Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.387
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38964326

RESUMEN

The human seasonal coronavirus HKU1-CoV, which causes common colds worldwide, relies on the sequential binding to surface glycans and transmembrane serine protease 2 (TMPRSS2) for entry into target cells. TMPRSS2 is synthesized as a zymogen that undergoes autolytic activation to process its substrates. Several respiratory viruses, in particular coronaviruses, use TMPRSS2 for proteolytic priming of their surface spike protein to drive membrane fusion upon receptor binding. We describe the crystal structure of the HKU1-CoV receptor binding domain in complex with TMPRSS2, showing that it recognizes residues lining the catalytic groove. Combined mutagenesis of interface residues and comparison across species highlight positions 417 and 469 as determinants of HKU1-CoV host tropism. The structure of a receptor-blocking nanobody in complex with zymogen or activated TMPRSS2 further provides the structural basis of TMPRSS2 activating conformational change, which alters loops recognized by HKU1-CoV and dramatically increases binding affinity.

2.
Annu Rev Immunol ; 33: 49-77, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25493334

RESUMEN

Induction, production, and release of proinflammatory cytokines are essential steps to establish an effective host defense. Cytokines of the interleukin-1 (IL-1) family induce inflammation and regulate T lymphocyte responses while also displaying homeostatic and metabolic activities. With the exception of the IL-1 receptor antagonist, all IL-1 family cytokines lack a signal peptide and require proteolytic processing into an active molecule. One such unique protease is caspase-1, which is activated by protein platforms called the inflammasomes. However, increasing evidence suggests that inflammasomes and caspase-1 are not the only mechanism for processing IL-1 cytokines. IL-1 cytokines are often released as precursors and require extracellular processing for activity. Here we review the inflammasome-independent enzymatic processes that are able to activate IL-1 cytokines, paying special attention to neutrophil-derived serine proteases, which subsequently induce inflammation and modulate host defense. The inflammasome-independent processing of IL-1 cytokines has important consequences for understanding inflammatory diseases, and it impacts the design of IL-1-based modulatory therapies.


Asunto(s)
Citocinas/metabolismo , Inflamasomas/metabolismo , Interleucina-1/metabolismo , Animales , Susceptibilidad a Enfermedades , Humanos , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo
3.
Cell ; 185(13): 2338-2353.e18, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35662409

RESUMEN

Hijacking the cellular protein degradation system offers unique opportunities for drug discovery, as exemplified by proteolysis-targeting chimeras. Despite their great promise for medical chemistry, so far, it has not been possible to reprogram the bacterial degradation machinery to interfere with microbial infections. Here, we develop small-molecule degraders, so-called BacPROTACs, that bind to the substrate receptor of the ClpC:ClpP protease, priming neo-substrates for degradation. In addition to their targeting function, BacPROTACs activate ClpC, transforming the resting unfoldase into its functional state. The induced higher-order oligomer was visualized by cryo-EM analysis, providing a structural snapshot of activated ClpC unfolding a protein substrate. Finally, drug susceptibility and degradation assays performed in mycobacteria demonstrate in vivo activity of BacPROTACs, allowing selective targeting of endogenous proteins via fusion to an established degron. In addition to guiding antibiotic discovery, the BacPROTAC technology presents a versatile research tool enabling the inducible degradation of bacterial proteins.


Asunto(s)
Proteínas Bacterianas , Chaperonas Moleculares , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Proteolisis
4.
Annu Rev Biochem ; 89: 501-528, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32075415

RESUMEN

Mitochondria are essential metabolic hubs that dynamically adapt to physiological demands. More than 40 proteases residing in different compartments of mitochondria, termed mitoproteases, preserve mitochondrial proteostasis and are emerging as central regulators of mitochondrial plasticity. These multifaceted enzymes limit the accumulation of short-lived, regulatory proteins within mitochondria, modulate the activity of mitochondrial proteins by protein processing, and mediate the degradation of damaged proteins. Various signaling cascades coordinate the activity of mitoproteases to preserve mitochondrial homeostasis and ensure cell survival. Loss of mitoproteases severely impairs the functional integrity of mitochondria, is associated with aging, and causes pleiotropic diseases. Understanding the dual function of mitoproteases as regulatory and quality control enzymes will help unravel the role of mitochondrial plasticity in aging and disease.


Asunto(s)
Envejecimiento/genética , Mitocondrias/genética , Proteínas Mitocondriales/química , Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Péptido Hidrolasas/química , Envejecimiento/metabolismo , Animales , Apoptosis/genética , Regulación de la Expresión Génica , Homeostasis/genética , Humanos , Metabolismo de los Lípidos/genética , Mitocondrias/enzimología , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/genética , Neoplasias/enzimología , Neoplasias/patología , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/patología , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Fosfolípidos/metabolismo , Proteolisis , Proteostasis/genética
5.
Annu Rev Biochem ; 87: 677-696, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29648875

RESUMEN

Regulated proteolysis is a vital process that affects all living things. Bacteria use energy-dependent AAA+ proteases to power degradation of misfolded and native regulatory proteins. Given that proteolysis is an irreversible event, specificity and selectivity in degrading substrates are key. Specificity is often augmented through the use of adaptors that modify the inherent specificity of the proteolytic machinery. Regulated protein degradation is intricately linked to quality control, cell-cycle progression, and physiological transitions. In this review, we highlight recent work that has shed light on our understanding of regulated proteolysis in bacteria. We discuss the role AAA+ proteases play during balanced growth as well as how these proteases are deployed during changes in growth. We present examples of how protease selectivity can be controlled in increasingly complex ways. Finally, we describe how coupling a core recognition determinant to one or more modifying agents is a general theme for regulated protein degradation.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteolisis , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Aminoácidos/metabolismo , Bacterias/crecimiento & desarrollo , Modelos Biológicos , Especificidad por Sustrato
6.
Physiol Rev ; 103(1): 717-785, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35901239

RESUMEN

Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.


Asunto(s)
Receptores Proteinasa-Activados , Transducción de Señal , Humanos , Transducción de Señal/fisiología , Receptores Acoplados a Proteínas G , Péptido Hidrolasas/metabolismo , Homeostasis
7.
Mol Cell ; 82(13): 2385-2400.e9, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35594856

RESUMEN

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly and cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also inactivate the pyroptosis executioner Gasdermin D (GSDMD). Subsequently, caspase-3 and GSDME promote alternative cell pyroptosis. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to autoantibodies against, or inborn errors of, type I interferons (IFNs) highlights GSDME/caspase-3 as potential markers of disease severity. Overall, our findings identify NLRP1 as a sensor of SARS-CoV-2 infection in lung epithelia.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Células Epiteliales , Inflamasomas , Proteínas NLR , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Caspasa 3/metabolismo , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Células Epiteliales/metabolismo , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Pulmón/metabolismo , Pulmón/virología , Proteínas NLR/genética , Proteínas NLR/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptosis , SARS-CoV-2/enzimología , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad
8.
Mol Cell ; 82(19): 3661-3676.e8, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206740

RESUMEN

Mitochondrial Ca2+ uptake, mediated by the mitochondrial Ca2+ uniporter, regulates oxidative phosphorylation, apoptosis, and intracellular Ca2+ signaling. Previous studies suggest that non-neuronal uniporters are exclusively regulated by a MICU1-MICU2 heterodimer. Here, we show that skeletal-muscle and kidney uniporters also complex with a MICU1-MICU1 homodimer and that human/mouse cardiac uniporters are largely devoid of MICUs. Cells employ protein-importation machineries to fine-tune the relative abundance of MICU1 homo- and heterodimers and utilize a conserved MICU intersubunit disulfide to protect properly assembled dimers from proteolysis by YME1L1. Using the MICU1 homodimer or removing MICU1 allows mitochondria to more readily take up Ca2+ so that cells can produce more ATP in response to intracellular Ca2+ transients. However, the trade-off is elevated ROS, impaired basal metabolism, and higher susceptibility to death. These results provide mechanistic insights into how tissues can manipulate mitochondrial Ca2+ uptake properties to support their unique physiological functions.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Adenosina Trifosfato , Animales , Calcio/metabolismo , Canales de Calcio , Proteínas de Unión al Calcio/genética , Disulfuros/metabolismo , Humanos , Ratones , Proteínas de Transporte de Membrana Mitocondrial/genética , Especies Reactivas de Oxígeno/metabolismo
9.
Plant Cell ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723588

RESUMEN

Compared with transcription and translation, protein degradation machineries can act faster and be targeted to different subcellular compartments, enabling immediate regulation of signaling events. It is therefore not surprising that proteolysis has been used extensively to control homeostasis of key regulators in different biological processes and pathways. Over the past decades, numerous studies have shown that proteolysis, where proteins are broken down to peptides or amino acids through ubiquitin-mediated degradation systems and proteases, is a key regulatory mechanism to control plant immunity output. Here, we briefly summarize the roles various proteases play during defense activation, focusing on recent findings. We also update the latest progress of ubiquitin-mediated degradation systems in modulating immunity by targeting plant membrane-localized pattern recognition receptors (PRRs), intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs), and downstream signaling components. Additionally, we highlight recent studies showcasing the importance of proteolysis in maintaining broad-spectrum resistance without obvious yield reduction, opening new directions for engineering elite crops that are resistant to a wide range of pathogens with high yield.

10.
Mol Cell ; 76(4): 632-645.e6, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31519521

RESUMEN

Similar to ubiquitin, SUMO forms chains, but the identity of SUMO-chain-modified factors and the purpose of this modification remain largely unknown. Here, we identify the budding yeast SUMO protease Ulp2, able to disassemble SUMO chains, as a DDK interactor enriched at replication origins that promotes DNA replication initiation. Replication-engaged DDK is SUMOylated on chromatin, becoming a degradation-prone substrate when Ulp2 no longer protects it against SUMO chain assembly. Specifically, SUMO chains channel DDK for SUMO-targeted ubiquitin ligase Slx5/Slx8-mediated and Cdc48 segregase-assisted proteasomal degradation. Importantly, the SUMOylation-defective ddk-KR mutant rescues inefficient replication onset and MCM activation in cells lacking Ulp2, suggesting that SUMO chains time DDK degradation. Using two unbiased proteomic approaches, we further identify subunits of the MCM helicase and other factors as SUMO-chain-modified degradation-prone substrates of Ulp2 and Slx5/Slx8. We thus propose SUMO-chain/Ulp2-protease-regulated proteasomal degradation as a mechanism that times the availability of functionally engaged SUMO-modified protein pools during replication and beyond.


Asunto(s)
Replicación del ADN , ADN de Hongos/biosíntesis , Endopeptidasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sumoilación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/genética , Endopeptidasas/genética , Regulación Fúngica de la Expresión Génica , Mutación , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(11): e2307802121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437557

RESUMEN

RNA interference (RNAi) therapeutics are an emerging class of medicines that selectively target mRNA transcripts to silence protein production and combat disease. Despite the recent progress, a generalizable approach for monitoring the efficacy of RNAi therapeutics without invasive biopsy remains a challenge. Here, we describe the development of a self-reporting, theranostic nanoparticle that delivers siRNA to silence a protein that drives cancer progression while also monitoring the functional activity of its downstream targets. Our therapeutic target is the transcription factor SMARCE1, which was previously identified as a key driver of invasion in early-stage breast cancer. Using a doxycycline-inducible shRNA knockdown in OVCAR8 ovarian cancer cells both in vitro and in vivo, we demonstrate that SMARCE1 is a master regulator of genes encoding proinvasive proteases in a model of human ovarian cancer. We additionally map the peptide cleavage profiles of SMARCE1-regulated proteases so as to design a readout for downstream enzymatic activity. To demonstrate the therapeutic and diagnostic potential of our approach, we engineered self-assembled layer-by-layer nanoparticles that can encapsulate nucleic acid cargo and be decorated with peptide substrates that release a urinary reporter upon exposure to SMARCE1-related proteases. In an orthotopic ovarian cancer xenograft model, theranostic nanoparticles were able to knockdown SMARCE1 which was in turn reported through a reduction in protease-activated urinary reporters. These LBL nanoparticles both silence gene products by delivering siRNA and noninvasively report on downstream target activity by delivering synthetic biomarkers to sites of disease, enabling dose-finding studies as well as longitudinal assessments of efficacy.


Asunto(s)
Neoplasias Ováricas , Péptidos , Humanos , Femenino , Interferencia de ARN , Péptidos/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Péptido Hidrolasas , ARN Interferente Pequeño/genética , Endopeptidasas , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN
12.
Mol Cell ; 69(4): 539-550.e6, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29452635

RESUMEN

Microbial or endogenous molecular patterns as well as pathogen functional features can activate innate immune systems. Whereas detection of infection by pattern recognition receptors has been investigated in details, sensing of virulence factors activities remains less characterized. In Drosophila, genetic evidences indicate that the serine protease Persephone belongs to a danger pathway activated by abnormal proteolytic activities to induce Toll signaling. However, neither the activation mechanism of this pathway nor its specificity has been determined. Here, we identify a unique region in the pro-domain of Persephone that functions as bait for exogenous proteases independently of their origin, type, or specificity. Cleavage in this bait region constitutes the first step of a sequential activation and licenses the subsequent maturation of Persephone to the endogenous cysteine cathepsin 26-29-p. Our results establish Persephone itself as an immune receptor able to sense a broad range of microbes through virulence factor activities rather than molecular patterns.


Asunto(s)
Beauveria/enzimología , Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Inmunidad Innata/inmunología , Receptores Inmunológicos/metabolismo , Serina Endopeptidasas/inmunología , Serina Proteasas/inmunología , Receptores Toll-Like/inmunología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Masculino , Proteolisis , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(6): e2219044120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36730206

RESUMEN

Energy-dependent protein degradation by the AAA+ ClpXP protease helps maintain protein homeostasis in bacteria and eukaryotic organelles of bacterial origin. In Escherichia coli and many other proteobacteria, the SspB adaptor assists ClpXP in degrading ssrA-tagged polypeptides produced as a consequence of tmRNA-mediated ribosome rescue. By tethering these incomplete ssrA-tagged proteins to ClpXP, SspB facilitates their efficient degradation at low substrate concentrations. How this process occurs structurally is unknown. Here, we present a cryo-EM structure of the SspB adaptor bound to a GFP-ssrA substrate and to ClpXP. This structure provides evidence for simultaneous contacts of SspB and ClpX with the ssrA tag within the tethering complex, allowing direct substrate handoff concomitant with the initiation of substrate translocation. Furthermore, our structure reveals that binding of the substrate·adaptor complex induces unexpected conformational changes within the spiral structure of the AAA+ ClpX hexamer and its interaction with the ClpP tetradecamer.


Asunto(s)
Proteínas Portadoras , Proteínas de Escherichia coli , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Especificidad por Sustrato
14.
Trends Biochem Sci ; 46(10): 787-789, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34154877

RESUMEN

ATG8 are core autophagy proteins, the lipidated forms of which decorate double-membraned autophagosomes, as well as single-membraned organelles such as endolysosomes. Recent studies from the Florey and Münz laboratories delineate the status of single membrane-associated ATG8 proteins by indicating that their membrane anchoring can involve phosphatidylserine conjugation and their stabilization depends on ATG4 protease inhibition.


Asunto(s)
Proteínas de la Membrana , Proteínas Asociadas a Microtúbulos , Autofagosomas , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia
15.
J Biol Chem ; 300(2): 105614, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159863

RESUMEN

The activation and mobilization of immune cells play a crucial role in immunotherapy. Existing therapeutic interventions, such as cytokines administration, aim to enhance immune cell activity. However, these approaches usually result in modest effectiveness and toxic side effects, thereby restricting their clinical application. Protease-activated receptors (PARs), a subfamily of G protein-coupled receptors, actively participate in the immune system by directly activating immune cells. The activation of PARs by proteases or synthetic ligands can modulate immune cell behavior, signaling, and responses to treat immune-related diseases, suggesting the significance of PARs agonism in immunotherapy. However, the agonism of PARs in therapeutical applications remains rarely discussed, since it has been traditionally considered that PARs activation facilitates disease progressions. This review aims to comprehensively summarize the activation, rather than inhibition, of PARs in immune-related physiological responses and diseases. Additionally, we will discuss the emerging immunotherapeutic potential of PARs agonism, providing a new strategic direction for PARs-mediated immunotherapy.


Asunto(s)
Inmunoterapia , Receptores Proteinasa-Activados , Péptido Hidrolasas/metabolismo , Receptores Acoplados a Proteínas G , Receptores Proteinasa-Activados/agonistas , Receptores Proteinasa-Activados/metabolismo , Transducción de Señal , Neoplasias/inmunología , Neoplasias/terapia , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/terapia , Humanos , Animales
16.
J Virol ; 98(4): e0010224, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38470058

RESUMEN

The transmembrane serine protease 2 (TMPRSS2) activates the outer structural proteins of a number of respiratory viruses including influenza A virus (IAV), parainfluenza viruses, and various coronaviruses for membrane fusion. Previous studies showed that TMPRSS2 interacts with the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), a cell surface protein that serves as an entry receptor for some coronaviruses. Here, by using protease activity assays, we determine that ACE2 increases the enzymatic activity of TMPRSS2 in a non-catalytic manner. Furthermore, we demonstrate that ACE2 knockdown inhibits TMPRSS2-mediated cleavage of IAV hemagglutinin (HA) in Calu-3 human airway cells and suppresses virus titers 100- to 1.000-fold. Transient expression of ACE2 in ACE2-deficient cells increased TMPRSS2-mediated HA cleavage and IAV replication. ACE2 knockdown also reduced titers of MERS-CoV and prevented S cleavage by TMPRSS2 in Calu-3 cells. By contrast, proteolytic activation and multicycle replication of IAV with multibasic HA cleavage site typically cleaved by furin were not affected by ACE2 knockdown. Co-immunoprecipitation analysis revealed that ACE2-TMPRSS2 interaction requires the enzymatic activity of TMPRSS2 and the carboxypeptidase domain of ACE2. Together, our data identify ACE2 as a new co-factor or stabilizer of TMPRSS2 activity and as a novel host cell factor involved in proteolytic activation and spread of IAV in human airway cells. Furthermore, our data indicate that ACE2 is involved in the TMPRSS2-catalyzed activation of additional respiratory viruses including MERS-CoV.IMPORTANCEProteolytic cleavage of viral envelope proteins by host cell proteases is essential for the infectivity of many viruses and relevant proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of several respiratory viruses, including influenza A virus. TMPRSS2 was previously shown to interact with angiotensin-converting enzyme 2 (ACE2). Here, we report the mechanistic details of this interaction. We demonstrate that ACE2 increases or stabilizes the enzymatic activity of TMPRSS2. Furthermore, we describe ACE2 involvement in TMPRSS2-catalyzed cleavage of the influenza A virus hemagglutinin and MERS-CoV spike protein in human airway cells. These findings expand our knowledge of the activation of respiratory viruses by TMPRSS2 and the host cell factors involved. In addition, our results could help to elucidate a physiological role for TMPRSS2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Virus de la Influenza A , Pulmón , Proteolisis , Serina Endopeptidasas , Animales , Perros , Humanos , Enzima Convertidora de Angiotensina 2/deficiencia , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Biocatálisis , Línea Celular , Furina/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/metabolismo , Pulmón/citología , Pulmón/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Unión Proteica , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Replicación Viral
17.
FASEB J ; 38(5): e23531, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38466220

RESUMEN

Inhaled aeroallergens can directly activate airway epithelial cells (AECs). Exposure to cockroach allergens is a strong risk factor for asthma. Cockroach allergens mediate some of their effects through their serine protease activity; protease activity is also a major contributor to allergenicity. The Th2 cytokine interleukin-13 (IL-13) induces upregulation of the eosinophil chemotactic factor CCL26. CCL26 induces eosinophil migration in allergic inflammation. In this work, we studied the effect of cockroach proteases on IL-13-induced effects. Immersed cultures of the human bronchial epithelial cell line BEAS-2B and air-liquid interface (ALI) cultures of primary normal human bronchial epithelial (NHBE) cells were stimulated with IL-13, Blattella Germanica cockroach extract (CE), or both. IL-13-induced genes were analyzed with qRT-PCR. IL-13 induced upregulation of CCL26, periostin, and IL-13Rα2 in bronchial epithelial cells which were decreased by CE. CE was heat-inactivated (HICE) or pre-incubated with protease inhibitors. HICE and CE preincubated with serine protease inhibitors did not prevent IL-13-induced CCL26 upregulation. CE-degraded IL-13 and specific cleavage sites were identified. CE also decreased IL-4-induced CCL26 upregulation and degraded IL-4. Other serine proteases such as bovine trypsin and house dust mite (HDM) serine proteases did not have the same effects on IL-13-induced CCL26. We conclude that CE serine proteases antagonize IL-13-induced effects in AECs, and this CE effect is mediated primarily through proteolytic cleavage of IL-13. IL-13 cleavage by cockroach serine proteases may modulate CCL26-mediated effects in allergic airway inflammation by interfering directly with the pro-inflammatory effects of IL-13 in vivo.


Asunto(s)
Blattellidae , Humanos , Animales , Bovinos , Interleucina-13 , Interleucina-4 , Serina Proteasas , Serina Endopeptidasas , Inflamación , Quimiocina CCL26
18.
FASEB J ; 38(6): e23566, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38526868

RESUMEN

Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Ratones , Humanos , Receptor Toll-Like 4/genética , Receptor PAR-2/genética , Enfermedad de Chagas/genética , Enfermedad de Chagas/parasitología , Antivirales/farmacología , Inhibidores de Serina Proteinasa/farmacología , Inflamación , Serina , Serina Endopeptidasas/genética
19.
Exp Cell Res ; 434(1): 113868, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043722

RESUMEN

OBJECTIVE: A wide range of cardiac diseases is associated with inflammation. "Inflamed" heart tissue is infiltrated with pro-inflammatory macrophages which extensively secrete matrix metalloproteinase 9 (MMP9), a regulator of extracellular matrix turnover. As MMP9 is released from macrophages in a latent form, it requires activation. The present study addresses the role of cardiomyocytes in the course of this activation process. METHODS AND RESULTS: In mono- and co-cultures of pro-inflammatory rat macrophages (bone marrow-derived and peritoneal) and cardiomyocytes (H9C2 cell line) gelatin zymography demonstrated that activated macrophages robustly secreted latent pro-MMP9, whereas cardiomyocytes could not produce the enzyme. Co-culturing of the two cell species was critical for pro-MMP9 activation and was also accompanied by processing of cardiomyocyte-secreted pro-MMP2. A cascade of pro-MMP9 activation was initiated on macrophage membrane with pro-MMP2 cleavage. Namely, pro-inflammatory macrophages expressed an active membrane type 1 MMP (MT1MMP), which activated pro-MMP2, which in turn converted pro-MMP9. Downregulation of MT1MMP in macrophages by siRNA abolished activation of both pro-MMP2 and pro-MMP9 in co-culture. In addition, both cell species secreted MMP13 as a further pro-MMP9 activator. In co-culture, activation of pro-MMP13 occurred on membranes of macrophages and was enhanced in presence of active MMP2. Using incubations with recombinant MMPs and isolated macrophage membranes, we demonstrated that while both MMP2 and MMP13 individually had the ability to activate pro-MMP9, their combined action provided a synergistic effect. CONCLUSION: Activation of pro-MMP9 in a co-culture of pro-inflammatory macrophages and cardiomyocytes was the result of a complex interaction of several MMPs on the cell membrane and in the extracellular space. Both cell types contributed critically to pro-MMP9 processing.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Animales , Ratas , Células Cultivadas , Técnicas de Cocultivo , Macrófagos/metabolismo , Metaloproteinasa 13 de la Matriz , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Miocitos Cardíacos/metabolismo
20.
Mol Cell Proteomics ; 22(11): 100663, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832788

RESUMEN

Ticks are ectoparasites that feed on blood and have an impressive ability to consume and process enormous amounts of host blood, allowing extremely long periods of starvation between blood meals. The central role in the parasitic lifestyle of ticks is played by the midgut. This organ efficiently stores and digests ingested blood and serves as the primary interface for the transmission of tick-borne pathogens. In this study, we used a label-free quantitative approach to perform a novel dynamic proteomic analysis of the midgut of Ixodesricinus nymphs, covering their development from unfed to pre-molt stages. We identified 1534 I. ricinus-specific proteins with a relatively low proportion of host proteins. This proteome dataset, which was carefully examined by manual scrutiny, allowed precise annotation of proteins important for blood meal processing and their dynamic changes during nymphal ontogeny. We focused on midgut molecules related to lipid hydrolysis, storage, and transport, opening a yet unexplored avenue for studying lipid metabolism in ticks. Further dynamic profiling of the tick's multi-enzyme digestive network, protease inhibitors, enzymes involved in redox homeostasis and detoxification, antimicrobial peptides, and proteins responsible for midgut colonization by Borrelia spirochetes promises to uncover new targets for targeting tick nymphs, the most critical life stage for transmission the pathogens that cause tick-borne diseases.


Asunto(s)
Ixodes , Animales , Ixodes/parasitología , Proteoma , Proteómica , Sistema Digestivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA