Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vet Res ; 54(1): 124, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124181

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) infection has caused huge economic losses in global swine industry over the last 37 years. PRRSV commercial vaccines are not effective against all epidemic PRRSV strains. In this study we performed a high-throughput screening (HTS) of an FDA-approved drug library, which contained 2339 compounds, and found vidofludimus (Vi) could significantly inhibits PRRSV replication in Marc-145 cells and primary porcine alveolar macrophages (PAMs). Compounds target prediction, molecular docking analysis, and target protein interference assay showed that Vi interacts with dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme in the de novo pyrimidine synthesis pathway. Furthermore, PRRSV infection was restored in the presence of excess uridine and cytidine which promote pyrimidine salvage, or excess orotate which is the product of DHODH in the de novo pyrimidine biosynthesis pathway, thus confirming that the antiviral effect of Vi against PRRSV relies on the inhibition of DHODH. In addition, Vi also has antiviral activity against Seneca virus A (SVA), encephalomyocarditis virus (EMCV), porcine epidemic diarrhea virus (PEDV), and pseudorabies virus (PRV) in vitro. These findings should be helpful for developing a novel prophylactic and therapeutic strategy against PRRSV and other swine viral infections.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Animales , Porcinos , Dihidroorotato Deshidrogenasa , Simulación del Acoplamiento Molecular , Línea Celular , Replicación Viral/fisiología , Antivirales/farmacología , Antivirales/uso terapéutico , Pirimidinas/farmacología
2.
Virulence ; 15(1): 2417707, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39432383

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is associated with the endemic outbreak of fever, anorexia, and abortion in pregnant sows, resulting in an enormous economic impact on the global swine industry. Current mainstream prophylactic agents and therapies have been developed to prevent PRRSV infection; however, they have limited efficacy. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV infection and transmission. The identification of new PRRSV entry mediators, such as MYH9 and HSPA8; viral apoptotic mimicry; and TIM-induced macropinocytosis, to facilitate infection has led to a novel molecular understanding of the PRRSV infection mechanism, which can be utilized in the development of prophylactic agents and therapies for PRRSV infection. Polyphenols, complex chemical molecules with abundant biological activities derived from microorganisms and plants, have demonstrated great potential for controlling PRRSV infection via different mechanisms. To explore new possibilities for treating PRRSV infection with polyphenols, this review focuses on summarizing the pathogenesis of PRRSV, reviewing the potential antiviral mechanisms of polyphenols against PRRSV, and addressing the challenges associated with the widespread use of polyphenols.


Asunto(s)
Antivirales , Polifenoles , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Polifenoles/farmacología , Polifenoles/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Porcinos , Síndrome Respiratorio y de la Reproducción Porcina/tratamiento farmacológico , Síndrome Respiratorio y de la Reproducción Porcina/virología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
3.
Int J Biol Macromol ; 282(Pt 3): 136978, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39471930

RESUMEN

Autophagy is a highly conserved catabolic process that transports cellular components to lysosomes for degradation and reuse. It impacts various cellular functions, including innate and adaptive immunity. It can exhibit a dual role in viral infections, either promoting or inhibiting viral replication depending on the virus and the stage of the infection cycle. Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen impacting the sustainable development of the global pork industry. Recent research has shown that PRRSV has evolved specific mechanisms to facilitate or impede autophagosome maturation, thereby evading innate and adaptive immune responses. These primary mechanisms involve viral proteins that target multiple regulators of autophagosome formation, including autophagy receptors, tethering proteins, autophagy-related (ATG) genes, as well as the functional proteins of autophagosomes and late endosomes/lysosomes. Additionally, these mechanisms are related to the post-translational modification of key components, viral antigens for presentation to T lymphocytes, interferon production, and the biogenesis and function of lysosomes. This review discusses the specific mechanisms by which PRRSV targets autophagy in host defence and virus survival, summarizes the role of viral proteins in subverting the autophagic process, and examines how the host utilizes the antiviral functions of autophagy to prevent PRRSV infection.

4.
J Vet Res ; 68(1): 45-53, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38525220

RESUMEN

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) infection results in a serious disease, posing a huge economic threat to the global swine industry. The transient receptor potential mucolipin proteins (TRPMLs) have been shown to be strongly associated with virus infection and other physiological processes in humans, but their tissue distribution and responses to PRRSV in pigs remain unknown. Material and Methods: Quantitative reverse-transcription PCR analysis was undertaken to determine the optimal primer for TRPML expression detection and for quantifying that expression individually in different pig tissue samples. Meat Animal Research Center 145 (MARC-145) monkey kidney cells and the TRPML-specific activator mucolipin synthetic agonist 1 (ML-SA1) were used to reveal the relationship between TRPML and PRRSV-2 infection. Results: The best primers for each TRPML gene used in a fluorescence-based quantitative method were identified and TRPML1 was found to be highly expressed in the kidneys and liver of pigs, while TRPML2 and TRPML3 were observed to be primarily expressed in the kidney and spleen tissues. The expression of TRPML2 was upregulated with the rise in PRRSV-2 infection titre but not the expression of TRPML1 or TRPML3, and ML-SA1 inhibited PRRSV-2 in a dose-dependent manner. Conclusion: Our research revealed the gene expression of TRPMLs in pigs and identified that TRPML channels may act as key host factors against PRRSV infection, which could lead to new targets for the prevention and treatment of pig infectious diseases.

5.
Vet Sci ; 11(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39453075

RESUMEN

Lymphocyte activation gene 3 (LAG3) is an inhibitory receptor and the interaction between fibrinogen-like protein 1 and LAG3 can inhibit the anti-tumor effect of T cells both in vivo and in vitro, which was regarded as a new immune evasion mechanism. Porcine reproductive and respiratory syndrome (PRRS), caused by PRRSV, is an infectious disease characterized by reproductive disorders in pregnant sows and gilts and respiratory problems in pigs of all ages, seriously impacting the pig industry worldwide. In this study, monoclonal antibodies (mAbs) against porcine LAG3 (pLAG3) were developed, and one mAb (1C2) showed good reactivity with pLAG3 on PHA-activated porcine peripheral blood lymphocytes. Epitope mapping showed the epitope recognized by mAb 1C2 was located at amino acid residues 214-435 of pLAG3. LAG3 expression in the tissues of PRRSV-infected pigs was detected, using mAb 1C2 as the primary antibody, and the results revealed that PRRSV infection caused a marked increase in LAG3 expression compared to the control group. Interference of LAG3 expression on PHA-activated lymphocytes promoted PRRSV replication in the co-culture system of monocyte-derived dendritic cells and lymphocytes, whereas overexpression of LAG3 or blocking of the LAG3 signal with mAb 1C2 inhibited PRRSV replication, indicating that PRRSV infection activates the LAG3-signaling pathway, suggesting that this pathway plays an important role in PRRSV pathogenesis. The results obtained lay the foundation for subsequent research on the role of LAG3 in PRRS and other diseases with persistent infection characteristics.

6.
Int Immunopharmacol ; 86: 106728, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32593159

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes severe systemic inflammation. Based on transcriptome sequencing data, a new cold-inducible RNA-binding protein (CIRBP) was identified, and its upregulated expression was detected in PRRSV-infected porcine alveolar macrophages (PAMs). However, the immunoregulatoryeffect of CIRBP in PRRSV infection remains unclear. In this study, we found that CIRBP, as an RNA-binging protein, migrates to the cytoplasm from the nucleus and exists in cytoplasmic stress granules under PRRSV infection. In addition, as a new pro-inflammatory factor, the overexpression of CIRBP promotes the expression of inflammatory cytokines and oxidative stress as showing the production of iNOS and ROS in PRRSV-infected cells, which contributes to the inflammatory response via the NF-κB pathway. Our findings suggested that CIRBP is involved in the regulation of PRRSV-induced inflammatory response.


Asunto(s)
Inflamación/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Proteínas de Unión al ARN/inmunología , Animales , Células Cultivadas , Citocinas/metabolismo , Inflamación/complicaciones , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/ultraestructura , Macrófagos Alveolares/virología , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Porcinos , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA