, PA-1 and PA-2 treatment impaired the formation of angiogenic sprouts measured by both morphogenesis and spheroid-based angiogenesis assays. Our data demonstrate that the anti-glycolytic PA compounds may affect several steps involved in angiogenesis. Targeting the key glycolytic enzyme PFKFB3 might represent an attractive therapeutic strategy to improve the efficacy of cancer treatments, or to be applied in other pathologies where angiogenesis is a detrimental factor.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Fosfofructoquinasa-2/antagonistas & inhibidores , Células Cultivadas , Humanos , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/fisiología , Proteínas Musculares/fisiología , NAD/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Simportadores/fisiología
7.
Food Microbiol ; 86: 103315, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31703881

RESUMEN

Non-thermal food processing and replacement of chemical additives by natural antimicrobials are promising trends in the food industry. The objective of the present work was to evaluate the effect of a process which combines mild high hydrostatic pressure - HHP (200 and 300 MPa, 5 min, 10 °C), phage Listex™ P100 and the bacteriocin pediocin PA-1 as a new non-thermal process for destruction of Listeria monocytogenes (104 CFU mL-1 or 107 CFU mL-1) in milk. For inoculum levels of 104 CFU mL-1, HHP combined with phage P100 eliminated L. monocytogenes immediately after pressurization. When L. monocytogenes was inoculated at levels of 107 CFU mL-1, a synergistic effect between phage P100, pediocin PA-1 and HHP (300 MPa) on the inactivation of L. monocytogenes was observed during storage of milk at 4 °C. For non-pressure treated samples inoculated with phage or pediocin or both, L. monocytogenes counts decreased immediately after biocontrol application, but regrowth was observed in a few samples during storage. Phage particles were stable during refrigerated storage for seven days while pediocin PA-1 remained stable only during three days. Further studies will have to be performed to validate the findings of this work in specific applications (e.g. production of raw milk cheese).


Asunto(s)
Bacteriófagos/fisiología , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/virología , Leche/microbiología , Pediocinas/farmacología , Animales , Bovinos , Recuento de Colonia Microbiana , Conservación de Alimentos/instrumentación , Presión Hidrostática , Listeria monocytogenes/química , Listeria monocytogenes/crecimiento & desarrollo
8.
BMC Complement Altern Med ; 19(1): 273, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31638975

RESUMEN

BACKGROUND: Curcumin is known for its multitude of medicinal properties, including anti-cancer and migrastatic activity. Efforts to overcome poor bioavailability, stability, and side effects associated with the higher dose of curcumin has led to the development of newer derivatives of curcumin. Thus, the focus of this study is to screen novel curcumin derivatives, namely ST03 and ST08, which have not been reported before, for their cytotoxicity and migrastatic property on cancer cells. METHODS: Anti-cancer activity of ST03 and ST08 was carried out using standard cytotoxicity assays viz., LDH, MTT, and Trypan blue on both solid and liquid cancer types. Flow cytometric assays and western blotting was used to investigate the cell death mechanisms. Transwell migration assay was carried out to check for migrastatic properties of the compounds. RESULTS: Both the compounds, ST03 and ST08, showed ~ 100 fold higher potency on liquid and solid tumour cell lines compared to its parent compound curcumin. They induced cytotoxicity by activating the intrinsic pathway of apoptosis in the breast (MDA-MB-231) and ovarian cancer cell lines (PA-1) bearing metastatic and stem cell properties, respectively. Moreover, ST08 also showed inhibition on breast cancer cell migration by inhibiting MMP1 (matrix metalloproteinase 1). CONCLUSION: Both ST03 and ST08 exhibit anti-cancer activity at nanomolar concentration. They induce cell death by activating the intrinsic pathway of apoptosis. Also, they inhibit migration of the cancer cells by inhibiting MMP1 in breast cancer cells.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/fisiopatología , Movimiento Celular/efectos de los fármacos , Curcumina/química , Curcumina/farmacología , Neoplasias Ováricas/fisiopatología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Metaloproteinasa 1 de la Matriz/metabolismo , Estructura Molecular , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo
9.
J Biol Chem ; 289(23): 16399-408, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24795045

RESUMEN

The vacuolar ATPase (V-ATPase) is a 1MDa transmembrane proton pump that operates via a rotary mechanism fuelled by ATP. Essential for eukaryotic cell homeostasis, it plays central roles in bone remodeling and tumor invasiveness, making it a key therapeutic target. Its importance in arthropod physiology also makes it a promising pesticide target. The major challenge in designing lead compounds against the V-ATPase is its ubiquitous nature, such that any therapeutic must be capable of targeting particular isoforms. Here, we have characterized the binding site on the V-ATPase of pea albumin 1b (PA1b), a small cystine knot protein that shows exquisitely selective inhibition of insect V-ATPases. Electron microscopy shows that PA1b binding occurs across a range of equivalent sites on the c ring of the membrane domain. In the presence of Mg·ATP, PA1b localizes to a single site, distant from subunit a, which is predicted to be the interface for other inhibitors. Photoaffinity labeling studies show radiolabeling of subunits c and e. In addition, weevil resistance to PA1b is correlated with bafilomycin resistance, caused by mutation of subunit c. The data indicate a binding site to which both subunits c and e contribute and inhibition that involves locking the c ring rotor to a static subunit e and not subunit a. This has implications for understanding the V-ATPase mechanism and that of inhibitors with therapeutic or pesticidal potential. It also provides the first evidence for the position of subunit e within the complex.


Asunto(s)
Albúminas/metabolismo , Insecticidas/metabolismo , Pisum sativum/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Albúminas/antagonistas & inhibidores , Secuencia de Bases , Benzofenonas/metabolismo , Sitios de Unión , Biotina/metabolismo , Cartilla de ADN , Insecticidas/química , Microscopía Electrónica , Etiquetas de Fotoafinidad , Unión Proteica , ATPasas de Translocación de Protón Vacuolares/química
10.
Lett Appl Microbiol ; 58(4): 356-61, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24261867

RESUMEN

UNLABELLED: The significance of positively charged residues for the target cell binding of pediocin PA-1 bacteriocins was studied by site-directed mutagenesis. Most of the charged residues are located in the N-terminal half of the peptide, which is thought to mediate the initial binding of these bacteriocins to their target cells through electrostatic interactions. Mutated peptides in which the positively charged residues were substituted or increased in number were constructed, and some of these peptides exhibited a twofold increase in the bacteriostatic activity. The greatest enhancement was achieved by introduced the positive charges at position 13, their results show the benefits of introducing an additional cationic residue within this patch in the middle of the N-terminal half of pediocin PA-1 bacteriocins. Thus, the presence of additional cationic residues in the N-terminal half influenced the electrostatic binding of this bacteriocin to its target cells and increased the potency of the peptide on the potency of Micrococcus luteus and Staphylococcus aureus. SIGNIFICANCE AND IMPACT OF THE STUDY: No previous work has systematically examined the N-terminal cationic residues of the pediocin PA-1 for their functional importance or redundancy. In this study, we examined the structure-function relationships of pediocin PA-1 by site-directed mutagenesis. Mutated peptides in which the positively charged residues were substituted and increased in number exhibited a twofold increase in the bacteriostatic activity. This study demonstrated the importance of the cationic patch in the N-terminal half of pediocin PA-1. The cationic residues influenced the electrostatic binding of the bacteriocin to the target cells and had a greater effect on the potency of the peptide towards Micrococcus luteus and Staphylococcus aureus.


Asunto(s)
Antibacterianos/química , Bacteriocinas/química , Secuencia de Aminoácidos , Antibacterianos/farmacología , Bacteriocinas/genética , Bacteriocinas/farmacología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pediocinas , Alineación de Secuencia
11.
J Food Sci Technol ; 51(11): 3325-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26396327

RESUMEN

The lactic acid bacteria (LAB) are found to produce bacteriocins with enhanced nutritive properties in the fermented foods. In the present study, the ability of LAB cultures (Pediococcus acidilactici NCIM 5424, Enterococcus faecium NCIM 5423 and Lactobacillus plantarum Acr2) to produce pediocin PA-1 like bacteriocin was evaluated during soymilk fermentation. The isolates E. faecium NCIM 5423 and Lb. plantarum Acr2 were able to produce bacteriocin as well as ferment soymilk within 6 h of incubation. Upon plating the cultures E. faecium NCIM 5423 and Lb. plantarum Acr2 in soymilk were found to be viable even after 15 days of storage at 4 °C. No significant variation was observed in the viable counts of E. faecium NCIM 5423 and Lb. plantarum Acr2 (P>0.05). The effect of crude bacteriocin on Listeria cells was evidenced through scanning electron microscope (SEM) photographs wherein cell membrane damage was observed. On co-cultivation of E. faecium NCIM 5423 and Lb. plantarum Acr2 individually with Listeria monocytogenes ScottA a decrease in the Listeria count was observed within 24 h of incubation. However, during co-cultivation of ScottA with P. acidilactici NCIM 5424, no significant difference was observed in the viable counts (P>0.05). The pH, titratable acidity, pediocin activity, anti-oxidant property and sensory attributes for E. faecium NCIM 5423 were studied. It was observed that E. faecium NCIM 5423 fermented soymilk had an acceptable sensory score during storage period. Hence, such culture can be an ideal starter for development of functional foods with longer shelf life.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38696094

RESUMEN

In this study, Pediococcus pentosaceus C-2-1 and C23221 contained genes encoding penocin and pediocin PA-1, mined by antiSMASH. The penocin structural gene pedA from Pediococcus pentosaceus C-2-1 was successfully expressed in Escherichia coli BL21. The presence of a 6.5 kDa recombinant penocin was confirmed by Tricine-SDS-PAGE, and the specific activity increased by 1.54-fold. The bacteriocins produced by Pediococcus pentosaceus C23221 were purified using acetic ether extraction, Sepharose Fast Flow, Sephadex G-25 gel chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC); the amino acid sequence of this bacteriocin was identical to pediocin PA-1 by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), which confirmed the expression of pediocin PA-1 gene; and the specific activity increased by 24.39-fold. The heterologous expression and purification of bacteriocins have proved the expression of pediocin-like produced by Pediococcus pentosaceus. This provides a theoretical basis for the subsequent development and application of pediocin-like.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38424320

RESUMEN

Pediocin and analogous bacteriocins, valued for thermal stability, serve as versatile antimicrobials in the food sector. Improving their resilience at high temperatures and deriving derivatives not only benefit food production but also offer broad-spectrum antimicrobial potential in pharmaceuticals, spanning treatments for peptic ulcers, women's health, and novel anticancer agents. The study aims to create mutant peptides capable of establishing a third disulfide bond or enhanced through cysteine substitutions. This involves introducing additional Cys residues into the inherent structure of pediocin PA-1 to facilitate disulfide bond formation. Five mutants (Mut 1-5) were systematically generated with double Cys substitutions and assessed for thermal stability through MD simulations across temperatures (298-394 K). The most robust mutants (Mut 1, Mut 4-5) underwent extended analysis via MD simulations, comparing their structural stability, secondary structure, and surface accessibility to the reference Pediocin PA-1 molecule. This comprehensive assessment aims to understand how Cys substitutions influence disulfide bonds and the overall thermal stability of the mutant peptides. In silico analysis indicated that Mut 1 and Mut 5, along with the reference structure, lose their helical structure and one natural disulfide bond at high temperatures, and may impacting antimicrobial activity. Conversely, Mut 4 retained its helical structure and exhibited thermal stability similar to Pediocin PA-1. Pending further experimental validation, this study implies Mut 4 may have high stability and exceptional resistance to high temperatures, potentially serving as an effective antimicrobial alternative.

14.
J Basic Microbiol ; 53(7): 555-61, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22915312

RESUMEN

To evaluate the presence of mobile genetic elements (MGEs) in intergeneric and interspecific pediocin producing lactic acid bacteria (LAB) the flanking regions of the pediocin PA-1/AcH (pediocin PA-1) operon was characterized. In Enterococcus faecium Acr4 and Lactobacillus plantarum Acr2 a variation in the amplicon size in the downstream region of the operon was identified, suggesting a deletion in this region. Beyond that, in pediocin PA-1 encoding plasmids MGEs such as ISLpl1 and mobilization regions were detected by Southern hybridization analysis. Phylogenetic analyses of the E. faecium Acr4 ISLpl1 gene sequence suggested the gene transfer from lactobacilli in the environment. The tyrosine recombinase detected in pediocin plasmids of Pediococcus acidilactici H and K7 indicate a possible transfer of the entire operon among LAB. Since these elements are known to be associated with transfer of genes linked to the bacteriocin production, antibiotic resistance, and sugar utilization, we suggest similar mechanism for natural spread of pediocin PA-1 operon among different bacterial species.


Asunto(s)
Bacteriocinas/genética , Secuencias Repetitivas Esparcidas , Ácido Láctico/biosíntesis , Pediococcus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriocinas/metabolismo , Southern Blotting , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Genes Bacterianos , Operón , Pediocinas , Pediococcus/metabolismo , Filogenia , Plásmidos
15.
Artículo en Inglés | MEDLINE | ID: mdl-37818574

RESUMEN

BACKGROUND: Cissus quadrangularis is a valuable natural source of traditional medicines. OBJECTIVE: An in vitro investigation was performed to determine whether the ethanolic extract from the whole portions of C. quadrangularis had anticancer and free radical scavenging activities against ovarian cancer cells-PA1. C. quadrangularis is a herb collected from rural areas in Andhra Pradesh, India. MATERIALS AND METHODS: C. quadrangularis was air-dried and crushed, and the powder and ethanol (0.5 kg) were used in a Soxhlet device for continuous extraction. Phytochemical analysis of the extracts was performed using a standard procedure. The antioxidant activity of the ethanolic extract of C. quadrangularis was evaluated using DPPH. An in vitro anticancer study used an ethanolic extract against the PA1 cell line. Apoptosis of ovarian cancer cells was studied using DAPI and carboxy-H2DCFDA staining. From LC-MS analysis, quercetin-3-O-alpha-Lrhamnopyranoside and erucic acid were docked with the threonine tyrosine kinase (TTK) enzyme using auto docking. RESULTS: The ethanolic extract of C. quadrangularis demonstrated significant dose-dependent antioxidant activity compared to ascorbic acid. The ethanolic extract of C. quadrangularis was found to have high anticancer activity against ovarian cancer cell lines (PA1), with an IC50 value of 482.057 ± 113.857 µg/ml. DAPI and carboxy-H2DCFDA staining confirmed that C. quadrangularis ethanolic extract induced apoptosis in ovarian cancer cells (p < .001). Molecular docking studies helped identify the binding affinities between the protein and ligand complexes, such as Quercetin-3-O-alpha-Lrhamnopyranoside binding sites of target proteins 5N7V (MET602, GLN672) and erucic acid 5N7V (GLY354). Quercetin-3-O-alpha-L-rhamnopyranoside was reported to bind with 5N7V by hydrogen bonding at MET602 and GLN672 amino acids with 2.02, 2.99 Å bonding length distance and binding affinity of -7.9 kcal/mol. Erucic acid was reported to bind with 5N7V by hydrogen bonding at GLY354 amino acid with 3.18, 2.93 Å bonding length (Å) distance and binding affinity of -4.3 kcal/mol. The current analysis showed that the ethanolic extracts of C. quadrangularis L. exhibited antioxidant and anticancer properties against ovarian PA1 cells. CONCLUSION: The experimental results confirmed that C. quadrangularis L. is a promising, safe chemotherapeutic plant for ovarian cancer PA1 cells. The docking results demonstrated that Quercetin-3-O-alpha-L-rhamnopyranoside strongly binds threonine tyrosine kinase at the MET602 and GLN672 positions. This study showed that the C. quadrangularis ethanolic extract has Quercetin-3-O-alpha-L-rhamnopyranoside, which can be used as an anticancer agent.

16.
Biology (Basel) ; 12(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37759611

RESUMEN

Traditional foods are increasingly valued by consumers, whose attention and purchase willingness are highly influenced by other claims such as 'natural', 'sustainable', and 'clean label'. The purpose of the present study was to evaluate the impact of a novel non-thermal food processing method (i.e., HPP-assisted biocontrol combining mild high hydrostatic pressure, listeriophage Listex, and pediocin PA-1 producing Pediococcus acidilactici) on the succession of bacterial communities and quality of a fermented sausage model. A comparative analysis of instrumental color, texture, and lipid peroxidation revealed no significant differences (p > 0.05) in these quality parameters between non- and minimally processed fermented sausages throughout 60-day refrigerated storage (4 °C). The microbiota dynamics of biotreated and untreated fermented sausages were assessed by 16S rRNA next-generation sequencing, and the alpha and beta diversity analyses revealed no dissimilarity in the structure and composition of the bacterial communities over the analyzed period. The innovative multi-hurdle technology proposed herein holds valuable potential for the manufacture of traditional fermented sausages while preserving their unique intrinsic characteristics.

17.
J Biomol Struct Dyn ; 41(20): 10774-10784, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36591650

RESUMEN

The changes in the SARS-CoV-2 genome have resulted in the emergence of new variants. Some of the variants have been classified as variants of concern (VOC). These strains have higher transmission rate and improved fitness. One of the prevalent were the Omicron variant. Unlike previous VOCs, the Omicron possesses fifteen mutations on the spike protein's receptor binding domain (RBD). The modifications of spike protein's key amino acid residues facilitate the virus' binding capability against ACE2, resulting in an increase in the infectiousness of Omicron variant. Consequently, investigating the prevention and treatment of the Omicron variant is crucial. In the present study, we aim to explore the binding capacity of twenty-two bacteriocins derived from Lactic Acid Bacteria (LAB) against the Omicron variant by using protein-peptidedocking and molecular dynamics (MD) simulations. The Omicron variant RBD was prepared by introducing fifteen mutations using PyMol. The protein-peptide complexes were obtained using HADDOCK v2.4 docking webserver. Top scoring complexes obtained from HADDOCK webserver were retrieved and submitted to the PRODIGY server for the prediction of binding energies. RBD-bacteriocin complexes were subjected to MD simulations. We discovered promising peptide-based therapeutic candidates for the inhibition of Omicron variant for example Salivaricin B, Pediocin PA 1, Plantaricin W, Lactococcin mmfii and Enterocin A. The lead bacteriocins, except Enterocin A, are biosynthesized by food-grade lactic acid bacteria. Our study puts forth a preliminary information regarding potential utilization of food-grade LAB-derived bacteriocins, particularly Salivaricin B and Pediocin PA 1, for Covid-19 treatment and prophylaxis.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Bacteriocinas , COVID-19 , Humanos , Pediocinas , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Glicoproteína de la Espiga del Coronavirus , Bacteriocinas/farmacología , Péptidos
18.
Cell Biosci ; 12(1): 41, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379345

RESUMEN

BACKGROUND: The blood-testis barrier (BTB) is essential to the microenvironment of spermatogenesis, and Sertoli cells provide the cellular basis for BTB construction. Numerous nuclear transcription factors have been identified to be vital for the proper functioning of Sertoli cells. PA1 has been reported to play important roles during diverse biological processes, yet its potential function in male reproduction is still unknown. RESULTS: Here, we show that PA1 was highly expressed in human and mouse testis and predominantly localized in the nuclei of Sertoli cells. Sertoli cell-specific Pa1 knockout resulted in an azoospermia-like phenotype in mice. The knockout of this gene led to multiple defects in spermatogenesis, such as the disorganization of the cytoskeleton during basal and apical ectoplasmic specialization and the disruption of the BTB. Further transcriptomic analysis, together with Cut-Tag results of PA1 in Sertoli cells, revealed that PA1 could affect the expression of a subset of genes that are essential for the normal function of Sertoli cells, including those genes associated with actin organization and cellular junctions such as Connexin43 (Cx43). We further demonstrated that the expression of Cx43 depended on the interaction between JUN, one of the AP-1 complex transcription factors, and PA1. CONCLUSION: Overall, our findings reveal that PA1 is essential for the maintenance of BTB integrity in Sertoli cells and regulates BTB construction-related gene expression via transcription factors. Thus, this newly discovered mechanism in Sertoli cells provides a potential diagnostic or even therapeutic target for some individuals with azoospermia.

19.
Front Genet ; 13: 889109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754824

RESUMEN

PTIP-associated protein 1 (PA1) is a unique component of MLL3/4 complexes, which are important mammalian histone 3 lysine 4 (H3K4) methyltransferases. PA1 has generated research interest due to its involvement in many essential biological processes such as adipogenesis, B cell class switch recombination, spermatogenesis, and embryonic development. In addition to the classical role of PA1 in H3K4 methylation, non-classical functions have also been discovered in recent studies. In this review, we systematically summarize the expression pattern of PA1 protein in humans and sort the specific molecular mechanism of PA1 in various biological processes. Meanwhile, we provide some new perspectives on the role of PA1 for future studies. A comprehensive understanding of the biological functions and molecular mechanisms of PA1 will facilitate the investigation of its complicated roles in transcriptional regulation.

20.
J Biomol Struct Dyn ; 40(18): 8569-8586, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33955334

RESUMEN

The synthesized 1,5 diarylpenta-1,4-dien-3-one derivatives (compounds 1-6) as synthetic curcumin analogues were tested for their potential anticancer activity against human ovarian and lung adenocarcinoma cells. The absorption, distribution, metabolism, excretion, and toxicity (ADMET/pharmacokinetic) parameters of all the compounds were predicted by admetSAR software. The pharmacokinetics, pharmacodynamics and bioactivity scores properties based on Lipinski rule and Ghose filter, calculated with the help of Molinspiration and ChemDraw. Molecular docking evaluation of all the compounds was also performed by using AutoDock Vina and iGEMDOCK against three most common human anticancer targets; epidermal growth factor receptor (EGFR), heat shock protein (Hsp 90-α), and vascular endothelial growth factor receptor-2 (VEGFR2). The obtained results were compared with the reference compound 7 and drugs 8-10 (7: GO-035; 8: Quinazolin; 9: Naquotinib and 10: Ribofuranuronamide). Finding indicates, all the compounds were potentially interacting with VEGFR2 through the average -9.1 binding energy (BE) with closer contact <5.0 Å deep in the active site of the ligand-receptor complex. All the compounds showed excellent oral bioavailability, bioactivity score, and none of the compounds are virtually found to be toxic. Compounds 1-6 were also successfully characterized by the physical properties as well as spectroscopic techniques (FT-IR and 1H-NMR). In vitro anti-proliferative activity was tested via MTT method against human ovarian carcinoma (PA-1) and human lung adenocarcinoma (A549) cells and further screened for apoptotic parameters such as nuclear fragmentation and ROS generation. Compound 4 exhibits good dose-dependent anti-proliferative activity (IC50 73 and 79.7 µM) against human ovarian carcinoma and human lung adenocarcinoma, respectively.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Adenocarcinoma del Pulmón , Alcadienos/farmacología , Antineoplásicos , Carcinoma , Curcumina , Neoplasias Pulmonares , Neoplasias Ováricas , Alcadienos/química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Curcumina/química , Curcumina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/metabolismo , Femenino , Proteínas de Choque Térmico/metabolismo , Humanos , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Estructura Molecular , Especies Reactivas de Oxígeno , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA