Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Apoptosis ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652339

RESUMEN

Chronic inflammatory and immune responses play key roles in the development and progression of chronic obstructive pulmonary disease (COPD). PANoptosis, as a unique inflammatory cell death modality, is involved in the pathogenesis of many inflammatory diseases. We aim to identify critical PANoptosis-related biomarkers and explore their potential effects on respiratory tract diseases and immune infiltration landscapes in COPD. Total microarray data consisting of peripheral blood and lung tissue datasets associated with COPD were obtained from the GEO database. PANoptosis-associated genes in COPD were identified by intersecting differentially expressed genes (DEGs) with genes involved in pyroptosis, apoptosis, and necroptosis after normalizing and removing the batch effect. Furthermore, GO, KEGG, PPI network, WGCNA, LASSO-COX, and ROC curves analysis were conducted to screen and verify hub genes, and the correlation between PYCARD and infiltrated immune cells was analyzed. The effect of PYCARD on respiratory tract diseases and the potential small-molecule agents for the treatment of COPD were identified. PYCARD expression was verified in the lung tissue of CS/LPS-induced COPD mice. PYCARD was a critical PANoptosis-related gene in all COPD patients. PYCARD was positively related to NOD-like receptor signaling pathway and promoted immune cell infiltration. Moreover, PYCARD was significantly activated in COPD mice mainly by targeting PANoptosis. PANoptosis-related gene PYCARD is a potential biomarker for COPD diagnosis and treatment.

2.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063000

RESUMEN

Dementia is a group of symptoms including memory loss, language difficulties, and other types of cognitive and functional impairments that affects 57 million people worldwide, with the incidence expected to double by 2040. Therefore, there is an unmet need to develop reliable biomarkers to diagnose early brain impairments so that emerging interventions can be applied before brain degeneration. Here, we performed biomarker analyses for apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and amyloid-ß 42/40 (Aß42/40) ratio in the plasma of older adults. Participants had blood drawn at baseline and underwent two annual clinical and cognitive evaluations. The groups tested either cognitively normal on both evaluations (NN), cognitively normal year 1 but cognitively impaired year 2 (NI), or cognitively impaired on both evaluations (II). ASC was elevated in the plasma of the NI group compared to the NN and II groups. Additionally, Aß42 was increased in the plasma in the NI and II groups compared to the NN group. Importantly, the area under the curve (AUC) for ASC in participants older than 70 years old in NN vs. NI groups was 0.81, indicating that ASC is a promising plasma biomarker for early detection of cognitive decline.


Asunto(s)
Péptidos beta-Amiloides , Biomarcadores , Proteínas Adaptadoras de Señalización CARD , Disfunción Cognitiva , Humanos , Biomarcadores/sangre , Masculino , Femenino , Anciano , Proteínas Adaptadoras de Señalización CARD/sangre , Péptidos beta-Amiloides/sangre , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico , Anciano de 80 o más Años , Proteína Ácida Fibrilar de la Glía/sangre , Proteínas de Neurofilamentos/sangre , Inflamasomas/metabolismo , Inflamasomas/sangre , Fragmentos de Péptidos/sangre
3.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762557

RESUMEN

Breast cancer (BC) is not only a mass of malignant cells but also a systemic inflammatory disease. BC pro-tumorigenic inflammation has been shown to promote immune evasion and provoke BC progression. The NOD-like receptor (NLR) family pyrin domain-containing protein 3 (NLRP3) inflammasome is activated when pattern recognition receptors (PRRs) sense danger signals such as calreticulin (CALR) from damaged/dying cells, leading to the secretion of interleukin-1ß (IL-1ß). CALR is a novel BC biological marker, and its high levels are associated with advanced tumors. NLRP3 expression is strongly correlated with an elevated proliferative index Ki67, BC progression, metastasis, and recurrence in patients with hormone receptor-positive (HR+) and triple-negative BC (TNBC). Tumor-associated macrophages (TAMs) secrete high levels of IL-1ß promoting endocrine resistance in HR+ BC. Recently, an immunosuppressive soluble form of programmed death ligand 1 (sPD-L1) has been identified as a novel prognostic biomarker in triple-negative breast cancer (TNBC) patients. Interestingly, IL-1ß induces sPD-L1 release. BC Patients with elevated IL-1ß and sPD-L1 levels show significantly short progression-free survival. For the first time, this study aims to investigate the inhibitory impact of thymoquinone (TQ) on CALR, the NLRP3 pathway and sPD-L1 in HR+ and TNBC. Blood samples were collected from 45 patients with BC. The effect of differing TQ concentrations for different durations on the expression of CALR, NLRP3 complex components and IL-1ß as well as the protein levels of sPD-L1 and IL-1ß were investigated in the peripheral blood mononuclear cells (PBMCs) and TAMs of TNBC and HR+ BC patients, respectively. The findings showed that TQ significantly downregulated the expression of CALR, NLRP3 components and IL-1ß together with the protein levels of secreted IL-1ß and sPD-L1. The current findings demonstrated novel immunomodulatory effects of TQ, highlighting its potential role not only as an excellent adjuvant but also as a possible immunotherapeutic agent in HR+ and TNBC patients.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Calreticulina/genética , Leucocitos Mononucleares , Carcinogénesis
4.
J Neuroinflammation ; 17(1): 143, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366256

RESUMEN

BACKGROUND: The inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC) is involved in immune signaling by bridging the interactions between inflammasome sensors and caspase-1. Strong experimental evidence has shown that ASC-/- mice are protected from disease progression in animal models of multiple sclerosis (MS), suggesting that targeting inflammasome activation via ASC inhibition may be a promising therapeutic strategy in MS. Thus, the goal of our study is to test the efficacy of IC100, a novel humanized antibody targeting ASC, in preventing and/or suppressing disease in the experimental autoimmune encephalomyelitis (EAE) model of MS. METHODS: We employed the EAE model of MS where disease was induced by immunization of C57BL/6 mice with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55). Mice were treated with vehicle or increasing doses of IC100 (10, 30, and 45 mg/kg) and clinical disease course was evaluated up to 35 days post EAE induction. Immune cell infiltration into the spinal cord and microglia responses were assessed. RESULTS: We show that IC100 treatment reduced the severity of EAE when compared to vehicle-treated controls. At a dose of 30 mg/kg, IC100 significantly reduced the number of CD4+ and CD8+ T cells and CD11b+MHCII+ activated myeloid cells entering the spinal cord from the periphery, and reduced the number of total and activated microglia. CONCLUSIONS: These data indicate that IC100 suppresses the immune-inflammatory response that drives EAE development and progression, thereby identifying ASC as a promising target for the treatment of MS as well as other neurological diseases with a neuroinflammatory component.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales/farmacología , Proteínas Adaptadoras de Señalización CARD/antagonistas & inhibidores , Encefalomielitis Autoinmune Experimental/patología , Recuperación de la Función/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple , Médula Espinal/inmunología , Médula Espinal/patología
5.
J Infect Dis ; 219(11): 1743-1748, 2019 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-30590710

RESUMEN

The expression and activity of main inflammasome components in monocytes from successfully treated human immunodeficiency virus (HIV)-positive patients are poorly studied. Thus, we enrolled 18 patients with a low and 17 with a normal ratio of CD4+ T cells to CD8+ T cells and 11 healthy donors. We found that patients with a low ratio had decreased CCR2 expression among classical and intermediate monocytes and increased CCR5 expression among classical monocytes, compared with patients with a normal ratio. Patients with a low ratio also had higher NAIP and PYCARD messenger RNA levels after lipopolysaccharide stimulation, suggesting an altered ability to control immune activation that could affect their immune reconstitution.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/genética , Infecciones por VIH/inmunología , Inflamasomas/inmunología , Interleucina-18/genética , Interleucina-1beta/genética , Proteína Inhibidora de la Apoptosis Neuronal/genética , Adulto , Anciano , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Regulación de la Expresión Génica , Infecciones por VIH/virología , Seropositividad para VIH , Humanos , Masculino , Persona de Mediana Edad , Monocitos/inmunología
6.
J Perinat Med ; 47(3): 276-287, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30412466

RESUMEN

Background The inflammasome has been implicated in the mechanisms that lead to spontaneous labor at term. However, whether the inflammasome is activated in the amniotic cavity of women with clinical chorioamnionitis at term is unknown. Herein, by measuring extracellular ASC [apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (CARD)], we investigated whether there is in vivo inflammasome activation in amniotic fluid of patients with clinical chorioamnionitis at term with sterile intra-amniotic inflammation and in those with intra-amniotic infection. Methods This was a retrospective cross-sectional study that included amniotic fluid samples collected from 76 women who delivered after spontaneous term labor with diagnosed clinical chorioamnionitis. Intra-amniotic inflammation was defined as an elevated amniotic fluid interleukin (IL)-6 concentration ≥2.6 ng/mL, and intra-amniotic infection was diagnosed by the presence of microbial invasion of the amniotic cavity (MIAC) accompanied by intra-amniotic inflammation. Patients were classified into the following groups: (1) women without intra-amniotic inflammation or infection (n=16); (2) women with MIAC but without intra-amniotic inflammation (n=5); (3) women with sterile intra-amniotic inflammation (n=15); and (4) women with intra-amniotic infection (n=40). As a readout of in vivo inflammasome activation, extracellular ASC was measured in amniotic fluid by enzyme-linked immunosorbent assay. Acute inflammatory responses in the amniotic fluid and placenta were also evaluated. Results In clinical chorioamnionitis at term: (1) amniotic fluid concentrations of ASC (extracellular ASC is indicative of in vivo inflammasome activation) and IL-6 were greater in women with intra-amniotic infection than in those without intra-amniotic inflammation, regardless of the presence of MIAC; (2) amniotic fluid concentrations of ASC and IL-6 were also higher in women with sterile intra-amniotic inflammation than in those without intra-amniotic inflammation, regardless of the presence of MIAC; (3) amniotic fluid concentrations of IL-6, but not ASC, were more elevated in women with intra-amniotic infection than in those with sterile intra-amniotic inflammation; (4) a positive and significant correlation was observed between amniotic fluid concentrations of ASC and IL-6; (5) no differences were observed in amniotic fluid ASC and IL-6 concentrations between women with and without MIAC in the absence of intra-amniotic inflammation; (6) women with intra-amniotic infection had elevated white blood cell counts and reduced glucose levels in amniotic fluid compared to the other three study groups; and (7) women with intra-amniotic infection presented higher frequencies of acute maternal and fetal inflammatory responses in the placenta than those with sterile intra-amniotic inflammation. Conclusion The intra-amniotic inflammatory response, either induced by alarmins or microbes, is characterized by the activation of the inflammasome - as evidenced by elevated amniotic fluid concentrations of extracellular ASC - in women with clinical chorioamnionitis at term. These findings provide insight into the intra-amniotic inflammatory response in women with clinical chorioamnionitis at term.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Corioamnionitis/metabolismo , Inflamasomas/metabolismo , Adolescente , Adulto , Líquido Amniótico/metabolismo , Estudios Transversales , Femenino , Humanos , Interleucina-6/metabolismo , Placenta/metabolismo , Embarazo , Estudios Retrospectivos , Adulto Joven
7.
Am J Nephrol ; 48(3): 193-204, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30189426

RESUMEN

BACKGROUND: Rapidly progressive glomerulonephritis (RPGN) is caused by various diseases process, thereby resulting in extensive crescent formation, which could lead to a rapid loss of kidney function. The molecular pathogenesis of RPGN remains largely unknown and requires clarification. The weighted gene co-expression network analysis (WGCNA) is a powerful bioinformatics tool to identify meaningful molecules in diseases. METHODS: The dataset of GSE104948, which contains 22 RPGN and 18 normal samples, was obtained from Gene Expression Omnibus database. After data pre-processing, the WGCNA was performed to successfully cluster several significant modules. The most significant module was selected for further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Visualization of network and screening of hub genes were performed by using Cytoscape software. RESULTS: A total of 11 modules were clustered by WGCNA, and the most significant module-turquoise module was selected. As discovered via GO enrichment and KEGG pathway analysis, the turquoise module was mainly associated with neutrophil activation and degranulation. After visualization and calculation for the network, the PYCARD gene has higher relationship score in 2 clusters, namely, neutrophil activation and degranulation. In accordance with the literature review, the hub gene could be closely related to the inflammation response and could act as the potential therapeutic targets in RPGN. CONCLUSIONS: WGCNA in RPGN expression profiling was used for the first time in this paper. A novel hub gene closely associated with RPGN was screened out, thereby providing the brand-new molecular candidate for RPGN.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Glomerulonefritis/patología , Neutrófilos/inmunología , Proteínas Adaptadoras de Señalización CARD/inmunología , Degranulación de la Célula/inmunología , Biología Computacional , Bases de Datos Genéticas/estadística & datos numéricos , Conjuntos de Datos como Asunto , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Glomerulonefritis/inmunología , Humanos , Activación Neutrófila
8.
BMC Vet Res ; 13(1): 106, 2017 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-28410619

RESUMEN

BACKGROUND: The synovial membrane lines the luminal side of the joint capsule in synovial joints. It maintains joint homeostasis and plays a crucial role in equine joint pathology. When trauma or inflammation is induced in a joint, the synovial membrane influences progression of joint damage. Equine synovial membrane research is hampered by a lack of markers of fibroblast-like synoviocytes (FLS) to distinguish FLS from other fibroblast-like cells in musculoskeletal connective tissues. The aim of this study is to identify potential FLS markers of the equine synovial membrane using microarray to compare between gene expression in equine synovial membrane and the joint capsule in metacarpophalangeal joints. RESULTS: Microarray analysis of tissues from 6 horses resulted in 1167 up-regulated genes in synovial membrane compared with joint capsule. Pathway analysis resulted in 241 candidate genes. Of these, 15 genes were selected for further confirmation as genes potentially expressed by fibroblast-like synoviocytes. Four genes: FOXO1, PXK, PYCARD and SAMD9L were confirmed in 9 horses by qPCR as differentially expressed in synovial membrane compared to joint capsule. CONCLUSIONS: In conclusion, FOXO1, PXK, PYCARD and SAMD9L were confirmed as differentially expressed in synovial membrane compared to joint capsule. These four genes are potential markers of fibroblast-like synoviocytes of the synovial membrane. As these genes are overexpressed in synovial membrane compared to joint capsule, these genes could shed light on synovial membrane physiology and its role in joint disease.


Asunto(s)
Biomarcadores/metabolismo , Fibroblastos/metabolismo , Caballos/metabolismo , Cápsula Articular/metabolismo , Membrana Sinovial/metabolismo , Sinoviocitos/metabolismo , Animales , Regulación de la Expresión Génica , Cápsula Articular/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Membrana Sinovial/citología , Análisis de Matrices Tisulares , Regulación hacia Arriba
9.
Biochim Biophys Acta ; 1834(11): 2347-59, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23707566

RESUMEN

We aimed to identify differentially expressed proteins in interstitial fluid from ovarian cancer employing multiple fractioning and high resolution mass spectrometry-based proteomic analysis, and asked whether specific proteins that may serve as biomarker candidates or therapeutic targets could be identified. High throughput proteomics was conducted on immunodepleted and fractioned interstitial fluid from pooled samples of ovarian carcinomas, using endometrial carcinomas and healthy ovarian tissue as controls. Differential analysis revealed the up-regulation of extracellular proteasomes in tumor interstitial fluid compared to the healthy control. Moreover, a number of differentially expressed proteins in interstitial fluid from ovarian carcinomas compared with control tissues were identified. Detection of proteasome 20S related proteins in TIF compared to IF from healthy tissue indicates that the 20S proteasome can have a role in the tumor microenvironment. Six selected proteins, CEACAM5, FREM2, MUC5AC, TFF3, PYCARD and WDR1, were independently validated in individual tumor lysates from ovarian carcinomas by multiple reaction monitoring initiated detection and sequence analysis, Western blot and/or selected reaction monitoring. Quantification of specific proteins revealed substantial heterogeneity between individual samples. Nevertheless, WD repeat-containing protein 1 was confirmed as being significantly overexpressed in interstitial fluid from ovarian carcinomas compared to healthy ovarian tissue by Orbitrap analysis of individual native interstitial fluid from ovarian and endometrial carcinomas and healthy ovarian tissue. We suggest that this protein should be explored as a therapeutic target in ovarian carcinomas. This article is part of a Special Issue entitled: An Updated Secretome.


Asunto(s)
Líquido Extracelular/metabolismo , Proteínas de Microfilamentos , Neoplasias Ováricas/patología , Ovario/patología , Proteoma/metabolismo , Proteómica/métodos , Secuencia de Aminoácidos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Cromatografía Liquida/métodos , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Endometrio/metabolismo , Endometrio/patología , Líquido Extracelular/química , Femenino , Humanos , Proteínas de Microfilamentos/análisis , Proteínas de Microfilamentos/metabolismo , Datos de Secuencia Molecular , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/metabolismo , Ovario/metabolismo , Complejo de la Endopetidasa Proteasomal/análisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/análisis , Espectrometría de Masas en Tándem/métodos
10.
Autophagy ; 20(9): 2100-2101, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38600662

RESUMEN

SQSTM1/p62 droplets play crucial roles in droplets-based macroautophagy/autophagy including selective autophagy and bulk autophagy. We observed that under several stress milieus, SQSTM1 droplets entirely colocalize with P-body markers, and these stress-induced SQSTM1 droplets contain mRNAs. We thus determined that under certain stress conditions, autophagic SQSTM1 droplets are converted to a type of enlarged P-bodies, designated SQSTM1/p62-dependent P-bodies (pd-PBs). Stress-enhanced SQSTM1 droplet formation drives the nucleation of pd-PBs through the interaction between SQSTM1 and the RNA-binding protein DDX6. Furthermore, pd-PBs sequester PYCARD, facilitating the assembly of NLRP3 inflammasomes, and in turn induce inflammation-related cytotoxicity. Our study suggests that under stress settings, autophagic SQSTM1 droplets are transformed to pd-PBs, underlining a critical role of SQSTM1 in P-body condensation.


Asunto(s)
Autofagia , Proteína Sequestosoma-1 , Proteína Sequestosoma-1/metabolismo , Autofagia/fisiología , Humanos , Animales , Ratones , Inflamasomas/metabolismo , ARN Helicasas DEAD-box/metabolismo
11.
J Inflamm Res ; 17: 4975-4991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070131

RESUMEN

Background: Diabetic kidney disease (DKD) is an intricate complication of diabetes with limited treatment options. Anoikis, a programmed cell death activated by loss of cell anchorage to the extracellular matrix, participated in various physiological and pathological processes. Our study aimed to elucidate the role of anoikis-related genes in DKD pathogenesis. Methods: Differentially expressed genes (DEGs) associated with anoikis in DKD were identified. Weighted gene co-expression network analysis (WGCNA) was conducted to identify DKD-correlated modules and assess their functional implications. A diagnostic model for DKD was developed using LASSO regression and Gene set variation analysis (GSVA) was performed for enrichment analysis. Experimental validation was employed to validate the significance of selected genes in the progression of DKD. Results: We identified 10 anoikis-related DEGs involved in key signaling pathways impacting DKD progression. WGCNA highlighted the yellow module's significant enrichment in immune response and regulatory pathways. Correlation analysis further revealed the association between immune infiltration and anoikis-related DEGs. Our LASSO regression-based diagnostic model demonstrated a well-predictive efficacy with seven identified genes. GSVA indicated that gene function in the high-risk group was primarily associated with immune regulation. Further experimental validation using diabetic mouse models and data analysis in the single-cell dataset confirmed the significance of PYCARD and SFN in DKD progression. High glucose stimulation in RAW264.7 and TCMK-1 cells showed significantly increased expression levels of both Pycard and Sfn. Co-expression analysis demonstrated distinct functions of PYCARD and SFN, with KEGG pathway analysis showing significant enrichment in immune regulation and cell proliferation pathway. Conclusion: In conclusion, our study provides valuable insights into the molecular mechanisms involved in DKD pathogenesis, specifically highlighting the role of anoikis-related genes in modulating immune infiltration. These findings suggest that targeting these genes may hold promise for future diagnostic and therapeutic approaches in DKD management.

12.
Eur J Med Res ; 29(1): 218, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576041

RESUMEN

BACKGROUND: The objective of this investigation is to analyze the levels and clinical relevance of serum PYCARD (Pyrin and CARD domain-containing protein, commonly known as ASC-apoptosis-associated speck-like protein containing a caspase activation and recruitment domain), interleukin-38 (IL-38), and interleukin-6 (IL-6) in individuals afflicted with rheumatoid arthritis (RA). METHODS: Our study comprised 88 individuals diagnosed with RA who sought medical attention at the Affiliated Hospital of Chengde Medical University during the period spanning November 2021 to June 2023, constituting the test group. Additionally, a control group of 88 individuals who underwent health assessments at the same hospital during the aforementioned timeframe was included for comparative purposes. The study involved the assessment of IL-38, IL-6, PYCARD, anti-cyclic citrullinated peptide antibody (anti-CCP), and erythrocyte sedimentation rate (ESR) levels in both groups. The research aimed to explore the correlations and diagnostic efficacy of these markers, employing pertinent statistical analyses for comprehensive evaluation. RESULTS: The test group had higher expression levels of PYCARD, IL-6, and IL-38 than the control group (P < 0.05). Based on the correlation analysis, there was a strong relationship between PYCARD and IL-38 (P < 0.01). The receiver operating characteristic (ROC) curve analysis revealed area under the curve (AUC) values of 0.97, 0.96, and 0.96 when using combinations of PYCARD and anti-CCP, IL-38 and anti-CCP, and IL-6 and anti-CCP for predicting RA, respectively. Importantly, all three of these pairs demonstrated superior AUC values compared to PYCARD, IL-38, IL-6, ESR, or anti-CCP used as standalone diagnostic indicators. CONCLUSION: PYCARD, IL-6, and IL-38 exhibit promising potential as novel diagnostic markers and may constitute valuable tools for supporting the diagnosis of RA.


Asunto(s)
Anticuerpos Antiproteína Citrulinada , Artritis Reumatoide , Humanos , Interleucina-6 , Artritis Reumatoide/diagnóstico , Autoanticuerpos , Curva ROC , Péptidos Cíclicos , Biomarcadores , Proteínas Adaptadoras de Señalización CARD/genética , Interleucinas
13.
Autophagy ; 20(3): 629-644, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37963060

RESUMEN

PYCARD (PYD and CARD domain containing), a pivotal adaptor protein in inflammasome assembly and activation, contributes to innate immunity, and plays an essential role in the pathogenesis of atherosclerosis and restenosis. However, its roles in microRNA biogenesis remain unknown. Therefore, this study aimed to investigate the roles of PYCARD in miRNA biogenesis and neointima formation using pycard knockout (pycard-/-) mice. Deficiency of Pycard reduced circulating miRNA profile and inhibited Mir17 seed family maturation. The systemic pycard knockout also selectively reduced the expression of AGO2 (argonaute RISC catalytic subunit 2), an important enzyme in regulating miRNA biogenesis, by promoting chaperone-mediated autophagy (CMA)-mediated degradation of AGO2, specifically in adipose tissue. Mechanistically, pycard knockout increased PRMT8 (protein arginine N-methyltransferase 8) expression in adipose tissue, which enhanced AGO2 methylation, and subsequently promoted its binding to HSPA8 (heat shock protein family A (Hsp70) member 8) that targeted AGO2 for lysosome degradation through chaperone-mediated autophagy. Finally, the reduction of AGO2 and Mir17 family expression prevented vascular injury-induced neointima formation in Pycard-deficient conditions. Overexpression of AGO2 or administration of mimic of Mir106b (a major member of the Mir17 family) prevented Pycard deficiency-mediated inhibition of neointima formation in response to vascular injury. These data demonstrate that PYCARD inhibits CMA-mediated degradation of AGO2, which promotes microRNA maturation, thereby playing a critical role in regulating neointima formation in response to vascular injury independently of inflammasome activity and suggest that modulating PYCARD expression and function may represent a powerful therapeutic strategy for neointima formation.Abbreviations: 6-AN: 6-aminonicotinamide; ACTB: actin, beta; aDMA: asymmetric dimethylarginine; AGO2: argonaute RISC catalytic subunit 2; CAL: carotid artery ligation; CALCOCO2: calcium binding and coiled-coil domain 2; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSD: cathepsin D; DGCR8: DGCR8 microprocessor complex subunit; DOCK2: dedicator of cyto-kinesis 2; EpiAdi: epididymal adipose tissue; HSPA8: heat shock protein family A (Hsp70) member 8; IHC: immunohistochemical; ISR: in-stent restenosis; KO: knockout; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; miRNA: microRNA; NLRP3: NLR family pyrin domain containing 3; N/L: ammonium chloride combined with leupeptin; PRMT: protein arginine methyltransferase; PVAT: peri-vascular adipose tissues; PYCARD: PYD and CARD domain containing; sDMA: symmetric dimethylarginine; ULK1: unc-51 like kinase 1; VSMCs: vascular smooth muscle cells; WT: wild-type.


Asunto(s)
Autofagia Mediada por Chaperones , MicroARNs , Lesiones del Sistema Vascular , Animales , Ratones , MicroARNs/genética , Inflamasomas/metabolismo , Autofagia/fisiología , Neointima , Proteínas de Unión al ARN , Proteínas de Choque Térmico/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo
14.
Front Immunol ; 15: 1247382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343546

RESUMEN

Purpose: The pathogenesis of renal fibrosis (RF) involves intricate interactions between profibrotic processes and immune responses. This study aimed to explore the potential involvement of the pyroptosis signaling pathway in immune microenvironment regulation within the context of RF. Through comprehensive bioinformatics analysis and experimental validation, we investigated the influence of pyroptosis on the immune landscape in RF. Methods: We obtained RNA-seq datasets from Gene Expression Omnibus (GEO) databases and identified Pyroptosis-Associated Regulators (PARs) through literature reviews. Systematic evaluation of alterations in 27 PARs was performed in RF and normal kidney samples, followed by relevant functional analyses. Unsupervised cluster analysis revealed distinct pyroptosis modification patterns. Using single-sample gene set enrichment analysis (ssGSEA), we examined the correlation between pyroptosis and immune infiltration. Hub regulators were identified via weighted gene coexpression network analysis (WGCNA) and further validated in a single-cell RNA-seq dataset. We also established a unilateral ureteral obstruction-induced RF mouse model to verify the expression of key regulators at the mRNA and protein levels. Results: Our comprehensive analysis revealed altered expression of 19 PARs in RF samples compared to normal samples. Five hub regulators, namely PYCARD, CASP1, AIM2, NOD2, and CASP9, exhibited potential as biomarkers for RF. Based on these regulators, a classifier capable of distinguishing normal samples from RF samples was developed. Furthermore, we identified correlations between immune features and PARs expression, with PYCARD positively associated with regulatory T cells abundance in fibrotic tissues. Unsupervised clustering of RF samples yielded two distinct subtypes (Subtype A and Subtype B), with Subtype B characterized by active immune responses against RF. Subsequent WGCNA analysis identified PYCARD, CASP1, and NOD2 as hub PARs in the pyroptosis modification patterns. Single-cell level validation confirmed PYCARD expression in myofibroblasts, implicating its significance in the stress response of myofibroblasts to injury. In vivo experimental validation further demonstrated elevated PYCARD expression in RF, accompanied by infiltration of Foxp3+ regulatory T cells. Conclusions: Our findings suggest that pyroptosis plays a pivotal role in orchestrating the immune microenvironment of RF. This study provides valuable insights into the pathogenesis of RF and highlights potential targets for future therapeutic interventions.


Asunto(s)
Biología Computacional , Piroptosis , Animales , Ratones , Reacciones Cruzadas , Caspasa 1 , Análisis por Conglomerados
15.
Cell Rep ; 43(3): 113935, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38460129

RESUMEN

Autophagy and ribonucleoprotein granules, such as P-bodies (PBs) and stress granules, represent vital stress responses to maintain cellular homeostasis. SQSTM1/p62 phase-separated droplets are known to play critical roles in selective autophagy; however, it is unknown whether p62 can exist as another form in addition to its autophagic droplets. Here, we found that, under stress conditions, including proteotoxicity, endotoxicity, and oxidation, autophagic p62 droplets are transformed to a type of enlarged PBs, termed p62-dependent P-bodies (pd-PBs). p62 phase separation is essential for the nucleation of pd-PBs. Mechanistically, pd-PBs are triggered by enhanced p62 droplet formation upon stress stimulation through the interactions between p62 and DDX6, a DEAD-box ATPase. Functionally, pd-PBs recruit the NLRP3 inflammasome adaptor ASC to assemble the NLRP3 inflammasome and induce inflammation-associated cytotoxicity. Our study shows that p62 droplet-to-PB transformation acts as a stress response to activate the NLRP3 inflammasome process, suggesting that persistent pd-PBs lead to NLRP3-dependent inflammation toxicity.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Sequestosoma-1 , Cuerpos de Procesamiento , Inflamación , Autofagia/fisiología
16.
J Med Life ; 17(2): 195-200, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38813354

RESUMEN

Numerous studies have established a link between gene variants within the inflammasome complex and the incidence of periodontitis and cardiovascular illness across various ethnic groups. This study investigated the association between PYCARD gene polymorphism and susceptibility to periodontal disease and coronary heart disease (CHD) and their correlation with clinical periodontal indices. A total of 120 participants were enrolled, categorized into four groups: 30 healthy controls (C), 30 patients with generalized periodontitis (P), 30 patients with atherosclerotic CHD but clinically healthy periodontium (AS-C), and 30 patients with both atherosclerotic CHD and generalized periodontitis (AS-P). We recorded demographic data, collected blood samples, and measured periodontal indices, including plaque index, clinical attachment loss, bleeding on probing, and pocket depth. The genomic variant of the PYCARD gene was analyzed using a conventional polymerase reaction. A significant prevalence of T and G allele mutations and a higher distribution of CT and TT genotypes in PYCARD C/T (rs8056505) and the AG genotype in PYCARD A/G (rs372507365) were observed in groups P, AS-P, and AS-C. These single nucleotide polymorphisms (SNPs) were also positively correlated with the severity of clinical periodontitis indices. Our findings suggest that the increased frequency of T and G alleles and the distribution of CT, TT, and AG genotypes in PYCARD SNPs are significantly associated with an elevated risk for periodontal disease and CHD. These SNPs may participate in the pathogenesis of these conditions. The study reinforces the potential role of these genetic markers as risk factors for both diseases in the Iraqi population.


Asunto(s)
Enfermedad Coronaria , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Alelos , Proteínas Adaptadoras de Señalización CARD/genética , Estudios de Casos y Controles , Enfermedad Coronaria/genética , Genotipo , Enfermedades Periodontales/genética , Periodontitis/genética , Polimorfismo de Nucleótido Simple/genética
17.
J Mol Cell Cardiol ; 62: 24-35, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23644221

RESUMEN

Acute myocardial infarction (MI) causes sterile inflammation, which is characterized by recruitment and activation of innate and adaptive immune system cells. Here we delineate the temporal dynamics of immune cell accumulation following MI by flow cytometry. Neutrophils increased immediately to a peak at 3 days post-MI. Macrophages were numerically the predominant cells infiltrating the infarcted myocardium, increasing in number over the first week post-MI. Macrophages are functionally heterogeneous, whereby the first responders exhibit high expression levels of proinflammatory mediators, while the late responders express high levels of the anti-inflammatory cytokine IL-10; these macrophages can be classified into M1 and M2 macrophages, respectively, based on surface-marker expression. M1 macrophages dominated at 1-3 days post-MI, whereas M2 macrophages represented the predominant macrophage subset after 5 days. The M2 macrophages expressed high levels of reparative genes in addition to proinflammatory genes to the same levels as in M1 macrophages. The predominant subset of dendritic cells (DCs) was myeloid DC, which peaked in number on day 7. Th1 and regulatory T cells were the predominant subsets of CD4(+) T cells, whereas Th2 and Th17 cells were minor populations. CD8(+) T cells, γδT cells, B cells, natural killer (NK) cells and NKT cells peaked on day 7 post-MI. Timely reperfusion reduced the total number of leukocytes accumulated in the post-MI period, shifting the peak of innate immune response towards earlier and blunting the wave of adaptive immune response. In conclusion, these results provide important knowledge necessary for developing successful immunomodulatory therapies.


Asunto(s)
Macrófagos/citología , Infarto del Miocardio/inmunología , Animales , Citometría de Flujo , Factor 4 Similar a Kruppel , Antígenos Comunes de Leucocito/metabolismo , Leucocitos/citología , Leucocitos/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL
18.
Biomedicines ; 11(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36672701

RESUMEN

The incidence of Alzheimer's disease (AD) is increasing year by year, which brings great challenges to human health. However, the pathogenesis of AD is still unclear, and it lacks early diagnostic targets. The entorhinal cortex (EC) is a key brain region for the occurrence of AD neurodegeneration, and neuroinflammation plays a significant role in EC degeneration in AD. This study aimed to reveal the close relationship between inflammation-related genes in the EC and AD by detecting key differentially expressed genes (DEGs) via gene function enrichment pathway analysis. GSE4757 and GSE21779 gene expression profiles of AD were downloaded from the Gene Expression Omnibus (GEO) database. R language was used for the standardization and differential analysis of DEGs. Then, significantly enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed to predict the potential biological functions of the DEGs. Finally, the significant expressions of identified DEGs were verified, and the therapeutic values were detected by a receiver operating characteristic (ROC) curve. The results showed that eight up-regulated genes (SLC22A2, ITGB2-AS1, NIT1, FGF14-AS2, SEMA3E, PYCARD, PRORY, ADIRF) and two down-regulated genes (AKAIN1, TRMT2B) may have a potential diagnostic value for AD, and participate in inflammatory pathways. The area under curve (AUC) results of the ten genes showed that they had potential diagnostic value for AD. The AUC of PYCARD was 0.95, which had the most significant diagnostic value, and it is involved in inflammatory processes such as the inflammasome complex adaptor protein. The DEGs screened, and subsequent pathway analysis revealed a close relationship between inflammation-related PYCARD and AD, thus providing a new basis for an early diagnostic target for AD.

19.
Am J Reprod Immunol ; 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35810355

RESUMEN

PROBLEM: Preeclampsia (PE) and intrauterine growth restriction (IUGR) are leading causes of perinatal complications, affecting 8-10% of all pregnancies. Inflammasomes are suspected to be one of the mechanisms that lead to the process of term and preterm labors. This study evaluated the inflammasome-dependent inflammation processes in placental tissue of women with PE and IUGR. METHODS OF STUDY: In this prospective cohort study, 14 women with PE, 15 with placental-related IUGR and 19 with normal pregnancy (NP) were recruited during admission for delivery. Maternal blood was obtained prior to delivery and neonatal cord blood and placental tissue were obtained after delivery. RESULTS: NLRP7 and PYCARD protein expression were higher in placental PE and IUGR samples vs. NP samples. Immunostaining revealed that NLRP7 and PYCARD were upregulated in PE and IUGR placental syncytiotrophoblast, stroma and endothelial cells. PYCARD serum levels were significantly higher in women with PE and IUGR. No significant changes were observed in neonatal cord blood. CONCLUSIONS: NLRP7 and PYCARD are key inflammatory proteins that are significantly elevated in PE and IUGR. Better understanding their significance may enable them to become markers of prediction or progression of PE and IUGR. This article is protected by copyright. All rights reserved.

20.
Am J Reprod Immunol ; 88(4): e13598, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35976163

RESUMEN

PROBLEM: Preeclampsia (PE) and intrauterine growth restriction (IUGR) are leading causes of perinatal complications, affecting 8%-10% of all pregnancies. Inflammasomes are suspected to be one of the mechanisms that lead to the process of term and preterm labors. This study evaluated the inflammasome-dependent inflammation processes in placental tissue of women with PE and IUGR. METHODS OF STUDY: In this prospective cohort study, 14 women with PE, 15 with placental-related IUGR and 19 with normal pregnancy (NP) were recruited during admission for delivery. Maternal blood was obtained prior to delivery and neonatal cord blood and placental tissue were obtained after delivery. RESULTS: NLRP7 and PYCARD protein expression were higher in placental PE and IUGR samples versus NP samples. Immunostaining revealed that NLRP7 and PYCARD were upregulated in PE and IUGR placental syncytiotrophoblast, stroma and endothelial cells. PYCARD serum levels were significantly higher in women with PE and IUGR. No significant changes were observed in neonatal cord blood. CONCLUSIONS: NLRP7 and PYCARD are key inflammatory proteins that are significantly elevated in PE and IUGR. Better understanding their significance may enable them to become markers of prediction or progression of PE and IUGR.


Asunto(s)
Retardo del Crecimiento Fetal , Preeclampsia , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Endoteliales/metabolismo , Femenino , Humanos , Recién Nacido , Inflamasomas/metabolismo , Placenta/metabolismo , Embarazo , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA