Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.232
Filtrar
Más filtros

Intervalo de año de publicación
1.
Pharm Res ; 41(1): 93-104, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985572

RESUMEN

OBJECTIVE: To prepare polylactic acid microneedles (PLAMNs) with sustained antibacterial effect to avoid skin infection caused by traditional MNs-based biosensors. METHODS: Silver nanoparticles (AgNPs) were synthesized using an in-situ reduction process with polydopamine (PDA). PLAMNs were fabricated using the hot-melt method. A series of pressure tests and puncture experiments were conducted to confirm the physicochemical properties of PLAMNs. Then AgNPs were modified on the surface of PLAMNs through in-situ reduction of PDA, resulting in the formation of PLAMNs@PDA-AgNPs. The in vitro antibacterial efficacy of PLAMNs@PDA-AgNPs was evaluated using agar diffusion assays and bacterial liquid co-culture approach. Wound healing and simulated long-term application were performed to assess the in vivo antibacterial effectiveness of PLAMNs@PDA-AgNPs. RESULTS: The MNs array comprised 169 tiny needle tips in pyramidal rows. Strength and puncture tests confirmed a 100% puncture success rate for PLAMNs on isolated rat skin and tin foil. SEM analysis revealed the integrity of PLAMNs@PDA-AgNPs with the formation of new surface substances. EDS analysis indicated the presence of silver elements on the surface of PLAMNs@PDA-AgNPs, with a content of 14.44%. Transepidermal water loss (TEWL) testing demonstrated the rapid healing of micro-pores created by PLAMNs@PDA-AgNPs, indicating their safety. Both in vitro and in vivo tests confirmed antibacterial efficacy of PLAMNs@PDA-AgNPs. CONCLUSIONS: In conclusion, the sustained antibacterial activity exhibited by PLAMNs@PDA-AgNPs offers a promising solution for addressing skin infections associated with MN applications, especially when compared to traditional MN-based biosensors. This advancement offers significant potential for the field of MN technology.


Asunto(s)
Nanopartículas del Metal , Poliésteres , Plata , Ratas , Animales , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
2.
J Nanobiotechnology ; 22(1): 372, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918811

RESUMEN

Hemangioma of infancy is the most common vascular tumor during infancy and childhood. Despite the proven efficacy of propranolol treatment, certain patients still encounter resistance or face recurrence. The need for frequent daily medication also poses challenges to patient adherence. Bleomycin (BLM) has demonstrated effectiveness against vascular anomalies, yet its use is limited by dose-related complications. Addressing this, this study proposes a novel approach for treating hemangiomas using BLM-loaded hyaluronic acid (HA)-based microneedle (MN) patches. BLM is encapsulated during the synthesis of polylactic acid (PLA) microspheres (MPs). The successful preparation of PLA MPs and MN patches is confirmed through scanning electron microscopy (SEM) images. The HA microneedles dissolve rapidly upon skin insertion, releasing BLM@PLA MPs. These MPs gradually degrade within 28 days, providing a sustained release of BLM. Comprehensive safety assessments, including cell viability, hemolysis ratio, and intradermal reactions in rabbits, validate the safety of MN patches. The BLM@PLA-MNs exhibit an effective inhibitory efficiency against hemangioma formation in a murine hemangioma model. Of significant importance, RNA-seq analysis reveals that BLM@PLA-MNs exert their inhibitory effect on hemangiomas by regulating the P53 pathway. In summary, BLM@PLA-MNs emerge as a promising clinical candidate for the effective treatment of hemangiomas.


Asunto(s)
Bleomicina , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos , Hemangioma , Ácido Hialurónico , Agujas , Poliésteres , Bleomicina/farmacología , Animales , Ratones , Conejos , Hemangioma/tratamiento farmacológico , Ácido Hialurónico/química , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos/métodos , Poliésteres/química , Humanos , Microesferas , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Liberación de Fármacos
3.
Ecotoxicol Environ Saf ; 271: 115974, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38266357

RESUMEN

Biodegradable plastics (BPs) are widely used as alternatives to non-BPs due to their inherent ability to undergo facile degradation. However, the ecotoxicological impact of biodegradable microplastics (MPs) rarely remains scientific documented especially to aquatic ecosystem and organisms compared to conventional microplastics. Therefore, this study aimed to investigate the ecotoxicity of biodegradable polylactic acid (PLA) MPs to Daphnia magna with that of conventional polyethylene (PE) MPs with and without ultraviolet (UV) treatment (4 weeks). The acute toxicity (48 h) of PLA MPs was significantly higher than that of PE MPs, potentially attributable to their elevated bioconcentration resulting from their higher density. UV treatment notably reduced the particle size of PLA MPs and induced new hydrophilic functional groups containing oxygen. Thus, the acute lethal toxicity of PLA MPs exhibited noteworthy increase, compared to before UV treatment after UV treatment, which was greater than that of UV-PE MPs. In addition, UV-PLA MPs showed markedly elevated reactive oxygen species concentration in D. magna compared to positive control. However, there was no significant increase in the level of lipid peroxidation, possibly due to successful defense by antioxidant enzymes (superoxide dismutase and catalase). These findings highlight the ecotoxicological risks of biodegradable MPs to aquatic organisms, which require comprehensive long-term studies.


Asunto(s)
Daphnia magna , Contaminantes Químicos del Agua , Animales , Ecosistema , Microplásticos/toxicidad , Plásticos , Polietileno/toxicidad , Poliésteres , Contaminantes Químicos del Agua/toxicidad , Daphnia
4.
Ecotoxicol Environ Saf ; 271: 115981, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38242046

RESUMEN

To better understand the fate and assess the ingestible fraction of microplastics (by aquatic organisms), it is essential to quantify and characterize of their released from larger items under environmental realistic conditions. However, the current information on the fragmentation and size-based characteristics of released microplastics, for example from bio-based thermoplastics, is largely unknown. The goal of our work was to assess the fragmentation and release of microplastics, under ultraviolet (UV) radiation and in seawater, from polylactic acid (PLA) items, a bio-based polymer, and from polypropylene (PP) items, a petroleum-based polymer. To do so, we exposed pristine items of PLA and PP, immersed in filtered natural seawater, to accelerated UV radiation for 57 and 76 days, simulating 18 and 24 months of mean natural solar irradiance in Europe. Our results indicated that 76-day UV radiation induced the fragmentation of parent plastic items and the microplastics (50 - 5000 µm) formation from both PP and PLA items. The PP samples (48 ± 26 microplastics / cm2) released up to nine times more microplastics than PLA samples (5 ± 2 microplastics / cm2) after a 76-day UV exposure, implying that the PLA tested items had a lower fragmentation rate than PP. The particles' length of released microplastics was parameterized using a power law exponent (α), to assess their size distribution. The obtained α values were 3.04 ± 0.11 and 2.54 ± 0.06 (-) for 76-day UV weathered PP and PLA, respectively, meaning that PLA microplastics had a larger sized microplastics fraction than PP particles. With respect to their two-dimensional shape, PLA microplastics also had lower width-to-length ratio (0.51 ± 0.17) and greater fiber-shaped fractions (16%) than PP microplastics (0.57 ± 0.17% and 11%, respectively). Overall, the bio-based PLA items under study were more resistant to fragmentation and release of microplastics than the petroleum-based PP tested items, and the parameterized characteristics of released microplastics were polymer-dependent. Our work indicates that even though bio-based plastics may have a slower release of fragmented particles under UV radiation compared to conventional polymer types, they still have the potential to act as a source of microplastics in the marine environment, with particles being available to biota within ingestible size fractions, if not removed before major fragmentation processes.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Polipropilenos , Microplásticos , Plásticos , Rayos Ultravioleta , Inmersión , Poliésteres , Agua de Mar , Polímeros , Contaminantes Químicos del Agua/análisis
5.
Ecotoxicol Environ Saf ; 281: 116683, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964061

RESUMEN

Soil pollution by microplastics (MPs), defined as plastic particles <5 mm, and heavy metals is a significant environmental issue. However, studies on the co-contamination effects of MPs and heavy metals on buckwheat rhizosphere microorganisms, especially on the arbuscular mycorrhizal fungi (AMF) community, are limited. We introduced low (0.01 g kg-1) and high doses of lead (Pb) (2 g kg-1) along with polyethylene (PE) and polylactic acid (PLA) MPs, both individually and in combination, into soil and assessed soil properties, buckwheat growth, and rhizosphere bacterial and AMF communities in a 40-day pot experiment. Notable alterations were observed in soil properties such as pH, alkaline hydrolyzable nitrogen (AN), and the available Pb (APb). High-dose Pb combined with PLA-MPs hindered buckwheat growth. Compared to the control, bacterial Chao1 richness and Shannon diversity were lower in the high dose Pb with PLA treatment, and differentially abundant bacteria were mainly detected in the high Pb dose treatments. Variations in bacterial communities correlated with APb, pH and AN. Overall, the AMF community composition remained largely consistent across all treatments. This phenomenon may be due to fungi having lower nutritional demands than bacteria. Stochastic processes played a relatively important role in the assembly of both bacterial and AMF communities. In summary, MPs appeared to amplify both the positive and negative effects of high Pb doses on the buckwheat rhizosphere bacteria.

6.
Luminescence ; 39(3): e4688, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38444125

RESUMEN

Nano-biocomposites of inorganic and organic components wereprepared to produce long-persistent phosphorescent artificial nacre-like materials. Biodegradable polylactic acid (PLA), graphene oxide (GO), and nanoparticles (13-20 nm) of lanthanide-doped aluminate pigment (NLAP) were used in a simple production procedure of an organic/inorganic hybrid nano-biocomposite. Both polylactic acid and GO nanosheets were chemically modified to form covalent and hydrogen bonding. The high toughness, good tensile strength, and great endurance of those bonds were achieved by their interactions at the interfaces. Long-persistent and reversible photoluminescence was shown by the prepared nacre substrates. Upon excitation at 365 nm, the nacre substrates generated an emission peak at 517 nm. When ultraviolet light was shone on luminescent nacres, they displayed a bright green colour. The high superhydrophobicity of the generated nacres was obtained without altering their mechanical characteristics.


Asunto(s)
Grafito , Nácar , Poliésteres
7.
Mikrochim Acta ; 191(5): 251, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38589663

RESUMEN

Nanocomposite microbeads (average diameter = 10-100 µm) were prepared by a microemulsion-solidification method and applied to the magnetic solid-phase extraction (m-SPE) of fourteen analytes, among pesticides, drugs, and hormones, from human urine samples. The microbeads, perfectly spherical in shape to maximize the surface contact with the analytes, were composed of magnetic nanoparticles dispersed in a polylactic acid (PLA) solid bulk, decorated with multi-walled carbon nanotubes (mPLA@MWCNTs). In particular, PLA was recovered from filters of smoked electronic cigarettes after an adequate cleaning protocol. A complete morphological characterization of the microbeads was performed via Fourier-transform infrared (FTIR) spectroscopy, UV-Vis spectroscopy, thermogravimetric and differential scanning calorimetry analysis (TGA and DSC), scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The recovery study of the m-SPE procedure showed yields ≥ 64%, with the exception of 4-chloro-2-methylphenol (57%) at the lowest spike level (3 µg L-1). The method was validated according to the main FDA guidelines for the validation of bioanalytical methods. Using liquid chromatography-tandem mass spectrometry, precision and accuracy were below 11% and 15%, respectively, and detection limits of 0.1-1.8 µg L-1. Linearity was studied in the range of interest 1-15 µg L-1 with determination coefficients greater than 0.99. In light of the obtained results, the nanocomposite microbeads have proved to be a valid and sustainable alternative to traditional sorbents, offering good analytical standards and being synthetized from recycled plastic material. One of the main objectives of the current work is to provide an innovative and optimized procedure for the recycling of a plastic waste, to obtain a regular and reliable microstructure, whose application is here presented in the field of analytical chemistry. The simplicity and greenness of the method endows the procedure with a versatile applicability in different research and industrial fields.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nanocompuestos , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Xenobióticos , Microesferas , Poliésteres , Extracción en Fase Sólida/métodos , Nanocompuestos/química , Fenómenos Magnéticos
8.
Sensors (Basel) ; 24(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38676113

RESUMEN

Polylactic acid (PLA) is one of the most widely used materials for fused deposition modeling (FDM) 3D printing. It is a biodegradable thermoplastic polyester, derived from natural resources such as corn starch or sugarcane, with low environmental impact and good mechanical properties. One important feature of PLA is that its properties can be modulated by the inclusion of nanofillers. In this work, we investigate the influence of SiC and ZnO doping of PLA on the triboelectric performance of PLA-based tribogenerators. Our results show that the triboelectric signal in ZnO-doped PLA composites increases as the concentration of ZnO in PLA increases, with an enhancement in the output power of 741% when the ZnO concentration in PLA is 3 wt%. SiC-doped PLA behaves in a different manner. Initially the triboelectric signal increases, reaching a peak value with enhanced output power by 284% compared to undoped PLA, when the concentration of SiC in PLA is 1.5 wt%. As the concentration increases to 3 wt%, the triboelectric signal reduces significantly and is comparable to or less than that of the undoped PLA. Our results are consistent with recent data for PVDF doped with silicon carbide nanoparticles and are attributed to the reduction in the contact area between the triboelectric surfaces.

9.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731949

RESUMEN

To enrich the properties of polylactic acid (PLA)-based composite films and improve the base degradability, in this study, a certain amount of poly(propylene carbonate) (PPC) was added to PLA-based composite films, and PLA/PPC-based composite films were prepared by melt blending and hot-press molding. The effects of the introduction of PPC on the composite films were analyzed through in-depth studies on mechanical properties, water vapor and oxygen transmission rates, thermal analysis, compost degradability, and bacterial inhibition properties of the composite films. When the introduction ratio coefficient of PPC was 30%, the tensile strength of the composite film increased by 19.68%, the water vapor transmission coefficient decreased by 14.43%, and the oxygen transmission coefficient decreased by 18.31% compared to that of the composite film without PPC, the cold crystallization temperature of the composite film increased gradually from 96.9 °C to 104.8 °C, and PPC improved the crystallization ability of composite film. The degradation rate of the composite film with PPC increased significantly compared to the previous one, and the degradation rate increased with the increase in the PPC content. The degradation rate was 49.85% and 46.22% faster on average than that of the composite film without PPC when the degradation was carried out over 40 and 80 days; the composite film had certain inhibition, and the maximum diameter of the inhibition circle was 2.42 cm. This study provides a strategy for the development of PLA-based biodegradable laminates, which can promote the application of PLA-based laminates in food packaging.


Asunto(s)
Poliésteres , Propano/análogos & derivados , Resistencia a la Tracción , Poliésteres/química , Polipropilenos/química , Embalaje de Alimentos/métodos , Vapor , Polímeros/química , Antibacterianos/química , Antibacterianos/farmacología , Temperatura
10.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473755

RESUMEN

Electrospun hybrid scaffolds composed of synthetic and natural polymers have gained increasing interest in tissue engineering applications over the last decade. In this work, scaffolds composed of polylactic acid electrospun fibers, either treated (P-PLA) or non-treated (PLA) with air-plasma, were coated with high molecular weight chitosan to create a core-shell microfibrous structure. The effective thickness control of the chitosan layer was confirmed by gravimetric, spectroscopic (FTIR-ATR) and morphological (SEM) investigations. The chitosan coating increased the fiber diameter of the microfibrous scaffolds while the tensile mechanical tests, conducted in dry and wet environments, showed a reinforcing action of the coating layer on the scaffolds, in particular when deposited on P-PLA samples. The stability of the Chi coating on both PLA and P-PLA substrates was confirmed by gravimetric analysis, while their mineralization capacity was evaluated though scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) after immersing the scaffolds in simulated body fluids (SBF) at 37 °C for 1 week. Sample biocompatibility was investigated through cell viability assay and SEM analysis on mouse pre-osteoblastic MC3T3-E1 cells grown on scaffolds at different times (1, 7, 14 and 21 days). Finally, Alizarin Red assay and qPCR analysis suggested that the combination of plasma treatment and chitosan coating on PLA electrospun scaffolds influences the osteoblastic differentiation of MC3T3-E1 cells, thus demonstrating the great potential of P-PLA/chitosan hybrid scaffolds for bone tissue engineering applications.


Asunto(s)
Quitosano , Ratones , Animales , Quitosano/química , Andamios del Tejido/química , Osteogénesis , Poliésteres/química
11.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338928

RESUMEN

The low percentage of recyclability of the polymeric materials obtained by olefin transition metal (TM) polymerization catalysis has increased the interest in their substitution with more eco-friendly materials with reliable physical and mechanical properties. Among the variety of known biodegradable polymers, linear aliphatic polyesters produced by ring-opening polymerization (ROP) of cyclic esters occupy a prominent position. The polymer properties are highly dependent on the macromolecule microstructure, and the control of stereoselectivity is necessary for providing materials with precise and finely tuned properties. In this review, we aim to outline the main synthetic routes, the physical properties and also the applications of three commercially available biodegradable materials: Polylactic acid (PLA), Poly(Lactic-co-Glycolic Acid) (PLGA), and Poly(3-hydroxybutyrate) (P3HB), all of three easily accessible via ROP. In this framework, understanding the origin of enantioselectivity and the factors that determine it is then crucial for the development of materials with suitable thermal and mechanical properties.


Asunto(s)
Ésteres , Poliésteres , Polimerizacion , Ésteres/química , Poliésteres/química , Polímeros , Ácido 3-Hidroxibutírico
12.
Molecules ; 29(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38398635

RESUMEN

During the past two decades, tremendous progress has been made in the development of biodegradable polymeric materials for various industrial applications, including human and veterinary medicine. They are promising alternatives to commonly used non-degradable polymers to combat the global plastic waste crisis. Among biodegradable polymers used, or potentially applicable to, veterinary medicine are natural polysaccharides, such as chitin, chitosan, and cellulose as well as various polyesters, including poly(ε-caprolactone), polylactic acid, poly(lactic-co-glycolic acid), and polyhydroxyalkanoates produced by bacteria. They can be used as implants, drug carriers, or biomaterials in tissue engineering and wound management. Their use in veterinary practice depends on their biocompatibility, inertness to living tissue, mechanical resistance, and sorption characteristics. They must be designed specifically to fit their purpose, whether it be: (1) facilitating new tissue growth and allowing for controlled interactions with living cells or cell-growth factors, (2) having mechanical properties that address functionality when applied as implants, or (3) having controlled degradability to deliver drugs to their targeted location when applied as drug-delivery vehicles. This paper aims to present recent developments in the research on biodegradable polymers in veterinary medicine and highlight the challenges and future perspectives in this area.


Asunto(s)
Quitosano , Polihidroxialcanoatos , Humanos , Poliésteres , Materiales Biocompatibles , Ingeniería de Tejidos , Sistemas de Liberación de Medicamentos
13.
Pharm Dev Technol ; 29(4): 339-352, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38502579

RESUMEN

We recently reported the potential of a new gallium compound, gallium acetylacetonate (GaAcAc) in combating osteoclastic bone resorption through inhibition of osteoclast differentiation and function. Herein, we focused on 3D-printed polylactic acid scaffolds that were loaded with GaAcAc and investigated the impact of scaffold pretreatment with polydopamine (PDA) or sodium hydroxide (NaOH). We observed a remarkable increase in scaffold hydrophilicity with PDA or NaOH pretreatment while biocompatibility and in vitro degradation were not affected. NaOH-pretreated scaffolds showed the highest amount of GaAcAc loading when compared to other scaffolds (p < 0.05). NaOH-pretreated scaffolds with GaAcAc loading showed effective reduction of osteoclast counts and size. The trend was supported by suppression of key osteoclast differentiation markers such as NFAT2, c-Fos, TRAF6, & TRAP. All GaAcAc-loaded scaffolds, regardless of surface pretreatment, were effective in inhibiting osteoclast function as evidenced by reduction in the number of resorptive pits in bovine cortical bone slices (p < 0.01). The suppression of osteoclast function according to the type of scaffold followed the ranking: GaAcAc loading without surface pretreatment > GaAcAc loading with NaOH pretreatment > GaAcAc loading with PDA pretreatment. Additional studies will be needed to fully elucidate the impact of surface pretreatment on the efficacy and safety of GaAcAc-loaded 3D-printed scaffolds.


Asunto(s)
Resorción Ósea , Osteoclastos , Impresión Tridimensional , Andamios del Tejido , Animales , Osteoclastos/efectos de los fármacos , Andamios del Tejido/química , Resorción Ósea/tratamiento farmacológico , Bovinos , Ratones , Poliésteres/química , Galio/química , Galio/farmacología , Pentanonas/química , Pentanonas/administración & dosificación , Pentanonas/farmacología , Hidróxido de Sodio , Diferenciación Celular/efectos de los fármacos
14.
J Clin Pediatr Dent ; 48(2): 102-110, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38548639

RESUMEN

This randomized, controlled clinical trial compares the clinical performance of glass-fibre and resorbable polylactic acid (PLA) intracanal posts used to restore carious primary incisors in young patients. The study sample includes 180 primary upper central incisors of 90 children aged 3 to 4 years. All patients were randomly divided into two equal groups of 45 children who received PLA and glass-fibre (GFP) intracanal posts. The clinical assessment of incisor restorations was carried out immediately upon completion and at months 3, 6 and 12 according to the following criteria: anatomical form, marginal adaptation, surface roughness, marginal pigmentation, colour match, secondary caries and contact point. The Gingival Index (GI), the Bleeding Index (Cowell modification; mBI), and bite force (BF) were measured. At the 3-month follow-up, the occlusal BF of patients who received PLA posts was higher than the baseline; the GI and mBI scores were lower, by contrast (p < 0.05). This tendency was even more pronounced 6 and 12 months after the restoration. The incidence of side effects or symptoms (apical inflammation, cervical fracture, loosening of the crown) after the PLA posts was significantly lower than after the GFP (p < 0.05). No statistically significant differences were present between the two groups with respect to colour matching, anatomical form, marginal adaptation, marginal pigmentation, surface roughness, occlusal contact and secondary caries. Based on the results, applying PLA intracanal posts and cyanoacrylate to residual anterior crowns in young children can improve their gingival health, reduce side effects, and increase the likelihood of successful restoration.


Asunto(s)
Caries Dental , Técnica de Perno Muñón , Niño , Humanos , Preescolar , Resinas Compuestas/uso terapéutico , Incisivo , Coronas , Poliésteres , Caries Dental/tratamiento farmacológico , Fracaso de la Restauración Dental , Restauración Dental Permanente/métodos
15.
Angew Chem Int Ed Engl ; 63(16): e202401255, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38298118

RESUMEN

Polylactic acid (PLA) has attracted increasing interest as a sustainable plastic because it can be degraded into CO2 and H2O in nature. However, this process is sluggish, and even worse, it is a CO2-emitting and carbon resource waste process. Therefore, it is highly urgent to develop a novel strategy for recycling post-consumer PLA to achieve a circular plastic economy. Herein, we report a one-pot photoreforming route for the efficient and selective amination of PLA waste into value-added alanine using CoP/CdS catalysts under mild conditions. Results show the alanine production rate can reach up to 2.4 mmol gcat -1 h-1, with a high selectivity (>75 %) and excellent stability. Time-resolved transient absorption spectra (TAS) reveal that CoP can rapidly extract photogenerated electrons from CdS to accelerate proton reduction, favoring hole-dominated PLA oxidation to coproduce alanine. This study offers an appealing way for upcycling PLA waste and creates new opportunities for green synthesis of amino acids.

16.
Histochem Cell Biol ; 159(3): 275-292, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36309635

RESUMEN

Although autografts represent the gold standard for anterior cruciate ligament (ACL) reconstruction, tissue-engineered ACLs provide a prospect to minimize donor site morbidity and limited graft availability. This study characterizes the ligamentogenesis in embroidered poly(L-lactide-co-ε-caprolactone) (P(LA-CL)) / polylactic acid (PLA) constructs using a dynamic nude mice xenograft model. (P(LA-CL))/PLA scaffolds remained either untreated (co) or were functionalized by gas fluorination (F), collagen foam cross-linked with hexamethylene diisocyanate (HMDI) (coll), or F combined with the foam (F + coll). Cell-free constructs or those seeded for 1 week with lapine ACL ligamentocytes were implanted into nude mice for 12 weeks. Following explantation, cell vitality and content, histo(patho)logy of scaffolds (including organs: liver, kidney, spleen), sulphated glycosaminoglycan (sGAG) contents and biomechanical properties were assessed.Scaffolds did not affect mice weight development and organs, indicating no organ toxicity. Moreover, scaffolds maintained their size and shape and reflected a high cell viability prior to and following implantation. Coll or F + coll scaffolds seeded with cells yielded superior macroscopic properties compared to the controls. Mild signs of inflammation (foreign-body giant cells and hyperemia) were limited to scaffolds without collagen. Microscopical score values and sGAG content did not differ significantly. Although remaining stable after explantation, elastic modulus, maximum force, tensile strength and strain at Fmax were significantly lower in explanted scaffolds compared to those before implantation, with no significant differences between scaffold subtypes, except for a higher maximum force in F + coll compared with F samples (in vivo). Scaffold functionalization with fluorinated collagen foam provides a promising approach for ACL tissue engineering. a Lapine anterior cruciate ligament (LACL): red arrow, posterior cruciate ligament: yellow arrow. Medial anterior meniscotibial ligament: black arrow. b Explant culture to isolate LACL fibroblasts. c Scaffold variants: co: controls; F: functionalization by gas-phase fluorination; coll: collagen foam cross-linked with hexamethylene diisocyanate (HMDI). c1-2 Embroidery pattern of the scaffolds. d Scaffolds were seeded with LACL fibroblasts using a dynamical culturing approach as depicted. e Scaffolds were implanted subnuchally into nude mice, fixed at the nuchal ligament and sacrospinal muscle tendons. f Two weeks after implantation. g Summary of analyses performed. Scale bars 1 cm (b, d), 0.5 cm (c). (sketches drawn by G.S.-T. using Krita 4.1.7 [Krita foundation, The Netherlands]).


Asunto(s)
Colágeno , Halogenación , Humanos , Ratones , Animales , Ratones Desnudos , Ingeniería de Tejidos/métodos , Poliésteres
17.
Arch Microbiol ; 206(1): 31, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38127148

RESUMEN

Polylactic acid (PLA) is a range of unique bioplastics that are bio-based and biodegradable. PLA is currently driving market expansion for lactic acid (LA) due to its high demand as a building block in production. One of the most practical and environmentally benign techniques for synthesising PLA is through enzymatic polymerisation of microbial LA monomers. However, microbial LA fermentation does have some limitations. Firstly, it requires the use of a nutritionally rich medium. Secondly, LA production can be disrupted by bacteriophage infection or other microorganisms. Lastly, the yield can be low due to the formation of by-products through heterofermentative pathway. Considering the potential use of PLA as a replacement for conventional petrochemical-based polymers in industrial applications, researchers are focused on exploring the diversity of LA-producing microorganisms from various niches. Their goal is to study the functional properties of these microorganisms and their ability to produce industrially valuable metabolites. This review highlights the advantages and disadvantages of lactic acid-producing microorganisms used in microbial fermentation for PLA synthesis.


Asunto(s)
Bacteriófagos , Poliésteres , Fermentación , Ácido Láctico
18.
Macromol Rapid Commun ; 44(20): e2300333, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37573031

RESUMEN

Oil spills and the presence of oily wastewater have resulted in substantial ecological damage. Superhydrophobic polymer foam with selectivity and adsorption capacity is a promising candidate for efficient oil-water separation. In this study, a method that combines phase separation and silica coating to produce superhydrophobic thermoplastic polyurethane (TPU) foam is proposed. The TPU foam demonstrates superhydrophobicity with a water contact angle of 155.62°, and exhibits a maximum saturated adsorption capacity of 54.11 g g-1 . Furthermore, the foam can be utilized as a filter for oil-water separation, maintaining its filtration efficiency (41.2 m3  m2  h-1 ) even after ten filtration cycles.


Asunto(s)
Poliuretanos , Dióxido de Silicio , Agua , Interacciones Hidrofóbicas e Hidrofílicas
19.
Environ Res ; 220: 115137, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563977

RESUMEN

Plastic biodegradation by insects has made significant progress, opening up new avenues for the treatment of plastic waste. Wax moth larvae, for example, have attracted the attention of the scientific community because they are known to chew, ingest, and biodegrade natural polymer bee waxes. Despite this, we know very little about how these insects perform on manufactured plastics or how manufactured plastics affect insect metabolism. As a result, we studied the metabolism of greater wax moths (Galleria mellonella) fed on molasses-supplemented polylactic acid plastic (PLA) blocks. An analysis of the central carbon metabolism (CCM) metabolites was performed using liquid chromatography triple quadrupole mass spectrometry (LC-QQQ-MS), while an analysis of untargeted metabolites and lipids was conducted using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS). In total, 169 targeted CCM metabolites, 222 untargeted polar metabolites, and 196 untargeted nonpolar lipids were identified within the insect samples. In contrast, compared to control larvae, PLA-fed larvae displayed significantly different levels of 97 CCM metabolites, 75 polar metabolites, and 57 lipids. Purine and pyrimidine metabolisms were affected by PLA feeding, as well as amino acid metabolism, carbohydrates, cofactors, vitamins, and related metabolisms. Additionally, PLA exposure disrupted insect energy metabolism and oxidative stress, among other metabolic disturbances. The larvae fed PLA have lower levels of several lipids, suggesting a reduction in lipid reserves, and ceramide levels are likely to have changed due to apoptosis and inflammation. The study indicates that G. mellonella larvae could ingest PLA but this process causes some metabolic stress for the host. Future studies of the molecular pathways of this biodegradation process might help to provide strategies for stress reduction that would speed up insect digestion of plastic.


Asunto(s)
Mariposas Nocturnas , Animales , Abejas , Larva/metabolismo , Mariposas Nocturnas/metabolismo , Poliésteres , Plásticos , Estrés Oxidativo , Ceras/metabolismo , Lípidos
20.
Environ Res ; 216(Pt 2): 114532, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243048

RESUMEN

Microplastics' (MPs) aging process and environmental behavior have attracted extensive attention due to the potential long-term ecological impact. MPs enriched in sludge may accelerate aging during sludge treatment and the affecting environmental behavior, i.e., adsorption performance for pollutants. However, the related studies have not been well researched, especially for the biodegradable MPs. This study revealed the influences of hydrothermal treatment on the characteristics of polylactic acid microplastics (PLA-MPs) and the consequences on heavy metals adsorption. The changes in PLA-MPs' physiochemical properties were characterized and compared. PLA-MPs' surface became irregular, and the oxygen-containing functional groups increased through FTIR and XPS analysis. Meanwhile, the molecular weight and crystallinity of PLA-MPs decreased significantly with the rising in hydrothermal temperature. Accordingly, the adsorption capacity of PLA-MPs for Pb2+ increased from 93.97 µg g-1 for the raw PLA-MPs to 1058.03 µg g-1 for the aged PLA-MPs. Multiple adsorption kinetics and isotherms were discussed for the Pb2+ adsorption onto PLA-MPs with different aging of the PLA-MPs. The adsorption mechanisms of Pb2+ relate to electrostatic interaction and complexation. The main difference is that the adsorption for raw PLA-MPs is dominated by physical and chemical adsorption, whereas the adsorption for the aged PLA-MPs prefers chemical adsorption. In addition, we carefully evaluated the influences of pH, dissolved organic matter, and ionic strength on the PLA-MPs adsorption. The present study highlighted the significance of hydrothermal treatment on the MPs aging and the adsorption performance.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Microplásticos , Aguas del Alcantarillado , Plásticos , Adsorción , Plomo , Metales Pesados/química , Poliésteres , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA