Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.512
Filtrar
Más filtros

Intervalo de año de publicación
1.
Exp Cell Res ; 435(1): 113926, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228225

RESUMEN

The present research aims to evaluate the efficacy of Silibinin-loaded mesoporous silica nanoparticles (Sil@MSNs) immobilized into polylactic-co-glycolic acid/Collagen (PLGA/Col) nanofibers on the in vitro proliferation of adipose-derived stem cells (ASCs) and cellular senescence. Here, the fabricated electrospun PLGA/Col composite scaffolds were coated with Sil@MSNs and their physicochemical properties were examined by FTIR, FE-SEM, and TGA. The growth, viability and proliferation of ASCs were investigated using various biological assays including PicoGreen, MTT, and RT-PCR after 21 days. The proliferation and adhesion of ASCs were supported by the biological and mechanical characteristics of the Sil@MSNs PLGA/Col composite scaffolds, according to FE- SEM. PicoGreen and cytotoxicity analysis showed an increase in the rate of proliferation and metabolic activity of hADSCs after 14 and 21 days, confirming the initial and controlled release of Sil from nanofibers. Gene expression analysis further confirmed the increased expression of stemness markers as well as hTERT and telomerase in ASCs seeded on Sil@MSNs PLGA/Col nanofibers compared to the control group. Ultimately, the findings of the present study introduced Sil@MSNs PLGA/Col composite scaffolds as an efficient platform for long-term proliferation of ASCs in tissue engineering.


Asunto(s)
Nanofibras , Andamios del Tejido , Adhesión Celular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Silibina/farmacología , Andamios del Tejido/química , Nanofibras/química , Colágeno/farmacología , Colágeno/química , Ingeniería de Tejidos , Células Madre , Proliferación Celular , Células Cultivadas , Compuestos Orgánicos
2.
Proc Natl Acad Sci U S A ; 119(43): e2205417119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256820

RESUMEN

Antigen-specific therapies hold promise for treating autoimmune diseases such as multiple sclerosis while avoiding the deleterious side effects of systemic immune suppression due to delivering the disease-specific antigen as part of the treatment. In this study, an antigen-specific dual-sized microparticle (dMP) treatment reversed hind limb paralysis when administered in mice with advanced experimental autoimmune encephalomyelitis (EAE). Treatment reduced central nervous system (CNS) immune cell infiltration, demyelination, and inflammatory cytokine levels. Mechanistic insights using single-cell RNA sequencing showed that treatment impacted the MHC II antigen presentation pathway in dendritic cells, macrophages, B cells, and microglia, not only in the draining lymph nodes but also strikingly in the spinal cord. CD74 and cathepsin S were among the common genes down-regulated in most antigen presenting cell (APC) clusters, with B cells also having numerous MHC II genes reduced. Efficacy of the treatment diminished when B cells were absent, suggesting their impact in this therapy, in concert with other immune populations. Activation and inflammation were reduced in both APCs and T cells. This promising antigen-specific therapeutic approach advantageously engaged essential components of both innate and adaptive autoimmune responses and capably reversed paralysis in advanced EAE without the use of a broad immunosuppressant.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Antígenos , Citocinas , Ratones Endogámicos C57BL , Parálisis , Catepsinas , Inmunosupresores/uso terapéutico
3.
Nano Lett ; 24(3): 1024-1033, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38207237

RESUMEN

Nanomedicine has brought significant advancements to healthcare by utilizing nanotechnology in medicine. Despite much promise, the further development of nanocarriers for clinical use has been hindered by a lack of understanding and visualization of nano-bio interactions. Conventional imaging methods have limitations in resolution, sensitivity, and specificity. This study introduces a label-free optical approach using stimulated Raman scattering (SRS) microscopy to image poly(lactic-co-glycolic acid) (PLGA) nanocarriers, the most widely used polymeric nanocarrier for delivery therapeutic agents, with single-particle sensitivity and quantification capabilities. A unique Raman peak was identified for PLGA ester, enabling generalized bio-orthogonal bond imaging. We demonstrated quantitative SRS imaging of PLGA nanocarriers across different biological systems from cells to animal tissues. This label-free imaging method provides a powerful tool for studying this prevalent nanocarrier and quantitatively visualizing their distribution, interaction, and clearance in vivo.


Asunto(s)
Microscopía , Nanopartículas , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros/química , Nanopartículas/química
4.
Nano Lett ; 24(28): 8752-8762, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38953881

RESUMEN

Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Microesferas , Terapia Fototérmica , Neumonía Estafilocócica/terapia , Terapia de Fagos/métodos , Verde de Indocianina/química , Verde de Indocianina/farmacología , Verde de Indocianina/uso terapéutico , Verde de Indocianina/administración & dosificación , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Administración por Inhalación , Humanos , Bacteriófagos/química
5.
Nano Lett ; 24(6): 2011-2017, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38306708

RESUMEN

Polymeric nanoparticles are a highly promising drug delivery formulation. However, a lack of understanding of the molecular mechanisms that underlie their drug solubilization and controlled release capabilities has hindered the efficient clinical translation of such technologies. Polyethylene glycol-poly(lactic-co-glycolic) acid (PEG-PLGA) nanoparticles have been widely studied as cancer drug delivery vehicles. In this letter, we use unbiased coarse-grained molecular dynamics simulations to model the self-assembly of a PEG-PLGA nanoparticle and its solubulization of the anticancer peptide, EEK, with good agreement with previously reported experimental structural data. We applied unsupervised machine learning techniques to quantify the conformations that polymers adopt at various locations within the nanoparticle. We find that the local microenvironments formed by the various polymer conformations promote preferential EEK solubilization within specific regions of the NP. This demonstrates that these microenvironments are key in controlling drug storage locations within nanoparticles, supporting the rational design of nanoparticles for therapeutic applications.


Asunto(s)
Nanopartículas , Poliésteres , Polímeros , Polímeros/química , Ácido Láctico/química , Polietilenglicoles/química , Sistemas de Liberación de Medicamentos/métodos , Péptidos , Nanopartículas/química , Portadores de Fármacos/química
6.
BMC Biotechnol ; 24(1): 52, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095760

RESUMEN

BACKGROUND: Colorectal cancer is a common disease worldwide with non-specific symptoms such as blood in the stool, bowel movements, weight loss and fatigue. Chemotherapy drugs can cause side effects such as nausea, vomiting and a weakened immune system. The use of antioxidants such as hesperidin could reduce the side effects, but its low bioavailability is a major problem. In this research, we aimed to explore the drug delivery and efficiency of this antioxidant on the HCT116 colorectal cancer cell line by loading hesperidin into PLGA nanoparticles. MATERIALS AND METHODS: Hesperidin loaded PLGA nanoparticles were produced by single emulsion evaporation method. The physicochemical properties of the synthesized hesperidin-loaded nanoparticles were determined using SEM, AFM, FT-IR, DLS and UV-Vis. Subsequently, the effect of the PLGA loaded hesperidin nanoparticles on the HCT116 cell line after 48 h was investigated by MTT assay at three different concentrations of the nanoparticles. RESULT: The study showed that 90% of hesperidin were loaded in PLGA nanoparticles by UV-Vis spectrophotometry and FT-IR spectrum. The nanoparticles were found to be spherical and uniform with a hydrodynamic diameter of 76.2 nm in water. The release rate of the drug was about 93% after 144 h. The lowest percentage of cell viability of cancer cells was observed at a concentration of 10 µg/ml of PLGA nanoparticles loaded with hesperidin. CONCLUSION: The results indicate that PLGA nanoparticles loaded with hesperidin effectively reduce the survival rate of HCT116 colorectal cancer cells. However, further studies are needed to determine the appropriate therapeutic dosage and to conduct animal and clinical studies.


Asunto(s)
Neoplasias Colorrectales , Hesperidina , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Humanos , Hesperidina/química , Hesperidina/farmacología , Hesperidina/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Neoplasias Colorrectales/tratamiento farmacológico , Células HCT116 , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Ácido Láctico/química , Ácido Poliglicólico/química , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula , Portadores de Fármacos/química , Espectroscopía Infrarroja por Transformada de Fourier , Antineoplásicos/farmacología , Antineoplásicos/química , Sistema de Administración de Fármacos con Nanopartículas/química
7.
Small ; : e2405927, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375985

RESUMEN

Methotrexate is successfully used as the gold standard for managing moderate-to-severe psoriasis. However, the low bioavailability and short half-life of the oral pills and the invasiveness of the parenteral injections make these suboptimal therapeutic options. Microneedles, bridging the advantages of the former forms, are successfully used to deliver methotrexate for different therapeutic purposes. However, the utilized dissolving microneedles demand frequent administration, potentially compromising patients' compliance. Additionally, the high toxicity of methotrexate prompts a quest for safer alternatives. Phloretin, a natural compound with confirmed antipsoriatic potential, emerges as a promising candidate. Herein, microneedle patches with separable, slow-degrading tips are developed for the sustained delivery of methotrexate and phloretin, as a comprehensive solution for long-term psoriasis management. Both compounds are individually loaded at varying doses and display sustained-release profiles. The developed microneedle patches demonstrate high mechanical strength, favorable drug delivery efficiency, and remarkable antipsoriatic potential both in vitro in keratinocytes and in vivo in a psoriasis mouse model. Comparative analysis with two subcutaneous injections reveals a similar antipsoriatic efficacy with a single patch of either compound, with prominent phloretin safety. Therefore, the developed patches present a superior alternative to methotrexate's current marketed forms and provide a viable alternative (phloretin) with comparable antipsoriatic efficacy and higher safety.

8.
Small ; 20(11): e2306902, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37932003

RESUMEN

The therapeutic potential of small interfering RNAs (siRNAs) is limited by their poor stability and low cellular uptake. When formulated as spherical nucleic acids (SNAs), siRNAs are resistant to nuclease degradation and enter cells without transfection agents with enhanced activity compared to their linear counterparts; however, the gene silencing activity of SNAs is limited by endosomal entrapment, a problem that impacts many siRNA-based nanoparticle constructs. To increase cytosolic delivery, SNAs are formulated using calcium chloride (CaCl2 ) instead of the conventionally used sodium chloride (NaCl). The divalent calcium (Ca2+ ) ions remain associated with the multivalent SNA and have a higher affinity for SNAs compared to their linear counterparts. Importantly, confocal microscopy studies show a 22% decrease in the accumulation of CaCl2 -salted SNAs within the late endosomes compared to NaCl-salted SNAs, indicating increased cytosolic delivery. Consistent with this finding, CaCl2 -salted SNAs comprised of siRNA and antisense DNA all exhibit enhanced gene silencing activity (up to 20-fold), compared to NaCl-salted SNAs regardless of sequence or cell line (U87-MG and SK-OV-3) studied. Moreover, CaCl2 -salted SNA-based forced intercalation probes show improved cytosolic mRNA detection.


Asunto(s)
Ácidos Nucleicos , Ácidos Nucleicos/genética , Cloruro de Calcio , Cloruro de Sodio , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Endosomas/metabolismo
9.
Small ; 20(23): e2310734, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38143290

RESUMEN

Achieving satisfactory bone tissue regeneration in osteoporotic patients with ordinary biomaterials is challenging because of the decreased bone mineral density and aberrant bone microenvironment. In addressing this issue, a biomimetic scaffold (PMEH/SP), incorporating 4-hexylresorcinol (4HR), and substance P (SP) into the poly(lactic-go-glycolic acid) (PLGA) scaffold with magnesium hydroxide (M) and extracellular matrix (E) is introduced, enabling the consecutive release of bioactive agents. 4HR and SP induced the phosphorylation of p38 MAPK and ERK in human umbilical vein endothelial cells (HUVECs), thereby upregulating VEGF expression level. The migration and tube-forming ability of endothelial cells can be promoted by the scaffold, which accelerates the formation and maturation of the bone. Moreover, 4HR played a crucial role in the inhibition of osteoclastogenesis by interrupting the IκB/NF-κB signaling pathway and exhibiting SP, thereby enhancing the migration and angiogenesis of HUVECs. Based on such a synergistic effect, osteoporosis can be suppressed, and bone regeneration can be achieved by inhibiting the RANKL pathway in vitro and in vivo, which is a commonly known mechanism of bone physiology. Therefore, the study presents a promising approach for developing a multifunctional regenerative material for sophisticated osteoporotic bone regeneration.


Asunto(s)
Regeneración Ósea , Células Endoteliales de la Vena Umbilical Humana , Osteoporosis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Andamios del Tejido , Regeneración Ósea/efectos de los fármacos , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Andamios del Tejido/química , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Osteogénesis/efectos de los fármacos
10.
Small ; : e2400977, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370652

RESUMEN

Trastuzumab emtansine (T-DM1), an antibody-drug conjugate, revolutionizes breast cancer therapy by specifically delivering DM1 to human epidermal growth factor receptor 2 (HER2) overexpressing tumor cells, effectively inhibiting cell division and proliferation. While T-DM1 demonstrates superior efficacy and tolerability, T-DM1-induced thrombocytopenia remains a significant adverse event leading to treatment discontinuation. To address this issue, the study investigates the feasibility of using poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a delivery vehicle to conjugate T-DM1, aiming to alleviate T-DM1-induced thrombocytopenia. The T-DM1-conjugated PLGA nanoparticles (NPs-T-DM1) reduce binding to megakaryocytes without compromising the targeting ability for HER2. Administration of NPs-T-DM1 not only significantly inhibits tumor growth but also reduces damage to megakaryocytes, inhibits T-DM1-induced thrombocytopenia, and remarkably improves the safety of antibody-conjugated drugs. This work presents a promising strategy to enhance the safety and efficacy of T-DM1 in antitumor therapy, offering significant potential for advancing clinical application in HER2-positive breast cancer patients.

11.
BMC Neurosci ; 25(1): 16, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468222

RESUMEN

BACKGROUND: Myelin oligodendrocyte glycoprotein-associated disorders (MOGAD) is an autoimmune central nervous system disease. Antigen-specific immune tolerance using nanoparticles such as Polylactic-co-glycolic acid (PLGA) have recently been used as a new therapeutic tolerization approach for CNS autoimmune diseases. We examined whether MOG1-125 conjugated with PLGA could induce MOG-specific immune tolerance in an experimental autoimmune encephalitis (EAE) mouse model. EAE was induced in sixty C57BL/6 J wild-type mice using MOG1-125 peptide with complete Freund's Adjuvant. The mice were divided into 12 groups (n = 5 each) to test the ability of MOG1-125 conjugated PLGA intervention to mitigate the severity or improve the outcomes from EAE with and without rapamycin compared to antigen alone or PLGA alone. EAE score and serum MOG-IgG titers were compared among the interventions.Kindly check and confirm the processed Affiliation “4” is appropriate.I confirmed the Aff 4.Affiliation: Corresponding author information have been changed to present affiliation. Kindly check and confirm.I checked and confirmed the Corresponding author's information. RESULTS: Mice with EAE that were injected intraperitoneally with MOG1-125 conjugated PLGA + rapamycin complex showed dose-dependent mitigation of EAE score. Intraperitoneal and intravenous administration resulted in similar clinical outcomes, whereas 80% of mice treated with subcutaneous injection had a recurrence of clinical score worsening after approximately 1 week. Although there was no significant difference in EAE scores between unconjugated-PLGA and MOG-conjugated PLGA, serum MOG-IgG tended to decrease in the MOG-conjugated PLGA group compared to controls. CONCLUSION: Intraperitoneal administration of PLGA resulted in dose-dependent and longer-lasting immune tolerance than subcutaneous administration. The induction of immune tolerance using PLGA may represent a future therapeutic option for patients with MOGAD.


Asunto(s)
Encefalitis , Encefalomielitis Autoinmune Experimental , Enfermedad de Hashimoto , Poliésteres , Humanos , Ratones , Animales , Glicoproteína Mielina-Oligodendrócito/efectos adversos , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Ratones Endogámicos C57BL , Glicoles/efectos adversos , Sirolimus/farmacología , Inmunoglobulina G/efectos adversos
12.
Exp Eye Res ; 238: 109736, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036216

RESUMEN

The objective was to evaluate ocular changes based on sex in steroid-induced glaucoma models in rats comparing healthy controls, over 24 weeks follow-up. Eighty-nine Long-Evans rats (38 males and 51 females) with steroid-induced glaucoma were analysed. Two steroid-induced glaucoma models were generated by injecting poly-co-lactic-glycolic acid microspheres loaded with dexamethasone (MMDEX model) and dexamethasone-fibronectin (MMDEXAFIBRO model) into the ocular anterior chamber. Intraocular pressure was measured by rebound tonometer Tonolab®. Neuroretinal function was analysed using dark- and light-adapted electroretinography (Roland consult® RETIanimal ERG), and structure was analysed using optical coherence tomography (OCT Spectralis, Heidelberg® Engineering) using Retina Posterior Pole, Retinal Nerve Fibre Layer and Ganglion Cell Layer protocols over 24 weeks. Males showed statistically (p < 0.05) higher intraocular pressure measurements. In both sexes and models neuroretinal thickness tended to decrease over time. In the MMDEX model, males showed higher IOP values and greatest percentage thickness loss in the Ganglion Cell Layer (p = 0.015). Females receiving MMDEXAFIBRO experienced large fluctuations in thickness, a higher percentage loss (on average) in Retina Posterior Pole (p = 0.035), Retinal Nerve Fibre Layer and Ganglion Cell Layer than aged-matched males, and the highest thickness loss rate by mmHg. Although no difference was found by sex in dark- and light-adapted electroretinography, increased amplitude in photopic negative response was found in MMDEX males and MMDEXAFIBRO females at 12 weeks. Although both glaucoma models used dexamethasone, different intraocular pressure and neuroretinal changes were observed depending on sex and other influential cofactors (fibronectin). Both sex and the induced glaucoma model influenced neuroretinal degeneration.


Asunto(s)
Fibronectinas , Glaucoma , Masculino , Femenino , Ratas , Animales , Estudios de Seguimiento , Células Ganglionares de la Retina , Ratas Long-Evans , Presión Intraocular , Tomografía de Coherencia Óptica/métodos , Dexametasona/toxicidad
13.
Exp Eye Res ; 243: 109902, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641196

RESUMEN

Nitrogen mustard (NM) is a potent vesicating chemical warfare agent that is primarily absorbed through skin, inhalation, or ocular surface. Ocular exposure of NM can cause acute to chronic keratopathy which can eventually lead to blindness. There is a current lack of effective countermeasures against ocular exposure of NM despite their imperative need. Herein, we aim to explore the sustained effect of Dexamethasone sodium phosphate (DSP)-loaded polymeric nanoparticles (PLGA-DSP-NP) following a single subconjunctival injection in the management and prevention of corneal injury progression upon exposure to NM. DSP is an FDA approved corticosteroid with proven anti-inflammatory properties. We formulated PLGA-DSP-NP with zinc chelation ion bridging method using PLGA polymer, with particles of approximately 250 nm and a drug loading of 6.5 wt%. Under in vitro sink conditions, PLGA-DSP-NP exhibited a sustained drug release for two weeks. Notably, in NM injured cornea, a single subconjunctival (SCT) injection of PLGA-DSP-NP outperformed DSP eyedrops (0.1%), DSP solution, placebo NP, and saline, significantly mitigating corneal neovascularization, ulceration, and opacity for the two weeks study period. Through PLGA-DSP-NP injection, sustained DSP release hindered inflammatory cytokine recruitment, angiogenic factors, and endothelial cell proliferation in the cornea. This strategy presents a promising localized corticosteroid delivery system to effectively combat NM-induced corneal injury, offering insights into managing vesicant exposure.


Asunto(s)
Dexametasona , Mecloretamina , Nanopartículas , Dexametasona/análogos & derivados , Animales , Mecloretamina/toxicidad , Modelos Animales de Enfermedad , Lesiones de la Cornea/prevención & control , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/patología , Lesiones de la Cornea/tratamiento farmacológico , Glucocorticoides , Sustancias para la Guerra Química/toxicidad , Ratones , Quemaduras Químicas/prevención & control , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/prevención & control , Conejos , Córnea/efectos de los fármacos , Córnea/patología , Córnea/metabolismo
14.
Biotechnol Bioeng ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300684

RESUMEN

The development of bone implants through bioinspired immobilization of growth factors remains a key issue in the generation of biological interfaces, especially in enhancing osteodifferentiation ability. In this study, we developed a strategy for surface functionalization of poly(lactide-glycolide) (PLGA) and hydroxyapatite (HA) composite substrates through site-specific conjugation of bone morphogenetic protein 2 containing 3,4-hydroxyphenalyalanine (DOPA-BMP2) mediated by tyrosinase and sortase A (SrtA). Firstly, the growth factor BMP2-LPETG containing LPETG motif was successfully expressed in Escherichia coli through recombinant DNA technology. The excellent binding affinity of binding growth factor (DOPA-BMP2) was achieved by converting the tyrosine residue (Y) of YKYKY-GGG peptide into DOPA (X) by tyrosinase, which bound to the substrates. Then its GGG motif was specifically bound to the end of BMP2-LPETG mediated by SrtA. Therefore, the generated bioactive DOPA-BMP2/PLGA/HA substrates significantly promoted the osteogenic differentiation of MC3T3-E1 cells. Thanks to this microbial-assisted engineering approach, our work presents a facile and highly site-specific strategy to engineer biomimetic materials for orthopedics and dentistry by effectively delivering growth factors, peptides, and other biomacromolecules.

15.
Mol Pharm ; 21(3): 1424-1435, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38324797

RESUMEN

In this study, we investigated the mechanism of curcumin (CUR) release from poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) nanoparticles (NPs) by evaluating the temperature-dependent CUR release. NPs were prepared by the nanoprecipitation method using various PLGA/PLA polymers with different lactic:glycolic ratios (L:G ratios) and molecular weights. Increasing the polymer molecular weight resulted in a decrease in the particle size of NPs. The wet glass transition temperature (Tg) of PLGA/PLA NPs was lower than the intrinsic polymer Tg, which can be derived from the water absorption and nanosizing of the polymer. The reduction in Tg was more significant for the PLGA/PLA NPs with lower polymer L:G ratios and lower polymer molecular weight. The greater decrease of Tg in the lower polymer L:G ratios was possibly caused by the higher water absorption due to the more hydrophilic nature of the glycolic acid segment than that of the lactic acid segment. The efficient water absorption in PLGA/PLA NPs with lower molecular weight could cause a significant reduction of Tg as it has lower hydrophobicity. CUR release tests from the PLGA/PLA NPs exhibited enhanced CUR release with increasing temperatures, irrespective of polymer species. By fitting the CUR release profiles into mathematical models, the CUR release process was well described by an initial burst release followed by a diffusion-controlled release. The wet Tg and particle size of the PLGA/PLA NPs affected the amount and temperature dependence of the initial burst release of CUR. Above the wet Tg of NPs, the initial burst release of CUR increased sharply. Smaller particle sizes of PLGA/PLA NPs led to a higher fraction of initial CUR burst release, which was more pronounced above the wet Tg of NPs. The wet Tg and particle sizes of the PLGA/PLA NPs also influenced the diffusion-controlled CUR release. The diffusion rate of CUR in the NPs increased as the wet Tg values of the NPs decreased. The diffusion path length of CUR was affected by the particle size, with larger particle size resulting in a prolonged diffusion-controlled release of CUR. This study highlighted that for the formulation development of PLGA/PLA NPs, suitable PLGA/PLA polymers should be selected considering the physicochemical properties of PLGA/PLA NPs and their correlation with the release behavior of encapsulated drugs at the application temperature.


Asunto(s)
Curcumina , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Curcumina/química , Ácido Poliglicólico/química , Temperatura , Preparaciones de Acción Retardada , Glicoles , Poliésteres , Tamaño de la Partícula , Nanopartículas/química , Agua
16.
Mol Pharm ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327727

RESUMEN

Flavonoid-based organometallic complexes were revealed to be novel bioactive compounds. The taxifolin ruthenium-p-cymene nanoparticle (TaxRu-NPs) was produced in this study, and the toxicological assessment was done prior to in vivo chemotherapeutic research. Furthermore, the in vitro chemotherapeutic investigation used the A549 and NCI-H460 lung cancer cell lines. The in vitro study found that TaxRu-NPs induced apoptosis in lung cancer cells and hindered their ability to form colonies and migrate. The in vivo study showed that treatment with TaxRu-NPs restored the histological structure of a normal lung with less hyperplasia and lymphocytic infiltration. Furthermore, the treatment downregulated the angiogenic marker VEGF and the cell survival protein ß-catenin and upregulated apoptotic markers like p53 and caspase-3. TaxRu-NPs treatment additionally raised the apoptotic index and decreased cancer cell growth. Finally, TaxRu-NPs effectively alleviate lung cancer by activating p53-mediated apoptosis and preventing angiogenesis and metastasis by decreasing the VEGF/ß-catenin pathway.

17.
Mol Pharm ; 21(10): 5192-5204, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39255036

RESUMEN

Transdermal drug delivery (TDD) is an attractive route of administration, providing several advantages, especially over oral and parenteral routes. However, TDD is significantly restricted due to the barrier imposed by the uppermost layer of the skin, the stratum corneum (SC). Microneedles is a physical enhancement technique that efficiently pierces the SC and facilitates the delivery of both lipophilic and hydrophilic molecules. Dissolving microneedles is a commonly used type that is fabricated utilizing various biodegradable and biocompatible polymers, such as polylactic acid, polyglycolic acid, or poly(lactide-co-glycolide) (PLGA). Such polymers also promote the prolonged release of the drug due to the slow degradation of the polymer matrix following its insertion. We selected carfilzomib, a small therapeutic peptide (MW: 719.924 g/mol, log P 4.19), as a model drug to fabricate a microneedle-based sustained delivery system. This study is a proof-of-concept investigation in which we fabricated PLGA microneedles using four types of PLGA (50-2A, 50-5A, 75-5A, and 50-7P) to evaluate the feasibility of long-acting transdermal delivery of carfilzomib. Micromolding technique was used to fabricate the PLGA microneedles and characterization tests, including Fourier transform infrared spectroscopy, insertion capability using the skin simulant Parafilm model, histological evaluation, scanning electron microscopy, and confocal microscopy were conducted. In vitro release and permeation testing were conducted in vertical Franz diffusion cells. N-methyl pyrrolidone was utilized as the organic solvent and microneedles were solidified in controlled conditions, which led to good mechanical strength. Both in vitro release and permeation testing showed sustained profiles of carfilzomib over 7 days. The release and permeation were significantly influenced by the molecular weight of PLGA and the lipophilic properties of carfilzomib.


Asunto(s)
Administración Cutánea , Sistemas de Liberación de Medicamentos , Agujas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Sistemas de Liberación de Medicamentos/métodos , Animales , Piel/metabolismo , Piel/efectos de los fármacos , Absorción Cutánea/efectos de los fármacos , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Ácido Láctico/química , Oligopéptidos/química , Oligopéptidos/administración & dosificación , Oligopéptidos/farmacocinética , Péptidos/química , Péptidos/administración & dosificación , Ácido Poliglicólico/química , Liberación de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas
18.
Mol Pharm ; 21(3): 1108-1124, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38333983

RESUMEN

The olfactory region of the nasal cavity directly links the brain to the external environment, presenting a potential direct route to the central nervous system (CNS). However, targeting drugs to the olfactory region is challenging and relies on a combination of drug formulation, delivery device, and administration technique to navigate human nasal anatomy. In addition, in vitro and in vivo models utilized to evaluate the performance of nasal formulations do not accurately reflect deposition and uptake in the human nasal cavity. The current study describes the development of a respirable poly(lactic-co-glycolic acid) nanoparticle (PLGA NP) formulation, delivered via a pressurized metered dose inhaler (pMDI), and a cell-containing three-dimensional (3D) human nasal cast model for deposition assessment of nasal formulations in the olfactory region. Fluorescent PLGA NPs (193 ± 3 nm by dynamic light scattering) were successfully formulated in an HFA134a-based pMDI and were collected intact following aerosolization. RPMI 2650 cells, widely employed as a nasal epithelial model, were grown at the air-liquid interface (ALI) for 14 days to develop a suitable barrier function prior to exposure to the aerosolized PLGA NPs in a glass deposition apparatus. Direct aerosol exposure was shown to have little effect on cell viability. Compared to an aqueous NP suspension, the transport rate of the aerosolized NPs across the RPMI 2650 barrier was higher at all time points indicating the potential advantages of delivery via aerosolization and the importance of employing ALI cellular models for testing respirable formulations. The PLGA NPs were then aerosolized into a 3D-printed human nasal cavity model with an insert of ALI RPMI 2650 cells positioned in the olfactory region. Cells remained highly viable, and there was significant deposition of the fluorescent NPs on the ALI cultures. This study is a proof of concept that pMDI delivery of NPs is a viable means of targeting the olfactory region for nose-to-brain drug delivery (NTBDD). The cell-based model allows not only maintenance under ALI culture conditions but also sampling from the basal chamber compartment; hence, this model could be adapted to assess drug deposition, uptake, and transport kinetics in parallel under real-life settings.


Asunto(s)
Nanopartículas , Nariz , Humanos , Encéfalo , Sistema Nervioso Central , Sistemas de Liberación de Medicamentos
19.
Arch Microbiol ; 206(3): 112, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374471

RESUMEN

Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible polymer that can gradually and consistently release drugs in a controlled manner. In this study, diclofenac sodium-loaded PLGA nanoparticles (DS-PLGA NPs) were produced by solvent evaporation technique and characterized using SEM, DLS, and zeta potential analyses. The antibacterial and antivirulence potential of DS-PLGA NPs against P. aeruginosa strains were examined using broth microdilution, crystal violet staining, hemolysis, and twitching quantification assays. Furthermore, the expression of the quorum sensing (QS) genes, lasI and lasR in P. aeruginosa strains after treatment with 1/2 MIC of DS-PLGA NPs was assessed using real-time PCR. SEM imaging of the synthesized NPs exhibited that the NPs have a spherical structure with a size range of 60-150 nm. The zeta potential of the NPs was - 15.2 mV, while the size of the particles in the aquatic environment was in a range of 111.5-153.8 nm. The MIC of prepared NPs against various strains of P. aeruginosa ranged from 4.5 to 9 mg/mL. Moreover, exposure of bacteria to sub-MIC of DS-PLGA NPs significantly down-regulated the expression of the lasI and lasR genes to 0.51- and 0.75-fold, respectively. Further, prepared NPs efficiently reduced the biofilm formation of P. aeruginosa strains by 9-27%, compared with the controls. Besides, DS-PLGA NPs showed considerable attenuation in bacterial hemolytic activity by 32-88% and twitching motility by 0-32.3%, compared with untreated cells. Overall, the present work exhibited the anti-QS activity of DS-PLGA NPs, which could be a safe and useful approach for treating P. aeruginosa infections.


Asunto(s)
Nanopartículas , Percepción de Quorum , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Percepción de Quorum/genética , Diclofenaco/farmacología , Pseudomonas aeruginosa/genética , Nanopartículas/química
20.
Pharm Res ; 41(4): 765-778, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504074

RESUMEN

Biodegradable polyesters are widely employed in the development of controlled release systems for peptide drugs. However, one of the challenges in developing a polyester-based delivery system for peptides is the acylation reaction between peptides and polymers. Peptide acylation is an important factor that affects formulation stability and can occur during storage, in vitro release, and after drug administration. This review focuses on the mechanisms and parameters that influence the rate of peptide acylation within polyesters. Furthermore, it discusses reported strategies to minimize the acylation reaction.


Asunto(s)
Poliésteres , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Láctico , Péptidos , Acilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA