Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol ; 148(1): 10, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048735

RESUMEN

Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, < 1% were transmitted by misfolded PrP, ~ 15% are inherited, and ~ 85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate localized initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of > 5000× across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a localized presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Mutación de Línea Germinal , Proteínas Priónicas , Humanos , Proteínas Priónicas/genética , Masculino , Femenino , Anciano , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Persona de Mediana Edad , Mutación de Línea Germinal/genética , Encéfalo/patología , Anciano de 80 o más Años , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Mutación
2.
Vet Res ; 55(1): 105, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227993

RESUMEN

The recent emergence of chronic wasting disease (CWD) in Europe has become a new public health risk for monitoring of wild and farmed cervids. This disease, due to prions, has proliferated in North America in a contagious manner. In several mammalian species, polymorphisms in the prion protein gene (PRNP) play a crucial role in the susceptibility to prions and their spread. To obtain a reliable picture of the distribution of PRNP polymorphisms in the two most common cervid species in France, we sequenced the open reading frame (ORF) of this gene in 2114 animals, 1116 roe deer (Capreolus capreolus) and 998 red deer (Cervus elaphus). Selection criteria such as historical origin, spatial distribution and sex ratio have been integrated to establish this sample collection. Except for one heterozygous animal with a non-synonymous mutation at codon 37 (G37A), all the 1116 French roe deer were monomorphic. Red deer showed greater variation with two non-synonymous substitutions (T98A; Q226E), three synonymous substitutions (codons 21, 78 and 136) and a new 24pb deletion (Δ69-77). We found significant regional variations between French regions in the frequency of the identified substitutions. After cloning of the PRNP ORF from animals presenting multiple non-synonymous polymorphisms, we identified six haplotypes and obtained a total of twelve genotypes. As in other European countries, we highlighted the apparent homogeneity of PRNP in the French roe deer and the existence of a greater diversity in the red deer. These results were in line with European phylogeographic studies on these two species.


Asunto(s)
Ciervos , Sistemas de Lectura Abierta , Animales , Francia , Polimorfismo Genético , Priones/genética , Enfermedad Debilitante Crónica/genética , Proteínas Priónicas/genética
3.
Vet Res ; 55(1): 99, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107851

RESUMEN

Scrapie is a transmissible spongiform encephalopathy affecting sheep and goats. The prion protein-encoding gene (PRNP) plays a crucial role in determining susceptibility and resistance to scrapie. At the European level, surveillance of scrapie is essential to prevent the spread of the disease to livestock. According to the Regulation EU 2020/772 polymorphisms K222, D/S146 could function as resistance alleles in the genetic management of disease prevention. In Italy, a breeding plan for scrapie eradication has not been implemented for goats. However, surveillance plans based on the PRNP genotype have been developed as a preventive measure for scrapie. This research aimed to describe the polymorphisms at 7 positions within the PRNP gene in 956 goats of the Alpine, Saanen and mixed populations farmed in the Lombardy Region in Italy. PRNP polymorphisms were detected using single nucleotide polymorphism markers included in the Neogen GGP Goat 70 k chip. The K222 allele occurred in all populations, with frequencies ranging from 2.1 to 12.7%. No animals carried the S/D146 resistance allele. However, it has been demonstrated that polymorphisms in the other positions analysed could influence resistance or susceptibility to scrapie outbreaks in different ways. Ten potentially distinct haplotypes were found, and the most prevalent of the three populations was H2, which differed from the wild type (H1) in terms of mutation (S vs P) at codon 240. This study provided additional information on the genetic variability of the PRNP gene in these populations in the Lombardy region of Italy, contributing to the development of genetic control measures for disease prevention.


Asunto(s)
Enfermedades de las Cabras , Cabras , Proteínas Priónicas , Scrapie , Animales , Italia/epidemiología , Cabras/genética , Enfermedades de las Cabras/genética , Enfermedades de las Cabras/epidemiología , Proteínas Priónicas/genética , Scrapie/genética , Scrapie/epidemiología , Codón/genética , Variación Genética , Polimorfismo de Nucleótido Simple
4.
Vet Res ; 55(1): 98, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095901

RESUMEN

The structure of cellular prion proteins encoded by the prion protein gene (PRNP) impacts susceptibility to transmissible spongiform encephalopathies, including chronic wasting disease (CWD) in deer. The recent emergence of CWD in Northern European reindeer (Rangifer tarandus), moose (Alces alces alces) and red deer (Cervus elaphus), in parallel with the outbreak in North America, gives reason to investigate PRNP variation in European deer, to implement risk assessments and adjust CWD management for deer populations under threat. We here report PRNP-sequence data from 911 samples of German red, roe (Capreolus capreolus), sika (Cervus nippon) and fallow deer (Dama dama) as well as additional data from 26 Danish red deer close to the German border and four zoo species not native to Germany. No PRNP sequence variation was observed in roe and fallow deer, as previously described for populations across Europe. In contrast, a broad PRNP variation was detected in red deer, with non-synonymous polymorphisms at codons 98, 226 and 247 as well as synonymous mutations at codons 21, 78, 136 and 185. Moreover, a novel 24 bp deletion within the octapeptide repeat was detected. In summary, 14 genotypes were seen in red deer with significant differences in their geographical distribution and frequencies, including geographical clustering of certain genotypes, suggesting "PRNP-linages" in this species. Based on data from North American CWD and the genotyping results of the European CWD cases, we would predict that large proportions of wild cervids in Europe might be susceptible to CWD once introduced to naive populations.


Asunto(s)
Ciervos , Enfermedad Debilitante Crónica , Animales , Ciervos/genética , Dinamarca , Variación Genética , Genotipo , Alemania/epidemiología , Polimorfismo Genético , Proteínas Priónicas/genética , Priones/genética , Enfermedad Debilitante Crónica/genética , Enfermedad Debilitante Crónica/epidemiología
5.
Clin Genet ; 104(3): 350-355, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37148197

RESUMEN

Studies focusing on octapeptide repeat alteration mutations in PRNP in Alzheimer's disease (AD) and frontotemporal dementia (FTD) cohorts have been rare. We aim to screen sporadic AD and FTD patients with unknown etiology for the octapeptide repeat insertions and deletions in PRNP. Two hundred and six individuals were screened for alterations to the repeat region in the PRNP gene, including 146 sporadic AD and 60 sporadic FTD patients. Our study showed a 1.5% (3/206) occurrence of the octapeptide repeat alteration mutations in PRNP in a Chinese cohort of sporadic dementia. One late-onset FTD patient and one early-onset AD patient each had a two-octapeptide repeat deletion in PRNP, while one early-onset AD patient had a five-octapeptide repeat insertion mutation. PRNP octapeptide repeat alteration mutations are present in sporadic AD and FTD patients. The genetic investigation for PRNP octapeptide repeat alteration mutations in sporadic dementia patients should be carried out in future clinical studies.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Priones , Humanos , Priones/genética , Priones/metabolismo , Proteínas Priónicas/genética , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Mutación
6.
Vet Res ; 54(1): 84, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773068

RESUMEN

Prion diseases, including chronic wasting disease (CWD) in cervids, are fatal neurodegenerative disorders caused by the misfolding of cellular prion proteins. CWD is known to spread among captive and free-ranging deer in North America. In 2016, an outbreak of contagious CWD was detected among wild reindeer in Norway, marking the first occurrence of the disease in Europe. Additionally, new sporadic forms of CWD have been discovered in red deer in Norway and moose in Fennoscandia. We used serial protein misfolding cyclic amplification to study the ability of Norwegian prion isolates from reindeer, red deer, and moose (two isolates), as well as experimental classical scrapie from sheep, to convert a panel of 16 brain homogenates (substrates) from six different species with various prion protein genotypes. The reindeer CWD isolate successfully converted substrates from all species except goats. The red deer isolate failed to convert sheep and goat substrates but exhibited amplification in all cervid substrates. The two moose isolates demonstrated lower conversion efficacies. The wild type isolate propagated in all moose substrates and in the wild type red deer substrate, while the other isolate only converted two of the moose substrates. The experimental classical scrapie isolate was successfully propagated in substrates from all species tested. Thus, reindeer CWD and classical sheep scrapie isolates were similarly propagated in substrates from different species, suggesting the potential for spillover of these contagious diseases. Furthermore, the roe deer substrate supported conversion of three isolates suggesting that this species may be vulnerable to prion disease.


Asunto(s)
Ciervos , Enfermedades de las Cabras , Enfermedades por Prión , Priones , Reno , Scrapie , Enfermedades de las Ovejas , Enfermedad Debilitante Crónica , Animales , Ovinos , Priones/genética , Reno/metabolismo , Enfermedades por Prión/veterinaria , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Enfermedad Debilitante Crónica/genética , Noruega/epidemiología , Cabras/metabolismo
7.
Vet Res ; 54(1): 94, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848924

RESUMEN

Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. Most prion diseases and their susceptibility and pathogenesis are mainly modulated by the PRNP gene that codes for PrP. Mutations and polymorphisms in the PRNP gene can alter PrPC amino acid sequence, leading to a change in transmission efficiency depending on the place where it occurs. Horses are animals that are considered to be highly resistant to prions. Several studies have attempted to identify polymorphisms in the PRNP gene that explain the reason for this high resistance. In this study, we have analysed 207 horses from 20 different breeds, discovering 3 novel PRNP polymorphisms. By using computer programmes such as PolyPhen-2, PROVEAN, PANTHER, Meta-SNP and PredictSNP, we have predicted the possible impact that these new polymorphisms would have on the horse prion protein. In addition, we measured the propensity for amyloid aggregation using AMYCO and analysed the lack of hydrogen bridges that these changes would entail together with their electrostatic potentials using Swiss-PdbViewer software, showing that an increased amyloid propensity could be due to changes at the level of electrostatic potentials.


Asunto(s)
Enfermedades de los Caballos , Enfermedades por Prión , Priones , Animales , Secuencia de Aminoácidos , Enfermedades de los Caballos/genética , Caballos/genética , Polimorfismo Genético , Enfermedades por Prión/genética , Enfermedades por Prión/veterinaria , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Priones/genética
8.
Vet Res ; 54(1): 48, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328789

RESUMEN

Prion diseases are fatal and malignant infectious encephalopathies induced by the pathogenic form of prion protein (PrPSc) originating from benign prion protein (PrPC). A previous study reported that the M132L single nucleotide polymorphism (SNP) of the prion protein gene (PRNP) is associated with susceptibility to chronic wasting disease (CWD) in elk. However, a recent meta-analysis integrated previous studies that did not find an association between the M132L SNP and susceptibility to CWD. Thus, there is controversy about the effect of M132L SNP on susceptibility to CWD. In the present study, we investigated novel risk factors for CWD in elk. We investigated genetic polymorphisms of the PRNP gene by amplicon sequencing and compared genotype, allele, and haplotype frequencies between CWD-positive and CWD-negative elk. In addition, we performed a linkage disequilibrium (LD) analysis by the Haploview version 4.2 program. Furthermore, we evaluated the 3D structure and electrostatic potential of elk prion protein (PrP) according to the S100G SNP using AlphaFold and the Swiss-PdbViewer 4.1 program. Finally, we analyzed the free energy change of elk PrP according to the S100G SNP using I-mutant 3.0 and CUPSAT. We identified 23 novel SNP of the elk PRNP gene in 248 elk. We found a strong association between PRNP SNP and susceptibility to CWD in elk. Among those SNP, S100G is the only non-synonymous SNP. We identified that S100G is predicted to change the electrostatic potential and free energy of elk PrP. To the best of our knowledge, this was the first report of a novel risk factor, the S100G SNP, for CWD.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Priones/genética , Enfermedad Debilitante Crónica/genética , Enfermedad Debilitante Crónica/patología , Polimorfismo de Nucleótido Simple , Ciervos/genética , Factores de Riesgo
9.
Mol Biol Rep ; 50(11): 9715-9720, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37812352

RESUMEN

BACKGROUND: Gerstmann Sträussler Scheinker (GSS) is an inherited, invariably fatal prion disease. Like other human prion diseases, GSS is caused by missense mutations in the prion protein (PrP) gene (PRNP), and by the formation and overtime accumulation of the misfolded, pathogenic scrapie PrP (PrPSc). The first mutation identified in the PRNP gene, and the one blamed as the main cause of the disease, is c.C305T:p.P102L. METHODS AND RESULTS: The Sanger sequencing method was performed on the PRNP gene for the detection of c.C305T:p.P102L mutations in a cohort of 10 subjects; moreover, a study was carried out, using Next Generation Sequencing (NGS), by sequencing a group of genes related to amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), movement disorders and dementia which show a phenotypic profile similar to that of GSS. The results obtained from the study using NGS indicate the potential role of other genetic variants which could contribute to the various GSS phenotypes. CONCLUSIONS: In conclusion, we highlight the large clinical variability in subjects presenting with GSS and p.P102L, as well as the hypothesis that the mutation in PrP codon 102 alone is not sufficient to trigger the cardinal clinical signs of the disease; furthermore, we do not exclude the possibility that further genetic variants play a decisive role in the aspects of the various phenotypes with which GSS manifests itself.


Asunto(s)
Enfermedad de Gerstmann-Straussler-Scheinker , Priones , Animales , Humanos , Enfermedad de Gerstmann-Straussler-Scheinker/diagnóstico , Enfermedad de Gerstmann-Straussler-Scheinker/genética , Enfermedad de Gerstmann-Straussler-Scheinker/metabolismo , Priones/genética , Proteínas Priónicas/genética , Mutación/genética , Secuenciación de Nucleótidos de Alto Rendimiento
10.
Anim Biotechnol ; 34(6): 1931-1936, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35400314

RESUMEN

Susceptibility to classical bovine spongiform encephalopathy (BSE) has been linked to 23 bp indel in promoter and 12 bp indel in the first intron of cattle prion protein gene. This study aimed to investigate 23/12 bp indel polymorphisms in the polymorphisms in cattle prion protein (PRNP) gene to reveal the risk of BSE in Ethiopian cattle. Also, frequency of each polymorphism was compared to the other Bos taurus and Bos indicus breeds. According to results, the insertion variant was detected at a low frequency in all of the study populations at both loci. The 23 bp insertion allele in Fogera breed was relatively lower than Borona and Arsi and the same allele at the same locus in Afar breed was higher than the rest of the breeds (0.16). Due to high linkage disequilibrium (LD) of the deletion allele in Bos taurus, the frequencies of deletion allele at 23 bp (0.84) and 12 bp (0.86) loci in Afar breed were relatively closer than the rest of the breeds. In addition, DD/DD was found as the highly frequent diplotype in all of the breeds. The low frequency of insertion alleles at 23 and 12 bp indel sites demonstrate that Ethiopian cattle have a genetically high risk for BSE.


Asunto(s)
Enfermedades de los Bovinos , Encefalopatía Espongiforme Bovina , Priones , Bovinos/genética , Animales , Proteínas Priónicas/genética , Priones/genética , Encefalopatía Espongiforme Bovina/epidemiología , Encefalopatía Espongiforme Bovina/genética , Polimorfismo Genético/genética , Regiones Promotoras Genéticas , Frecuencia de los Genes , Enfermedades de los Bovinos/genética
11.
Anim Biotechnol ; 34(7): 2433-2440, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35875846

RESUMEN

Among the numerous transmissible spongiform encephalopathies (TSEs), bovine spongiform encephalopathy (BSE) is the most well-known TSEs. It is a potential Creutzfeldt-Jakob (CJD) disease mutation that can be transferred through cattle to humans. In several animals, the prion protein gene (PRNP) is recognized to take active part in TSE vulnerability or tolerance. Previous studies have found indels polymorphism in PRNP gene promoter and intron1 region linked to BSE vulnerability. It's linked with 23 bp indels polymorphism in putative promoter and 12 bp indel in intron 1 of the PRNP gene. The aim of this study was to compare the allele, genotype and haplotype frequencies of PRNP indel polymorphisms in Zhongdian Yak (Bos grunniens) (YK), Zhongdian Yellow cattle (Bos taurus) (YC) and Zhongdian Yakow (Bos primigenius taurus × Bos grunniens) (PK) with worldwide reported healthy or affected BSE cattle, in order to assess their potential resistance to BSE. A comparison of Chinese bovine populations with healthy and BSE-affected German and Swiss cattle from globally was conducted, and result indicating significant difference (p < .001) between healthy and affected cattle. Additionally, as compared to prior studies with Chinese bovine population, the significant results were found. In this study, the allelic frequency D23 finding high deletion in all analyzed Chinese bovine species, and haplotype D12-D23 exhibited a less significant inclination toward susceptibility to BSE.


Asunto(s)
Enfermedades de los Bovinos , Encefalopatía Espongiforme Bovina , Priones , Animales , Bovinos/genética , Encefalopatía Espongiforme Bovina/genética , Frecuencia de los Genes/genética , Polimorfismo Genético/genética , Proteínas Priónicas/genética , Priones/genética
12.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674920

RESUMEN

The carcinogenesis of glial tumors appears complex because of the many genetic and epigenetic phenomena involved. Among these, cellular prion protein (PrPC) is considered a key factor in cell-death resistance and important aspect implicated in tumorigenesis. Autophagy also plays an important role in cell death in various pathological conditions. These two cellular phenomena are related and share the same activation by specific alterations in the cellular microenvironment. Furthermore, there is an interdependence between autophagy and prion activity in glioma tumorigenesis. Glioma is one of the most aggressive known cancers, and the fact that such poorly studied processes as autophagy and PrPC activity are so strongly involved in its carcinogenesis suggests that by better understanding their interaction, more can be understood about its origin and treatment. Few studies in the literature relate these two cellular phenomena, much less try to explain their combined activity and role in glioma carcinogenesis. In this study, we explored the recent findings on the molecular mechanism and regulation pathways of autophagy, examining the role of PrPC in autophagy processes and how they may play a central role in glioma tumorigenesis. Among the many molecular interactions that PrP physiologically performs, it appears that processes shared with autophagy activity are those most implicated in glial tumor carcinogeneses such as activity on MAP kinases, PI3K, and mTOR. This work can be supportive and valuable as a basis for further future studies on this topic.


Asunto(s)
Glioma , Proteínas PrPC , Priones , Humanos , Proteínas Priónicas , Priones/metabolismo , Glioma/genética , Autofagia , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Proteínas PrPC/metabolismo , Microambiente Tumoral
13.
Genet Med ; 24(10): 1993-2003, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35819418

RESUMEN

Prion disease is a rare, fatal, and often rapidly progressive neurodegenerative disease. Ten to fifteen percent of cases are caused by autosomal dominant gain-of-function variants in the prion protein gene, PRNP. Rarity and phenotypic variability complicate diagnosis, often obscuring family history and leaving families unprepared for the genetic implications of an index case. Several recent developments inspire this update in best practices for prion disease genetic counseling. A new prion-detection assay has transformed symptomatic diagnosis. Meanwhile, penetrance, age of onset, and duration of illness have been systematically characterized across PRNP variants in a global cohort. Clinically, the traditional genotype-phenotype correlation has weakened over time, and the term genetic prion disease may now better serve providers than the historical subtypes Creutzfeldt-Jakob disease, fatal familial insomnia, and Gerstmann-Sträussler-Scheinker disease. Finally, in the age of genetically targeted therapies, clinical trials for prion disease are being envisaged, and healthy at-risk individuals may be best positioned to benefit. Such individuals need to be able to access clinical services for genetic counseling and testing. Thus, this update on the genetics of prion disease and best practices for genetic counseling for this disease aims to provide the information needed to expand genetic counseling services.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades por Prión , Priones , Asesoramiento Genético , Humanos , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/genética , Proteínas Priónicas/genética , Priones/genética
14.
Eur J Neurol ; 29(8): 2412-2419, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35506197

RESUMEN

BACKGROUND: Heidenhain variant of Creutzfeldt-Jakob disease (CJD) remains a diagnostic challenge in clinical practice. We aimed to describe the clinical and prognostic features of Heidenhain cases, through a case series study. METHODS: We retrospectively reviewed the definite or probable CJD cases admitted to two tertiary referral university hospitals over a decade to identify Heidenhain cases and investigated their survival status by telephone follow-up. Their clinical characteristics, neuroimaging features, electroencephalography (EEG) results, cerebrospinal fluid profiles, and PRNP gene mutations were also analyzed. RESULTS: Of a total of 85 CJD cases, 20 (24%) Heidenhain cases (11 women [55%]; median age, 64 years [range, 44-72 years]) were identified. The median survival time was 22 weeks (range, 5-155 weeks). The median duration of isolated visual symptoms was 3 weeks (range, 1-12 weeks). The most common early visual symptom was blurred vision (16/20, 80%), followed by diplopia (6/20, 30%). The prevalence significantly increased for complex visual hallucination (p = 0.005) and cortical blindness (p = 0.046) as the disease progressed. The positive rate of serial magnetic resonance images (20/20, 100%) was higher than that of serial EEGs (16/20, 80%). Two patients (2/10, 20%) had pathogenic PRNP mutations, E196A and T188K, respectively. Heidenhain cases with PRNP mutations had significantly longer survival time than those without PRNP mutations (p = 0.047). CONCLUSIONS: Besides blurred vision (80%), diplopia (30%) was also a frequent early visual symptom among Heidenhain cases. Heidenhain phenotype can occur in genetic CJD cases. PRNP mutation status might be an important prognostic factor for Heidenhain cases.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Diplopía , Electroencefalografía , Femenino , Humanos , Pronóstico , Estudios Retrospectivos , Trastornos de la Visión
15.
Eur J Neurol ; 29(11): 3139-3146, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35789031

RESUMEN

BACKGROUND AND PURPOSE: Cerebral amyloid angiopathy (CAA) has been associated with a variety of neurodegenerative disorders, included prion diseases and Alzheimer's disease; its pathophysiology is still largely unknown. We report the case of an 80-year-old man with rapidly progressive dementia and neuroimaging features consistent with CAA carrying two genetic defects in the PRNP and SORL1 genes. METHODS: Neurological examination, brain magnetic resonance imaging (MRI), electroencephalographic-electromyographic (EEG-EMG) polygraphy, and analysis of 14-3-3 and tau proteins, Aß40, and Aß42 in the cerebrospinal fluid (CSF) were performed. The patient underwent a detailed genetic study by next generation sequencing analysis. RESULTS: The patient presented with progressive cognitive dysfunction, generalized myoclonus, and ataxia. Approximately 9 months after symptom onset, he was bed-bound, almost mute, and akinetic. Brain MRI was consistent with CAA. CSF analysis showed high levels of t-tau and p-tau, decreased Aß42, decreased Aß42/Aß40 ratio, and absence of 14.3.3 protein. EEG-EMG polygraphy demonstrated diffuse slowing, frontal theta activity, and generalized spike-waves related to upper limb myoclonus induced by intermittent photic stimulation. Genetic tests revealed the presence of the E270K variant in the SORL1 gene and the presence of a single octapeptide repeat insertion in the coding region of the PRNP gene. CONCLUSIONS: The specific pathogenic contribution of the two DNA variations is difficult to determine without neuropathology; among the possible explanations, we discuss the possibility of their link with CAA. Vascular and degenerative pathways actually interact in a synergistic way, and genetic studies may lead to more insight into pathophysiological mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Demencia , Mioclonía , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/líquido cefalorraquídeo , Angiopatía Amiloide Cerebral/complicaciones , Demencia/complicaciones , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Masculino , Proteínas de Transporte de Membrana/genética , Mutación , Proteínas Priónicas/genética , Proteínas tau/líquido cefalorraquídeo
16.
Microbiol Immunol ; 66(5): 212-215, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35141940

RESUMEN

Chronic wasting disease (CWD) is a prion disease affecting cervid species primarily in the United States of America and Canada; however, it is now emerging in Scandinavian countries. Although CWD cases have not been reported in Japan, in case of a CWD outbreak occuring, it is critical to prepare for testing a large number of specimens. The present study showed that a rapid post-mortem test kit, which is used for bovine spongiform encephalopathy surveillance in Japan, is valid for the detection of CWD prion.


Asunto(s)
Ciervos , Encefalopatía Espongiforme Bovina , Priones , Enfermedad Debilitante Crónica , Animales , Bovinos , Encefalopatía Espongiforme Bovina/diagnóstico , Japón , Enfermedad Debilitante Crónica/diagnóstico , Enfermedad Debilitante Crónica/epidemiología
17.
Medicina (Kaunas) ; 58(7)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35888666

RESUMEN

Background and Objectives: Prion diseases are fatal neurodegenerative disorders caused by the abnormal proteinase K-resistant prion protein (PrPSc). Since variant Creutzfeldt-Jakob disease (CJD) was first reported in the United Kingdom (UK) in 1996, the occurrence of variant CJD has been reported in over 10 countries. To date, variant CJD has not been reported in Korea. However, the E211K somatic mutation in the prion protein gene (PRNP), which is related to bovine spongiform encephalopathy (BSE), was reported in Korean Holstein cattle, and atypical BSE, which is supposed to be sporadic BSE, has been occurring in many countries, including Japan and the USA. These results suggest that BSE may occur naturally in Korea. Thus, we performed a preemptive PrPSc test in appendix specimens to diagnose variant CJD in a Korean population. Materials and Methods: In the present study, we investigated CJD-related mutations and polymorphisms of the PRNP gene and carried out an examination on PrPSc in appendix specimens of Korean patients after appendectomy. Results: In all Korean appendix specimens tested, PrPSc bands were not detected. Conclusion: To the best of our knowledge, this was the first evaluation of PrPSc in Korean appendix specimens.


Asunto(s)
Apéndice , Síndrome de Creutzfeldt-Jakob , Encefalopatía Espongiforme Bovina , Enfermedades por Prión , Priones , Animales , Apéndice/metabolismo , Bovinos , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Encefalopatía Espongiforme Bovina/metabolismo , Endopeptidasa K , Enfermedades por Prión/genética , Proteínas Priónicas/genética , Priones/genética , Priones/metabolismo
18.
Acta Neuropathol ; 142(4): 707-728, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34324063

RESUMEN

The current classification of sporadic Creutzfeldt-Jakob disease (sCJD) includes six major clinicopathological subtypes defined by the physicochemical properties of the protease-resistant core of the pathologic prion protein (PrPSc), defining two major PrPSc types (i.e., 1 and 2), and the methionine (M)/valine (V) polymorphic codon 129 of the prion protein gene (PRNP). How these sCJD subtypes relate to the well-documented phenotypic heterogeneity of genetic CJD (gCJD) is not fully understood. We analyzed molecular and phenotypic features in 208 individuals affected by gCJD, carrying 17 different mutations, and compared them with those of a large series of sCJD cases. We identified six major groups of gCJD based on the combination PrPSc type and codon 129 genotype on PRNP mutated allele, each showing distinctive histopathological characteristics, irrespectively of the PRNP associated mutation. Five gCJD groups, named M1, M2C, M2T, V1, and V2, largely reproduced those previously described in sCJD subtypes. The sixth group shared phenotypic traits with the V2 group and was only detected in patients carrying the E200K-129M haplotype in association with a PrPSc type of intermediate size ("i") between type 1 and type 2. Additional mutation-specific effects involved the pattern of PrP deposition (e.g., a "thickened" synaptic pattern in E200K carriers, cerebellar "stripe-like linear granular deposits" in those with insertion mutations, and intraneuronal globular dots in E200K-V2 or -M"i"). A few isolated cases linked to rare PRNP haplotypes (e.g., T183A-129M), showed atypical phenotypic features, which prevented their classification into the six major groups. The phenotypic variability of gCJD is mostly consistent with that previously found in sCJD. As in sCJD, the codon 129 genotype and physicochemical properties of PrPSc significantly correlated with the phenotypic variability of gCJD. The most common mutations linked to CJD appear to have a variable and overall less significant effect on the disease phenotype, but they significantly influence disease susceptibility often in a strain-specific manner. The criteria currently used for sCJD subtypes can be expanded and adapted to gCJD to provide an updated classification of the disease with a molecular basis.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Insomnio Familiar Fatal/genética , Mutación/genética , Proteínas PrPSc/genética , Proteínas Priónicas/genética , Adulto , Anciano , Codón , Estudios de Cohortes , Femenino , Genotipo , Humanos , Insomnio Familiar Fatal/patología , Masculino , Persona de Mediana Edad , Fenotipo
19.
FASEB J ; 34(2): 2359-2375, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907995

RESUMEN

Studies in mice with ablation of Prnp, the gene that encodes the cellular prion protein (PrPC ), have led to the hypothesis that PrPC is important for peripheral nerve myelin maintenance. Here, we have used a nontransgenic animal model to put this idea to the test; namely, goats that, due to a naturally occurring nonsense mutation, lack PrPC . Teased nerve fiber preparation revealed a demyelinating pathology in goats without PrPC . Affected nerves were invaded by macrophages and T cells and displayed vacuolated fibers, shrunken axons, and onion bulbs. Peripheral nerve lipid composition was similar in young goats with or without PrPC , but markedly different between corresponding groups of adult goats, reflecting the progressive nature of the neuropathy. This is the first report of a subclinical demyelinating polyneuropathy caused by loss of PrPC function in a nontransgenic mammal.


Asunto(s)
Enfermedades Desmielinizantes/inmunología , Cabras/inmunología , Vaina de Mielina/inmunología , Polineuropatías/inmunología , Proteínas PrPC/deficiencia , Animales , Enfermedades Desmielinizantes/patología , Macrófagos/inmunología , Macrófagos/patología , Ratones , Vaina de Mielina/patología , Polineuropatías/patología , Proteínas PrPC/inmunología , Linfocitos T/inmunología , Linfocitos T/patología
20.
BMC Neurol ; 21(1): 248, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34182938

RESUMEN

BACKGROUND: Inherited prion diseases are rare autosomal dominant disorders associated with diverse clinical presentations. All are associated with mutation of the gene that encodes prion protein (PRNP). Homozygous mutations with atypical clinical phenotypes have been described but are extremely rare. CASE PRESENTATION: A Chinese patient presented with a rapidly progressive cognitive and motor disorder in the clinical spectrum of sCJD. Investigations strongly suggested a diagnosis of CJD. He was found to carry a homozygous mutation at PRNP codon 200 (E200D), but there was no known family history of the disorder. The estimated allele frequency of E200D in East Asian populations is incompatible with it being a highly penetrant mutation in the heterozygous state. CONCLUSION: In our view the homozygous PRNP E200D genotype is likely to be causal of CJD in this patient. Homotypic PrP interactions are well known to favour the development of prion disease. The case is compatible with recessively inherited prion disease.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/genética , Proteínas Priónicas/genética , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/fisiopatología , Humanos , Masculino , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA