Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.505
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(17): 4674-4689.e18, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38981481

RESUMEN

All-RNA-mediated targeted gene integration methods, rendering reduced immunogenicity, effective deliverability with non-viral vehicles, and a low risk of random mutagenesis, are urgently needed for next-generation gene addition technologies. Naturally occurring R2 retrotransposons hold promise in this context due to their site-specific integration profile. Here, we systematically analyzed the biodiversity of R2 elements and screened several R2 orthologs capable of full-length gene insertion in mammalian cells. Robust R2 system gene integration efficiency was attained using combined donor RNA and protein engineering. Importantly, the all-RNA-delivered engineered R2 system showed effective integration activity, with efficiency over 60% in mouse embryos. Unbiased high-throughput sequencing demonstrated that the engineered R2 system exhibited high on-target integration specificity (99%). In conclusion, our study provides engineered R2 tools for applications based on hit-and-run targeted DNA integration and insights for further optimization of retrotransposon systems.


Asunto(s)
ARN , Retroelementos , Animales , Retroelementos/genética , Ratones , Humanos , ARN/genética , ARN/metabolismo , Células HEK293 , Ingeniería Genética/métodos , Marcación de Gen/métodos
2.
Cell ; 186(13): 2865-2879.e20, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37301196

RESUMEN

Retroelements are the widespread jumping elements considered as major drivers for genome evolution, which can also be repurposed as gene-editing tools. Here, we determine the cryo-EM structures of eukaryotic R2 retrotransposon with ribosomal DNA target and regulatory RNAs. Combined with biochemical and sequencing analysis, we reveal two essential DNA regions, Drr and Dcr, required for recognition and cleavage. The association of 3' regulatory RNA with R2 protein accelerates the first-strand cleavage, blocks the second-strand cleavage, and initiates the reverse transcription starting from the 3'-tail. Removing 3' regulatory RNA by reverse transcription allows the association of 5' regulatory RNA and initiates the second-strand cleavage. Taken together, our work explains the DNA recognition and RNA supervised sequential retrotransposition mechanisms by R2 machinery, providing insights into the retrotransposon and application reprogramming.


Asunto(s)
ARN , Retroelementos , ARN/metabolismo , División del ADN , ADN Polimerasa Dirigida por ARN/metabolismo , Transcripción Reversa
3.
Cell ; 185(20): 3671-3688.e23, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36113466

RESUMEN

Bacteria encode reverse transcriptases (RTs) of unknown function that are closely related to group II intron-encoded RTs. We found that a Pseudomonas aeruginosa group II intron-like RT (G2L4 RT) with YIDD instead of YADD at its active site functions in DNA repair in its native host and when expressed in Escherichia coli. G2L4 RT has biochemical activities strikingly similar to those of human DNA repair polymerase Î¸ and uses them for translesion DNA synthesis and double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ). We also found that a group II intron RT can function similarly in DNA repair, with reciprocal active-site substitutions showing isoleucine favors MMEJ and alanine favors primer extension in both enzymes. These DNA repair functions utilize conserved structural features of non-LTR-retroelement RTs, including human LINE-1 and other eukaryotic non-LTR-retrotransposon RTs, suggesting such enzymes may have inherent ability to function in DSBR in a wide range of organisms.


Asunto(s)
ADN Polimerasa Dirigida por ARN , Retroelementos , Alanina/genética , Reparación del ADN por Unión de Extremidades , Reparación del ADN , ARN Polimerasas Dirigidas por ADN/genética , Humanos , Intrones , Isoleucina/genética , ADN Polimerasa Dirigida por ARN/química
4.
Cell ; 175(5): 1336-1351.e17, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30318148

RESUMEN

As a critical step during innate response, the cytoplasmic ß subunit (IFN-γR2) of interferon-γ receptor (IFN-γR) is induced and translocates to plasma membrane to join α subunit to form functional IFN-γR to mediate IFN-γ signaling. However, the mechanism driving membrane translocation and its significance remain largely unknown. We found, unexpectedly, that mice deficient in E-selectin, an endothelial cell-specific adhesion molecule, displayed impaired innate activation of macrophages upon Listeria monocytogenes infection yet had increased circulating IFN-γ. Inflammatory macrophages from E-selectin-deficient mice had less surface IFN-γR2 and impaired IFN-γ signaling. BTK elicited by extrinsic E-selectin engagement phosphorylates cytoplasmic IFN-γR2, facilitating EFhd2 binding and promoting IFN-γR2 trafficking from Golgi to cell membrane. Our findings demonstrate that membrane translocation of cytoplasmic IFN-γR2 is required to activate macrophage innate response against intracellular bacterial infection, identifying the assembly of functional cytokine receptors on cell membrane as an important layer in innate activation and cytokine signaling.


Asunto(s)
Selectina E/metabolismo , Inmunidad Innata , Receptores de Interferón/metabolismo , Animales , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Selectina E/deficiencia , Selectina E/genética , Aparato de Golgi/metabolismo , Interferón gamma/sangre , Interferón gamma/metabolismo , Listeria/patogenicidad , Activación de Macrófagos , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Transporte de Proteínas , Células RAW 264.7 , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de Interferón/deficiencia , Receptores de Interferón/genética , Transducción de Señal , Receptor de Interferón gamma
5.
Cell ; 172(1-2): 90-105.e23, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29249359

RESUMEN

R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Glutaratos/farmacología , Leucemia/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Antineoplásicos/uso terapéutico , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Glutaratos/uso terapéutico , Células HEK293 , Humanos , Células Jurkat , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Procesamiento Postranscripcional del ARN
6.
Mol Cell ; 81(5): 922-939.e9, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33434505

RESUMEN

R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells. Mechanistically, R-2HG abrogates fat-mass- and obesity-associated protein (FTO)/N6-methyladenosine (m6A)/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated post-transcriptional upregulation of phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) (two critical glycolytic genes) expression and thereby suppresses aerobic glycolysis. Knockdown of FTO, PFKP, or LDHB recapitulates R-2HG-induced glycolytic inhibition in (R-2HG-sensitive) leukemia cells, but not in normal CD34+ hematopoietic stem/progenitor cells, and inhibits leukemogenesis in vivo; conversely, their overexpression reverses R-2HG-induced effects. R-2HG also suppresses glycolysis and downregulates FTO/PFKP/LDHB expression in human primary IDH-wild-type acute myeloid leukemia (AML) cells, demonstrating the clinical relevance. Collectively, our study reveals previously unrecognized effects of R-2HG and RNA modification on aerobic glycolysis in leukemia, highlighting the therapeutic potential of targeting cancer epitranscriptomics and metabolism.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Antineoplásicos/farmacología , Glutaratos/farmacología , Glucólisis/genética , Lactato Deshidrogenasas/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Fosfofructoquinasa-1 Tipo C/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/antagonistas & inhibidores , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Células K562 , Lactato Deshidrogenasas/antagonistas & inhibidores , Lactato Deshidrogenasas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación Oxidativa/efectos de los fármacos , Fosfofructoquinasa-1 Tipo C/antagonistas & inhibidores , Fosfofructoquinasa-1 Tipo C/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Cell ; 74(5): 1086-1102.e5, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31101498

RESUMEN

Kinase and phosphatase overexpression drives tumorigenesis and drug resistance. We previously developed a mass-cytometry-based single-cell proteomics approach that enables quantitative assessment of overexpression effects on cell signaling. Here, we applied this approach in a human kinome- and phosphatome-wide study to assess how 649 individually overexpressed proteins modulated cancer-related signaling in HEK293T cells in an abundance-dependent manner. Based on these data, we expanded the functional classification of human kinases and phosphatases and showed that the overexpression effects include non-catalytic roles. We detected 208 previously unreported signaling relationships. The signaling dynamics analysis indicated that the overexpression of ERK-specific phosphatases sustains proliferative signaling. This suggests a phosphatase-driven mechanism of cancer progression. Moreover, our analysis revealed a drug-resistant mechanism through which overexpression of tyrosine kinases, including SRC, FES, YES1, and BLK, induced MEK-independent ERK activation in melanoma A375 cells. These proteins could predict drug sensitivity to BRAF-MEK concurrent inhibition in cells carrying BRAF mutations.


Asunto(s)
Carcinogénesis/genética , Melanoma/genética , Monoéster Fosfórico Hidrolasas/genética , Fosfotransferasas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Melanoma/enzimología , Melanoma/patología , Mutación , Fosforilación/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteómica , Transducción de Señal/efectos de los fármacos
8.
Am J Hum Genet ; 110(2): 349-358, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702127

RESUMEN

The coefficient of determination (R2) is a well-established measure to indicate the predictive ability of polygenic scores (PGSs). However, the sampling variance of R2 is rarely considered so that 95% confidence intervals (CI) are not usually reported. Moreover, when comparisons are made between PGSs based on different discovery samples, the sampling covariance of R2 is required to test the difference between them. Here, we show how to estimate the variance and covariance of R2 values to assess the 95% CI and p value of the R2 difference. We apply this approach to real data calculating PGSs in 28,880 European participants derived from UK Biobank (UKBB) and Biobank Japan (BBJ) GWAS summary statistics for cholesterol and BMI. We quantify the significantly higher predictive ability of UKBB PGSs compared to BBJ PGSs (p value 7.6e-31 for cholesterol and 1.4e-50 for BMI). A joint model of UKBB and BBJ PGSs significantly improves the predictive ability, compared to a model of UKBB PGS only (p value 3.5e-05 for cholesterol and 1.3e-28 for BMI). We also show that the predictive ability of regulatory SNPs is significantly enriched over non-regulatory SNPs for cholesterol (p value 8.9e-26 for UKBB and 3.8e-17 for BBJ). We suggest that the proposed approach (available in R package r2redux) should be used to test the statistical significance of difference between pairs of PGSs, which may help to draw a correct conclusion about the comparative predictive ability of PGSs.


Asunto(s)
Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Humanos , Estudio de Asociación del Genoma Completo
9.
Am J Hum Genet ; 110(7): 1207-1215, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379836

RESUMEN

In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Polimorfismo de Nucleótido Simple/genética , Herencia Multifactorial/genética , Fenotipo , Simulación por Computador
10.
RNA ; 30(9): 1227-1245, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38960642

RESUMEN

R2 non-long terminal repeat retrotransposons insert site-specifically into ribosomal RNA genes (rDNA) in a broad range of multicellular eukaryotes. R2-encoded proteins can be leveraged to mediate transgene insertion at 28S rDNA loci in cultured human cells. This strategy, precise RNA-mediated insertion of transgenes (PRINT), relies on the codelivery of an mRNA encoding R2 protein and an RNA template encoding a transgene cassette of choice. Here, we demonstrate that the PRINT RNA template 5' module, which as a complementary DNA 3' end will generate the transgene 5' junction with rDNA, influences the efficiency and mechanism of gene insertion. Iterative design and testing identified optimal 5' modules consisting of a hepatitis delta virus-like ribozyme fold with high thermodynamic stability, suggesting that RNA template degradation from its 5' end may limit transgene insertion efficiency. We also demonstrate that transgene 5' junction formation can be either precise, formed by annealing the 3' end of first-strand complementary DNA with the upstream target site, or imprecise, by end-joining, but this difference in junction formation mechanism is not a major determinant of insertion efficiency. Sequence characterization of imprecise end-joining events indicates surprisingly minimal reliance on microhomology. Our findings expand the current understanding of the role of R2 retrotransposon transcript sequence and structure, and especially the 5' ribozyme fold, for retrotransposon mobility and RNA-templated gene synthesis in cells.


Asunto(s)
Retroelementos , Transgenes , Retroelementos/genética , Humanos , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Catalítico/química , Conformación de Ácido Nucleico , Secuencia de Bases , Moldes Genéticos
11.
Biostatistics ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412139

RESUMEN

Mediation analysis is a useful tool in investigating how molecular phenotypes such as gene expression mediate the effect of exposure on health outcomes. However, commonly used mean-based total mediation effect measures may suffer from cancellation of component-wise mediation effects in opposite directions in the presence of high-dimensional omics mediators. To overcome this limitation, we recently proposed a variance-based R-squared total mediation effect measure that relies on the computationally intensive nonparametric bootstrap for confidence interval estimation. In the work described herein, we formulated a more efficient two-stage, cross-fitted estimation procedure for the R2 measure. To avoid potential bias, we performed iterative Sure Independence Screening (iSIS) in two subsamples to exclude the non-mediators, followed by ordinary least squares regressions for the variance estimation. We then constructed confidence intervals based on the newly derived closed-form asymptotic distribution of the R2 measure. Extensive simulation studies demonstrated that this proposed procedure is much more computationally efficient than the resampling-based method, with comparable coverage probability. Furthermore, when applied to the Framingham Heart Study, the proposed method replicated the established finding of gene expression mediating age-related variation in systolic blood pressure and identified the role of gene expression profiles in the relationship between sex and high-density lipoprotein cholesterol level. The proposed estimation procedure is implemented in R package CFR2M.

12.
Cell Mol Life Sci ; 81(1): 292, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976080

RESUMEN

Cisplatin resistance is a major challenge for systemic therapy against advanced bladder cancer (BC). Little information is available on the regulation of cisplatin resistance and the underlying mechanisms require elucidation. Here, we detected that downregulation of the tumor suppressor, PPP2R2B (a serine/threonine protein phosphatase 2 A regulatory subunit), in BC promoted cell proliferation and migration. What's more, low PPP2R2B expression was correlated with cisplatin resistance. In vitro and in vivo experiments verified that PPP2R2B could promote BC sensitivity to cisplatin. In terms of mechanism, we identified a novel function of PPP2R2B as a nucleocytoplasmic transport molecule. PPP2R2B promoted ISG15 entry into the nucleus by mediating binding of IPO5 with ISG15. Nuclear translocation of ISG15 inhibited DNA repair, further increasing ISG15 expression through activation of the STING pathway. Besides, PPP2R2B was down-regulated by SUV39H1-mediated histone 3 lysine 9 trimethylation, which could be restored by the SUV39H1-specific inhibitor, chaetocin. Our data suggest that PPP2R2B expression level is a potential biomarker for chemotherapy response and that chemotherapy in combination with chaetocin may be a feasible treatment strategy for patients with BC.


Asunto(s)
Cisplatino , Citocinas , Resistencia a Antineoplásicos , Proteína Fosfatasa 2 , Ubiquitinas , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Humanos , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Ubiquitinas/metabolismo , Ubiquitinas/genética , Citocinas/metabolismo , Animales , Línea Celular Tumoral , Ratones , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Núcleo Celular/metabolismo , Antineoplásicos/farmacología , Ratones Endogámicos BALB C , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Femenino , Proteínas del Tejido Nervioso
13.
Subcell Biochem ; 104: 459-483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963496

RESUMEN

The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth and metabolism, integrating environmental signals to regulate anabolic and catabolic processes, regulating lipid synthesis, growth factor-induced cell proliferation, cell survival, and migration. These activities are performed as part of two distinct complexes, mTORC1 and mTORC2, each with specific roles. mTORC1 and mTORC2 are elaborated dimeric structures formed by the interaction of mTOR with specific partners. mTOR functions only as part of these large complexes, but their assembly and activation require a dedicated and sophisticated chaperone system. mTOR folding and assembly are temporarily separated with the TELO2-TTI1-TTI2 (TTT) complex assisting the cotranslational folding of mTOR into a native conformation. Matured mTOR is then transferred to the R2TP complex for assembly of active mTORC1 and mTORC2 complexes. R2TP works in concert with the HSP90 chaperone to promote the incorporation of additional subunits to mTOR and dimerization. This review summarizes our current knowledge on how the HSP90-R2TP-TTT chaperone system facilitates the maturation and assembly of active mTORC1 and mTORC2 complexes, discussing interactions, structures, and mechanisms.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Chaperonas Moleculares , Humanos , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Animales , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/química , Transducción de Señal
14.
BMC Biol ; 22(1): 122, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807188

RESUMEN

BACKGROUND: The innate immune system serves as the first line of host defense. Transforming growth factor-ß-activated kinase 1 (TAK1) is a key regulator of innate immunity, cell survival, and cellular homeostasis. Because of its importance in immunity, several pathogens have evolved to carry TAK1 inhibitors. In response, hosts have evolved to sense TAK1 inhibition and induce robust lytic cell death, PANoptosis, mediated by the RIPK1-PANoptosome. PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. While PANoptosis can be beneficial to clear pathogens, excess activation is linked to pathology. Therefore, understanding the molecular mechanisms regulating TAK1 inhibitor (TAK1i)-induced PANoptosis is central to our understanding of RIPK1 in health and disease. RESULTS: In this study, by analyzing results from a cell death-based CRISPR screen, we identified protein phosphatase 6 (PP6) holoenzyme components as regulators of TAK1i-induced PANoptosis. Loss of the PP6 enzymatic component, PPP6C, significantly reduced TAK1i-induced PANoptosis. Additionally, the PP6 regulatory subunits PPP6R1, PPP6R2, and PPP6R3 had redundant roles in regulating TAK1i-induced PANoptosis, and their combined depletion was required to block TAK1i-induced cell death. Mechanistically, PPP6C and its regulatory subunits promoted the pro-death S166 auto-phosphorylation of RIPK1 and led to a reduction in the pro-survival S321 phosphorylation. CONCLUSIONS: Overall, our findings demonstrate a key requirement for the phosphatase PP6 complex in the activation of TAK1i-induced, RIPK1-dependent PANoptosis, suggesting this complex could be therapeutically targeted in inflammatory conditions.


Asunto(s)
Fosfoproteínas Fosfatasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Humanos , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Necroptosis , Inmunidad Innata
15.
J Neurosci ; 43(2): 261-269, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36443001

RESUMEN

Despite the clinical significance of prepulse inhibition (PPI), the mechanisms are not well understood. Herein, we present our investigation of PPI in the R1 component of electrically induced blink reflexes. The effect of a prepulse was explored with varying prepulse test intervals (PTIs) of 20-600 ms in 4 females and 12 males. Prepulse-test combinations included the following: stimulation of the supraorbital nerve (SON)-SON [Experiment (Exp) 1], sound-sound (Exp 2), the axon of the facial nerve-SON (Exp 3), sound-SON (Exp 4), and SON-SON with a long trial-trial interval (Exp 5). Results showed that (1) leading weak SON stimulation reduced SON-induced ipsilateral R1 with a maximum effect at a PTI of 140 ms, (2) the sound-sound paradigm resulted in a U-shaped inhibition time course of the auditory startle reflex (ASR) peaking at 140 ms PTI, (3) facial nerve stimulation showed only a weak effect on R1, (4) a weak sound prepulse facilitated R1 but strongly inhibited SON-induced late blink reflexes (LateRs) with a similar U-shaped curve, and (5) LateR in Exp 5 was almost completely absent at PTIs >80 ms. These results indicate that the principal sensory nucleus is responsible for R1 PPI. Inhibition of ASR or LateR occurs at a point in the startle reflex circuit where auditory and somatosensory signals converge. Although the two inhibitions are different in location, their similar time courses suggest similar neural mechanisms. As R1 has a simple circuit and is stable, R1 PPI helps to clarify PPI mechanisms.SIGNIFICANCE STATEMENT Prepulse inhibition (PPI) is a phenomenon in which the startle response induced by a startle stimulus is suppressed by a preceding nonstartle stimulus. This study demonstrated that the R1 component of the trigeminal blink reflex shows clear PPI despite R1 generation within a circuit consisting of the trigeminal and facial nuclei, without startle reflex circuit involvement. Thus, PPI is not specific to the startle reflex. In addition, PPI of R1, the auditory startle reflex, and the trigeminal late blink reflex showed similar time courses in response to the prepulse test interval, suggesting similar mechanisms regardless of inhibition site. R1 PPI, in conjunction with other paradigms with different prepulse-test combinations, would increase understanding of the underlying mechanisms.


Asunto(s)
Parpadeo , Inhibición Prepulso , Masculino , Femenino , Humanos , Inhibición Prepulso/fisiología , Reflejo de Sobresalto/fisiología , Sonido , Estimulación Acústica/métodos
16.
J Biol Chem ; 299(2): 102873, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621625

RESUMEN

Variants of isocitrate dehydrogenase (IDH) 1 and 2 (IDH1/2) alter metabolism in cancer cells by catalyzing the NADPH-dependent reduction of 2-oxoglutarate (2OG) to (2R)-hydroxyglutarate. However, it is unclear how derivatives of 2OG can affect cancer cell metabolism. Here, we used synthetic C3- and C4-alkylated 2OG derivatives to investigate the substrate selectivities of the most common cancer-associated IDH1 variant (R132H IDH1), of two cancer-associated IDH2 variants (R172K IDH2, R140Q IDH2), and of WT IDH1/2. Absorbance-based, NMR, and electrochemical assays were employed to monitor WT IDH1/2 and IDH1/2 variant-catalyzed 2OG derivative turnover in the presence and absence of 2OG. Our results reveal that 2OG derivatives can serve as substrates of the investigated IDH1/2 variants, but not of WT IDH1/2, and have the potential to act as 2OG-competitive inhibitors. Kinetic parameters reveal that some 2OG derivatives, including the natural product 3-methyl-2OG, are equally or even more efficient IDH1/2 variant substrates than 2OG. Furthermore, NMR and mass spectrometry studies confirmed IDH1/2 variant-catalyzed production of alcohols in the cases of the 3-methyl-, 3-butyl-, and 3-benzyl-substituted 2OG derivatives; a crystal structure of 3-butyl-2OG with an IDH1 variant (R132C/S280F IDH1) reveals active site binding. The combined results highlight the potential for (i) IDH1/2 variant-catalyzed reduction of 2-oxoacids other than 2OG in cells, (ii) modulation of IDH1/2 variant activity by 2-oxoacid natural products, including some present in common foods, (iii) inhibition of IDH1/2 variants via active site binding rather than the established allosteric mode of inhibition, and (iv) possible use of IDH1/2 variants as biocatalysts.


Asunto(s)
Isocitrato Deshidrogenasa , Ácidos Cetoglutáricos , Humanos , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Neoplasias/metabolismo , Especificidad por Sustrato , Unión Proteica/efectos de los fármacos , Cristalografía
17.
Plant J ; 113(6): 1237-1258, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36633057

RESUMEN

Stem strength is an important agronomic trait affecting plant lodging, and plays an essential role in the quality and yield of plants. Thickened secondary cell walls in stems provide mechanical strength that allows plants to stand upright, but the regulatory mechanism of secondary cell wall thickening and stem strength in cut flowers remains unclear. In this study, first, a total of 11 non-redundant Paeonia lactiflora R2R3-MYBs related to stem strength were identified and isolated from cut-flower herbaceous peony, among which PlMYB43, PlMYB83 and PlMYB103 were the most upregulated differentially expressed genes. Then, the expression characteristics revealed that these three R2R3-MYBs were specifically expressed in stems and acted as transcriptional activators. Next, biological function verification showed that these P. lactiflora R2R3-MYBs positively regulated stem strength, secondary cell wall thickness and lignin deposition. Furthermore, yeast-one-hybrid and dual luciferase reporter assays demonstrated that they could bind to the promoter of caffeic acid O-methyltransferase gene (PlCOMT2) and/or laccase gene (PlLAC4), two key genes involved in lignin biosynthesis. In addition, the function of PlLAC4 in increasing lignin deposition was confirmed by virus-induced gene silencing and overexpression. Moreover, PlMYB83 could also act as a transcriptional activator of PlMYB43. The findings of the study propose a regulatory network of R2R3-MYBs modulating lignin biosynthesis and secondary cell wall thickening for improving stem lodging resistance, and provide a resource for molecular genetic engineering breeding of cut flowers.


Asunto(s)
Lignina , Paeonia , Lignina/metabolismo , Paeonia/genética , Paeonia/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
BMC Genomics ; 25(1): 952, 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39396954

RESUMEN

BACKGROUND: MYB transcription factors regulate anthocyanin biosynthesis across numerous plant species. However, comprehensive genome-wide investigations regarding the R2R3-MYB gene family and its involvement in regulating anthocyanin biosynthesis in the red and white fruit color morphs of Fragaria pentaphylla remain scarce. RESULTS: A total of 101 FpR2R3-MYB genes were identified from the F. pentaphylla genome and were divided into 34 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were particularly conserved among the FpR2R3-MYB genes, especially members within the same subgroup. The FpR2R3-MYB genes were distributed over seven F. pentaphylla chromosomes. Analysis of gene duplication events revealed five pairs of tandem duplication genes and 16 pairs of segmental duplication genes, suggesting that segmental duplications are the major pattern for expansion of the FpR2R3-MYB gene family expansion in F. pentaphylla. Cis-regulatory elements of the FpR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponse. Based on the analysis of the FpR2R3-MYB gene family and transcriptome sequencing (RNA-seq) data, FpMYB9 was identified as a key transcription factor involved in the regulation of anthocyanin synthesis in F. pentaphylla fruits. The expression of FpMYB9 increases significantly during the ripening stage of red fruits, as confirmed by reverse transcription quantitative real-time PCR. In addition, subcellular localization experiments further confirmed the nuclear presence of FpMYB9, supporting its role as a transcription factor involved in anthocyanin biosynthesis. CONCLUSION: Our results showed that the FpR2R3-MYB genes are highly conserved and play important roles in the anthocyanin biosynthesis in F. pentaphylla fruits. Our results also provide a compelling basis for further understanding of the regulatory mechanism underlying the role of FpMYB9 in anthocyanin formation in F. pentaphylla fruits.


Asunto(s)
Antocianinas , Fragaria , Regulación de la Expresión Génica de las Plantas , Filogenia , Factores de Transcripción , Antocianinas/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fragaria/genética , Fragaria/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Duplicación de Gen , Genoma de Planta , Familia de Multigenes , Regiones Promotoras Genéticas
19.
BMC Genomics ; 25(1): 797, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179980

RESUMEN

BACKGROUND: R2R3-MYB transcription factors belong to one of the largest gene subfamilies in plants, and they are involved in diverse biological processes. However, the role of R2R3-MYB transcription factor subfamily genes in the response of rice (Oryza sativa L.) to salt stress has been rarely reported. RESULTS: In this study, we performed a genome-wide characterization and expression identification of rice R2R3-MYB transcription factor subfamily genes. We identified a total of 117 R2R3-MYB genes in rice and characterized their gene structure, chromosomal location, and cis-regulatory elements. According to the phylogenetic relationships and amino acid sequence homologies, the R2R3-MYB genes were divided into four groups. qRT-PCR of the R2R3-MYB genes showed that the expression levels of 10 genes significantly increased after 3 days of 0.8% NaCl treatment. We selected a high expression gene OsMYB2-115 for further analysis. OsMYB2-115 was highly expressed in the roots, stem, leaf, and leaf sheath. OsMYB2-115 was found to be localized in the nucleus, and the yeast hybrid assay showed that OsMYB2-115 has transcriptional activation activity. CONCLUSION: This result provides important information for the functional analyses of rice R2R3-MYB transcription factor subfamily genes related to the salt stress response and reveals that OsMYB2-115 may be an important gene associated with salt tolerance in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Filogenia , Proteínas de Plantas , Estrés Salino , Factores de Transcripción , Oryza/genética , Oryza/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Familia de Multigenes , Perfilación de la Expresión Génica , Cromosomas de las Plantas/genética
20.
BMC Genomics ; 25(1): 784, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138573

RESUMEN

BACKGROUND: Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don] (syn. Prunus pseudocerasus Lindl.) is an economically important fruiting cherry species with a diverse range of attractive colors, spanning from the lightest yellow to the darkest black purple. However, the MYB transcription factors involved in anthocyanin biosynthesis underlying fruit color variation in Chinese cherry remain unknown. RESULTS: In this study, we characterized the R2R3-MYB gene family of Chinese cherry by genome-wide identification and compared it with those of 10 Rosaceae relatives and Arabidopsis thaliana. A total of 1490 R2R3-MYBs were classified into 43 subfamilies, which included 29 subfamilies containing both Rosaceae MYBs and AtMYBs. One subfamily (S45) contained only Rosaceae MYBs, while three subfamilies (S12, S75, and S77) contained only AtMYBs. The variation in gene numbers within identical subfamilies among different species and the absence of certain subfamilies in some species indicated the species-specific expansion within MYB gene family in Chinese cherry and its relatives. Segmental and tandem duplication events primarily contributed to the expansion of Chinese cherry R2R3-CpMYBs. The duplicated gene pairs underwent purifying selection during evolution after duplication events. Phylogenetic relationships and transcript profiling revealed that CpMYB10 and CpMYB4 are involved in the regulation of anthocyanin biosynthesis in Chinese cherry fruits. Expression patterns, transient overexpression and VIGS results confirmed that CpMYB10 promotes anthocyanin accumulation in the fruit skin, while CpMYB4 acts as a repressor, inhibiting anthocyanin biosynthesis of Chinese cherry. CONCLUSIONS: This study provides a comprehensive and systematic analysis of R2R3-MYB gene family in Chinese cherry and Rosaceae relatives, and identifies two regulators, CpMYB10 and CpMYB4, involved in anthocyanin biosynthesis in Chinese cherry. These results help to develop and utilize the potential functions of anthocyanins in Chinese cherry.


Asunto(s)
Antocianinas , Familia de Multigenes , Filogenia , Factores de Transcripción , Antocianinas/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Genoma de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Frutas/genética , Frutas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA