Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 937
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(36): e2409955121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190351

RESUMEN

Facing complex and variable emerging antibiotic pollutants, the traditional development of functional materials is a "trial-and-error" process based on physicochemical principles, where laborious steps and long timescales make it difficult to accelerate technical breakthroughs. Notably, natural biomolecular coronas derived from highly tolerant organisms under significant contamination scenarios can be used in conjunction with nanotechnology to tackling emerging contaminants of concern. Here, super worms (Tubifex tubifex) with high pollutant tolerance were integrated with nano-zero valent iron (nZVI) to effectively reduce the content of 17 antibiotics in wastewater within 7 d. Inspired by the synergistic remediation, nZVI-augmented worms were constructed as biological nanocomposites. Neither nZVI (0.3 to 3 g/L) nor worms (104 to 105 per liter) alone efficiently degraded florfenicol (FF, as a representative antibiotic), while their composite removed 87% of FF (3 µmol/L). Under antibiotic exposure, biomolecules secreted by worms formed a corona on and modified the nZVI particle surface, enabling the nano-bio interface greater functionality, including responsiveness, enrichment, and reduction. Mechanistically, FF exposure activated glucose-alanine cycle pathways that synthesize organic acids and amines as major metabolites, which were assembled into vesicles and secreted, thereby interacting with nZVI in a biologically response design strategy. Lactic acid and urea formed hydrogen bonds with FF, enriched analyte presence at the heterogeneous interface. Succinic and lactic acids corroded the nZVI passivation layer and promoted electron transfer through surface conjugation. This unique strategy highlights biomolecular coronas as a complex resource to augment nano-enabled technologies and will provide shortcuts for rational manipulation of nanomaterial surfaces with coordinated multifunctionalities.


Asunto(s)
Antibacterianos , Hierro , Antibacterianos/química , Antibacterianos/farmacología , Animales , Hierro/química , Hierro/metabolismo , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Oligoquetos/metabolismo , Biodegradación Ambiental , Restauración y Remediación Ambiental/métodos , Nanocompuestos/química
2.
Proc Natl Acad Sci U S A ; 121(28): e2403034121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38954547

RESUMEN

Nanomaterials acquire a biomolecular corona upon introduction to biological media, leading to biological transformations such as changes in protein function, unmasking of epitopes, and protein fibrilization. Ex vivo studies to investigate the effect of nanoparticles on protein-protein interactions are typically performed in buffer and are rarely measured quantitatively in live cells. Here, we measure the differential effect of silica nanoparticles on protein association in vitro vs. in mammalian cells. BtubA and BtubB are a pair of bacterial tubulin proteins identified in Prosthecobacter strains that self-assemble like eukaryotic tubulin, first into dimers and then into microtubules in vitro or in vivo. Förster resonance energy transfer labeling of each of the Btub monomers with a donor (mEGFP) and acceptor (mRuby3) fluorescent protein provides a quantitative tool to measure their binding interactions in the presence of unfunctionalized silica nanoparticles in buffer and in cells using fluorescence spectroscopy and microscopy. We show that silica nanoparticles enhance BtubAB dimerization in buffer due to protein corona formation. However, these nanoparticles have little effect on bacterial tubulin self-assembly in the complex mammalian cellular environment. Thus, the effect of nanomaterials on protein-protein interactions may not be readily translated from the test tube to the cell in the absence of particle surface functionalization that can enable targeted protein-nanoparticle interactions to withstand competitive binding in the nanoparticle corona from other biomolecules.


Asunto(s)
Proteínas Bacterianas , Nanopartículas , Dióxido de Silicio , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Nanopartículas/química , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Microtúbulos/metabolismo , Multimerización de Proteína , Unión Proteica
3.
Cell Mol Life Sci ; 81(1): 376, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212707

RESUMEN

In intravenous immunoglobulins (IVIG), and some other immunoglobulin products, protein particles have been implicated in adverse events. Role and mechanisms of immunoglobulin particles in vascular adverse effects of blood components and manufactured biologics have not been elucidated. We have developed a model of spherical silica microparticles (SiMPs) of distinct sizes 200-2000 nm coated with different IVIG- or albumin (HSA)-coronas and investigated their effects on cultured human umbilical vein endothelial cells (HUVEC). IVIG products (1-20 mg/mL), bare SiMPs or SiMPs with IVIG-corona, did not display significant toxicity to unstimulated HUVEC. In contrast, in TNFα-stimulated HUVEC, IVIG-SiMPs induced decrease of HUVEC viability compared to HSA-SiMPs, while no toxicity of soluble IVIG was observed. 200 nm IVIG-SiMPs after 24 h treatment further increased ICAM1 (intercellular adhesion molecule 1) and tissue factor surface expression, apoptosis, mammalian target of rapamacin (mTOR)-dependent activation of autophagy, and release of extracellular vesicles, positive for mitophagy markers. Toxic effects of IVIG-SiMPs were most prominent for 200 nm SiMPs and decreased with larger SiMP size. Using blocking antibodies, toxicity of IVIG-SiMPs was found dependent on FcγRII receptor expression on HUVEC, which increased after TNFα-stimulation. Similar results were observed with different IVIG products and research grade IgG preparations. In conclusion, submicron particles with immunoglobulin corona induced size-dependent toxicity in TNFα-stimulated HUVEC via FcγRII receptors, associated with apoptosis and mTOR-dependent activation of autophagy. Testing of IVIG toxicity in endothelial cells prestimulated with proinflammatory cytokines is relevant to clinical conditions. Our results warrant further studies on endothelial toxicity of sub-visible immunoglobulin particles.


Asunto(s)
Autofagia , Células Endoteliales de la Vena Umbilical Humana , Inmunoglobulinas Intravenosas , Receptores de IgG , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Autofagia/efectos de los fármacos , Receptores de IgG/metabolismo , Tamaño de la Partícula , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad , Apoptosis/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Supervivencia Celular/efectos de los fármacos , Corona de Proteínas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(23): e2200363119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35653569

RESUMEN

The nanomaterial­protein "corona" is a dynamic entity providing a synthetic­natural interface mediating cellular uptake and subcellular distribution of nanomaterials in biological systems. As nanomaterials are central to the safe-by-design of future nanomedicines and the practice of nanosafety, understanding and delineating the biological and toxicological signatures of the ubiquitous nanomaterial­protein corona are precursors to the continued development of nano­bio science and engineering. However, despite well over a decade of extensive research, the dynamics of intracellular release or exchange of the blood protein corona from nanomaterials following their cellular internalization remains unclear, and the biological footprints of the nanoparticle­protein corona traversing cellular compartments are even less well understood. To address this crucial bottleneck, the current work screened evolution of the intracellular protein corona along the endocytotic pathway from blood via lysosomes to cytoplasm in cancer cells. Intercellular proteins, including pyruvate kinase M2 (PKM2), and chaperones, displaced some of the initially adsorbed blood proteins from the nanoparticle surface, which perturbed proteostasis and subsequently incited chaperone-mediated autophagy (CMA) to disrupt the key cellular metabolism pathway, including glycolysis and lipid metabolism. Since proteostasis is key to the sustainability of cell function, its collapse and the resulting CMA overdrive spell subsequent cell death and aging. Our findings shed light on the consequences of the transport of extracellular proteins by nanoparticles on cell metabolism.


Asunto(s)
Nanoestructuras , Corona de Proteínas , Corona de Proteínas/metabolismo , Proteómica , Proteostasis , Piruvato Quinasa/metabolismo
5.
Nano Lett ; 24(32): 9874-9881, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39096192

RESUMEN

We recently revealed significant variability in protein corona characterization across various proteomics facilities, indicating that data sets are not comparable between independent studies. This heterogeneity mainly arises from differences in sample preparation protocols, mass spectrometry workflows, and raw data processing. To address this issue, we developed standardized protocols and unified sample preparation workflows, distributing uniform protein corona digests to several top-performing proteomics centers from our previous study. We also examined the influence of using similar mass spectrometry instruments on data homogeneity and standardized database search parameters and data processing workflows. Our findings reveal a remarkable stepwise improvement in protein corona data uniformity, increasing overlaps in protein identification from 11% to 40% across facilities using similar instruments and through a uniform database search. We identify the key parameters behind data heterogeneity and provide recommendations for designing experiments. Our findings should significantly advance the robustness of protein corona analysis for diagnostic and therapeutics applications.


Asunto(s)
Nanomedicina , Corona de Proteínas , Proteómica , Corona de Proteínas/química , Corona de Proteínas/análisis , Humanos , Proteómica/métodos , Reproducibilidad de los Resultados , Espectrometría de Masas/métodos , Flujo de Trabajo
6.
Nano Lett ; 24(30): 9202-9211, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037031

RESUMEN

The formation of a protein corona gives nanomedicines a distinct biological identity, profoundly influencing their fate in the body. Nonspecific nanoparticle-protein interactions are typically highly heterogeneous, which can lead to unique biological behaviors and in vivo fates for individual nanoparticles that remain underexplored. To address this, we have established an in situ approach that allows quantitative examination of nanoparticle-protein adsorption at the individual nanoparticle level. This method integrates dual fluorescence quantification techniques, wherein the nanoparticles are first individually analyzed via nanoflow cytometry to detect fluorescent signals from adsorbed proteins. The obtained fluorescence intensity is then translated into protein quantities through calibration with microplate reader quantification. Consequently, this approach enables analysis of interparticle heterogeneity of nano-protein interactions, as well as in situ monitoring of protein adsorption kinetics and nanoparticle aggregation status in blood serum, preconditioning for a comprehensive understanding of nano-bio interactions, and predicting in vivo fate of nanomedicines.


Asunto(s)
Proteínas Sanguíneas , Nanopartículas , Adsorción , Nanopartículas/química , Proteínas Sanguíneas/química , Proteínas Sanguíneas/análisis , Humanos , Corona de Proteínas/química , Fluorescencia , Cinética
7.
Nano Lett ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39361530

RESUMEN

In biological systems, nanoparticles interact with biomolecules, which may undergo protein corona formation that can result in noncontrolled aggregation. Therefore, comprehending the behavior and evolution of nanoparticles in the presence of biological fluids is paramount in nanomedicine. However, traditional lab-based colloid methods characterize diluted suspensions in low-complexity media, which hinders in-depth studies in complex biological environments. Here, we apply X-ray photon correlation spectroscopy (XPCS) to investigate silica nanoparticles (SiO2) in various environments, ranging from low to high complex biological media. Interestingly, SiO2 revealed Brownian motion behavior, irrespective of the complexity of the chosen media. Moreover, the SiO2 surface and media composition were tailored to underline the differences between a corona-free system from protein corona and aggregates formation. Our results highlighted XPCS potential for real-time nanoparticle analysis in biological media, surpassing the limitations of conventional techniques and offering deeper insights into colloidal behavior in complex environments.

8.
Nano Lett ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360780

RESUMEN

With the increasing presence of nanoplastics (NPs) in the human bloodstream, it is urgent to investigate their tissue accumulation and potential health risks. This study examines the effects of the size and surface charges of polystyrene (PS) NPs on lung accumulation. Using magnetic separation, we identified the protein corona composition on iron-core PS NPs, revealing the enrichment of vitronectin and fibrinogen. The corona promotes integrin αIIbß3 receptor-mediated uptake by lung endothelial cells, explaining that both the corona composition and protein structure determine preferred localization of negatively charged PS NPs in the lung. This study uncovers the role of protein corona in NP uptake and the way NPs enter the lung, emphasizing the need to consider interactions between nanoplastics with varying surface characteristics and biological molecules in the nanotoxicological field.

9.
Proteomics ; : e2400028, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221533

RESUMEN

The protein corona, a layer of biomolecules forming around nanoparticles in biological environments, critically influences nanoparticle interactions with biosystems, affecting pharmacokinetics and biological outcomes. Initially, the protein corona presented challenges for nanomedicine and nanotoxicology, such as nutrient depletion in cell cultures and masking of nanoparticle-targeting species. However, recent advancements have highlighted its potential in environmental toxicity, proteomics, and immunology. This viewpoint focuses on leveraging the protein corona to enhance the depth of plasma proteome analysis, addressing challenges posed by the high dynamic range of protein concentrations in plasma. The protein corona simplifies sample preparation, enriches low-abundance proteins, and improves proteome coverage. Innovations include using diverse nanoparticles and spiking small molecules to increase the number of quantified proteins. Reproducibility issues across core facilities necessitate standardized protocols. Moreover, top-down proteomics enables proteoform-specific measurements, providing deeper insights into protein corona composition. Future research should aim at improving top-down proteomics techniques and integrating protein corona studies and proteomics for personalized medicine and advanced diagnostics.

10.
J Proteome Res ; 23(10): 4694-4703, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39312774

RESUMEN

The dynamic range challenge for the detection of proteins and their proteoforms in human plasma has been well documented. Here, we use the nanoparticle protein corona approach to enrich low-abundance proteins selectively and reproducibly from human plasma and use top-down proteomics to quantify differential enrichment for the 2841 detected proteoforms from 114 proteins. Furthermore, nanoparticle enrichment allowed top-down detection of proteoforms between ∼1 µg/mL and ∼10 pg/mL in absolute abundance, providing up to a 105-fold increase in proteome depth over neat plasma in which only proteoforms from abundant proteins (>1 µg/mL) were detected. The ability to monitor medium and some low-abundant proteoforms through reproducible enrichment significantly extends the applicability of proteoform research by adding depth beyond albumin, immunoglobins, and apolipoproteins to uncover many involved in immunity and cell signaling. As proteoforms carry unique information content relative to peptides, this report opens the door to deeper proteoform sequencing in clinical proteomics of disease or aging cohorts.


Asunto(s)
Proteínas Sanguíneas , Nanopartículas , Proteómica , Humanos , Proteómica/métodos , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/química , Nanopartículas/química , Proteoma/análisis , Corona de Proteínas/química
11.
Annu Rev Pharmacol Toxicol ; 61: 269-289, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-32841092

RESUMEN

Nanoparticles from natural and anthropogenic sources are abundant in the environment, thus human exposure to nanoparticles is inevitable. Due to this constant exposure, it is critically important to understand the potential acute and chronic adverse effects that nanoparticles may cause to humans. In this review, we explore and highlight the current state of nanotoxicology research with a focus on mechanistic understanding of nanoparticle toxicity at organ, tissue, cell, and biomolecular levels. We discuss nanotoxicity mechanisms, including generation of reactive oxygen species, nanoparticle disintegration, modulation of cell signaling pathways, protein corona formation, and poly(ethylene glycol)-mediated immunogenicity. We conclude with a perspective on potential approaches to advance current understanding of nanoparticle toxicity. Such improved understanding may lead to mitigation strategies that could enable safe application of nanoparticles in humans. Advances in nanotoxicity research will ultimately inform efforts to establish standardized regulatory frameworks with the goal of fully exploiting the potential of nanotechnology while minimizing harm to humans.


Asunto(s)
Nanopartículas , Humanos , Especies Reactivas de Oxígeno
12.
Small ; 20(26): e2305684, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38247186

RESUMEN

Understanding the conformation of proteins in the nanoparticle corona has important implications in how organisms respond to nanoparticle-based drugs. These proteins coat the nanoparticle surface, and their properties will influence the nanoparticle's interaction with cell targets and the immune system. While some coronas are thought to be disordered, two key unanswered questions are the degree of disorder and solvent accessibility. Here, a model is developed for protein corona disorder in polystyrene nanoparticles of varying size. For two different proteins, it is found that binding affinity decreases as nanoparticle size increases. The stoichiometry of binding, along with changes in the hydrodynamic size, supports a highly solvated, disordered protein corona anchored at a small number of attachment sites. The scaling of the stoichiometry versus nanoparticle size is consistent with disordered polymer dimensions. Moreover, it is found that proteins are destabilized less in the presence of larger nanoparticles, and hydrophobic exposure decreases at lower curvatures. The observations hold for proteins on flat polystyrene surfaces, which have the lowest hydrophobic exposure. The model provides an explanation for previous observations of increased amyloid fibrillation rates in the presence of larger nanoparticles, and it may rationalize how cell receptors can recognize protein disorder in therapeutic nanoparticles.


Asunto(s)
Nanopartículas , Poliestirenos , Unión Proteica , Corona de Proteínas , Poliestirenos/química , Nanopartículas/química , Corona de Proteínas/química , Solventes/química , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula
13.
Small ; 20(34): e2311115, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38556634

RESUMEN

Engineering of catalytically active inorganic nanomaterials holds promising prospects for biomedicine. Catalytically active metal oxides show applications in enhancing wound healing but have also been employed to induce cell death in photodynamic or radiation therapy. Upon introduction into a biological system, nanomaterials are exposed to complex fluids, causing interaction and adsorption of ions and proteins. While protein corona formation on nanomaterials is acknowledged, its modulation of nanomaterial catalytic efficacy is less understood. In this study, proteomic analyses and nano-analytic methodologies quantify and characterize adsorbed proteins, correlating this protein layer with metal oxide catalytic activity in vitro and in vivo. The protein corona comprises up to 280 different proteins, constituting up to 38% by weight. Enhanced complement factors and other opsonins on nanocatalyst surfaces lead to their uptake into macrophages when applied topically, localizing >99% of the nanomaterials in tissue-resident macrophages. Initially, the formation of the protein corona significantly reduces the nanocatalysts' activity, but this activity can be partially recovered in endosomal conditions due to the proteolytic degradation of the corona. Overall, the research reveals the complex relationship between physisorbed proteins and the catalytic characteristics of specific metal oxide nanoparticles, providing design parameters for optimizing nanocatalysts in complex biological environments.


Asunto(s)
Óxidos , Corona de Proteínas , Óxidos/química , Animales , Catálisis , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Agregado de Proteínas , Macrófagos/metabolismo , Ratones , Metales/química , Humanos , Células RAW 264.7
14.
Small ; 20(10): e2306168, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37880910

RESUMEN

Coronary artery disease (CAD) is the most common type of heart disease and represents the leading cause of death in both men and women worldwide. Early detection of CAD is crucial for decreasing mortality, prolonging survival, and improving patient quality of life. Herein, a non-invasive is described, nanoparticle-based diagnostic technology which takes advantages of proteomic changes in the nano-bio interface for CAD detection. Nanoparticles (NPs) exposed to biological fluids adsorb on their surface a layer of proteins, the "protein corona" (PC). Pathological changes that alter the plasma proteome can directly result in changes in the PC. By forming disease-specific PCs on six NPs with varying physicochemical properties, a PC-based sensor array is developed for detection of CAD using specific PC pattern recognition. While the PC of a single NP may not provide the required specificity, it is reasoned that multivariate PCs across NPs with different surface chemistries, can provide the desirable information to selectively discriminate the condition under investigation. The results suggest that such an approach can detect CAD with an accuracy of 92.84%, a sensitivity of 87.5%, and a specificity of 82.5%. These new findings demonstrate the potential of PC-based sensor array detection systems for clinical use.


Asunto(s)
Enfermedad de la Arteria Coronaria , Nanopartículas , Corona de Proteínas , Femenino , Humanos , Corona de Proteínas/química , Enfermedad de la Arteria Coronaria/diagnóstico , Proteómica , Calidad de Vida , Nanopartículas/química , Proteoma
15.
Small ; 20(35): e2402311, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38700060

RESUMEN

Nanosized drug formulations are broadly explored for the improvement of cancer therapy. Prediction of in vivo nanoparticle (NP) behavior, however, is challenging, given the complexity of the tumor and its microenvironment. Microfluidic tumor-on-a-chip models are gaining popularity for the in vitro testing of nanoparticle targeting under conditions that simulate the 3D tumor (microenvironment). In this review, following a description of the tumor microenvironment (TME), the state of the art regarding tumor-on-a-chip models for investigating nanoparticle delivery to solid tumors is summarized. The models are classified based on the degree of compartmentalization (single/multi-compartment) and cell composition (tumor only/tumor microenvironment). The physiological relevance of the models is critically evaluated. Overall, microfluidic tumor-on-a-chip models greatly improve the simulation of the TME in comparison to 2D tissue cultures and static 3D spheroid models and contribute to the understanding of nanoparticle behavior. Interestingly, two interrelated aspects have received little attention so far which are the presence and potential impact of a protein corona as well as nanoparticle uptake through phagocytosing cells. A better understanding of their relevance for the predictive capacity of tumor-on-a-chip systems and development of best practices will be a next step for the further refinement of advanced in vitro tumor models.


Asunto(s)
Dispositivos Laboratorio en un Chip , Nanopartículas , Neoplasias , Microambiente Tumoral , Humanos , Nanopartículas/química , Neoplasias/metabolismo , Neoplasias/patología , Animales
16.
Small ; 20(38): e2309616, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38564782

RESUMEN

Radiolabeling and nuclear imaging techniques are used to investigate the biodistribution patterns of the soft and hard protein corona around poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) after administration to healthy mice. Soft and hard protein coronas of 131I-labeled BSA or 131I-labeled serum are formed on PLGA NPs functionalized with either polyehtylenimine (PEI) or bovine serum albumin (BSA). The exchangeability of hard and soft corona is assessed in vitro by gamma counting exposing PLGA NPs with corona to non-labeled BSA, serum, or simulated body fluid. PEI PLGA NPs form larger and more stable coronas than BSA PLGA NPs. Soft coronas are more exchangeable than hard ones. The in vivo fate of PEI PLGA NPs coated with preformed 18F-labeled BSA hard and soft coronas is assessed by positron emission tomography (PET) following intravenous administration. While the soft corona shows a biodistribution similar to free 18F BSA with high activity in blood and kidney, the hard corona follows patterns characteristic of nanoparticles, accumulating in the lungs, liver, and spleen. These results show that in vivo fates of soft and hard corona are different, and that soft corona is more easily exchanged with proteins from the body, while hard corona is largely retained on the nanoparticle surface.


Asunto(s)
Nanopartículas , Tomografía de Emisión de Positrones , Corona de Proteínas , Albúmina Sérica Bovina , Animales , Corona de Proteínas/química , Tomografía de Emisión de Positrones/métodos , Nanopartículas/química , Ratones , Distribución Tisular , Albúmina Sérica Bovina/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Bovinos , Modelos Animales
17.
Small ; : e2403913, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082088

RESUMEN

Multiple 10 nm-sized anionic nanoparticles complexed with plasma proteins (human serum albumin (SA) or immunoglobulin gamma-1 (IgG)) at different ratios are simulated using all-atom and coarse-grained models. Coarse-grained simulations show much larger hydrodynamic radii of individual particles at a low protein concentration (a protein-to-particle ratio of 1) than at high protein concentrations or without proteins, indicating particle aggregation only at such a low protein concentration, in agreement with experiments. This particle aggregation is attributed to both electrostatic and hydrophobic particle-protein interactions, to an extent dependent on different proteins. In all-atom simulations, IgG proteins induce particle aggregation with and without salt, while SA proteins promote particle aggregation only in the presence of salt that can weaken the electrostatic repulsion between anionic particles closely linked via SA that is smaller than IgG, which also agree well with experiments. Besides charge interactions, hydrophobic interactions between particles and proteins are also important especially at the high salt concentration, leading to the increased particle-protein contact area. These findings help explain experimental observations regarding that the effects of protein concentration and ionic strength on particle aggregation depend on different plasma proteins, which are interpreted by binding free energies, electrostatic, and hydrophobic interactions between particles and proteins.

18.
Mol Pharm ; 21(5): 2272-2283, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38607681

RESUMEN

Over the years, there has been significant interest in PEGylated lipid-based nanocarriers within the drug delivery field. The inevitable interplay between the nanocarriers and plasma protein plays a pivotal role in their in vivo biological fate. Understanding the factors influencing lipid-based nanocarrier and protein corona interactions is of paramount importance in the design and clinical translation of these nanocarriers. Herein, discoid-shaped lipid nanodiscs (sNDs) composed of different phospholipids with varied lipid tails and head groups were fabricated. We investigated the impact of phospholipid components on the interaction between sNDs and serum proteins, particle stability, and biodistribution. The results showed that all of these lipid nanodiscs remained stable over a 15 day storage period, while their stability in the blood serum demonstrated significant differences. The sND composed of POPG exhibited the least stability due to its potent complement activation capability, resulting in rapid blood clearance. Furthermore, a negative correlation between the complement activation capability and serum stability was identified. Pharmacokinetic and biodistribution experiments indicated that phospholipid composition did not influence the capability of sNDs to evade the accelerated blood clearance phenomenon. Complement deposition on the sND was inversely associated with the area under the curve. Additionally, all lipid nanodiscs exhibited dominant adsorption of apolipoprotein. Remarkably, the POPC-based lipid nanodisc displayed a significantly higher deposition of apolipoprotein E, contributing to an obvious brain distribution, which provides a promising tool for brain-targeted drug delivery.


Asunto(s)
Nanopartículas , Fosfolípidos , Corona de Proteínas , Corona de Proteínas/química , Animales , Fosfolípidos/química , Distribución Tisular , Ratones , Nanopartículas/química , Portadores de Fármacos/química , Nanoestructuras/química , Masculino , Activación de Complemento/efectos de los fármacos , Lípidos/química , Sistemas de Liberación de Medicamentos/métodos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/química
19.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206576

RESUMEN

Over the past decade, a remarkable surge in the development of functional nano-delivery systems loaded with bioactive compounds for healthcare has been witnessed. Notably, the demanding requirements of high solubility, prolonged circulation, high tissue penetration capability, and strong targeting ability of nanocarriers have posed interdisciplinary research challenges to the community. While extensive experimental studies have been conducted to understand the construction of nano-delivery systems and their metabolic behavior in vivo, less is known about these molecular mechanisms and kinetic pathways during their metabolic process in vivo, and lacking effective means for high-throughput screening. Molecular dynamics (MD) simulation techniques provide a reliable tool for investigating the design of nano-delivery carriers encapsulating these functional ingredients, elucidating the synthesis, translocation, and delivery of nanocarriers. This review introduces the basic MD principles, discusses how to apply MD simulation to design nanocarriers, evaluates the ability of nanocarriers to adhere to or cross gastrointestinal mucosa, and regulates plasma proteins in vivo. Moreover, we presented the critical role of MD simulation in developing delivery systems for precise nutrition and prospects for the future. This review aims to provide insights into the implications of MD simulation techniques for designing and optimizing nano-delivery systems in the healthcare food industry.

20.
Nanotechnology ; 35(49)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39284320

RESUMEN

Neuronanomedicine is an emerging field bridging the gap between neuromedicine and novel nanotherapeutics. Despite promise, clinical translation of neuronanomedicine remains elusive, possibly due to a dearth of information regarding the effect of the protein corona on these neuronanomedicines. The protein corona, a layer of proteins adsorbed to nanoparticles following exposure to biological fluids, ultimately determines the fate of nanoparticles in biological systems, dictating nanoparticle-cell interactions. To date, few studies have investigated the effect of the protein corona on interactions with brain-derived cells, an important consideration for the development of neuronanomedicines. Here, two polymeric nanoparticles, poly(lactic-co-glycolic acid) (PLGA) and PLGA-polyethylene glycol (PLGA-PEG), were used to obtain serum-derived protein coronas. Protein corona characterization and liquid chromatography mass spectrometry analysis revealed distinct differences in biophysical properties and protein composition. PLGA protein coronas contained high abundance of globins (60%) and apolipoproteins (21%), while PLGA-PEG protein coronas contained fewer globins (42%) and high abundance of protease inhibitors (28%). Corona coated PLGA nanoparticles were readily internalized into microglia and neuronal cells, but not into astrocytes. Internalization of nanoparticles was associated with pro-inflammatory cytokine release and decreased neuronal cell viability, however, viability was rescued in cells treated with corona coated nanoparticles. These results showcase the importance of the protein corona in mediating nanoparticle-cell interactions.


Asunto(s)
Encéfalo , Nanopartículas , Polietilenglicoles , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Corona de Proteínas , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Nanopartículas/química , Polietilenglicoles/química , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Encéfalo/metabolismo , Humanos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Ácido Láctico/química , Ácido Láctico/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Ácido Poliglicólico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA