Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 718: 150058, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38729076

RESUMEN

The therapeutic efficacy of radiotherapy (RT) is primarily driven by two factors: biophysical DNA damage in cancer cells and radiation-induced anti-tumor immunity. However, Anti-tumor immune responses between X-ray RT (XRT) and carbon-ion RT (CIRT) remain unclear. In this study, we, employed mouse models to assess the immunological contribution, especially cytotoxic T-lymphocyte (CTL)-mediated immunity, to the therapeutic effectiveness of XRT and CIRT in shrinking tumors. We irradiated mouse intradermal tumors of B16F10-ovalbumin (OVA) mouse melanoma cells and 3LL-OVA mouse lung cancer cells with carbon-ion beams or X-rays in the presence or absence of CTLs. CTL removal was performed by administration of anti-CD8 monoclonal antibody (mAb) in mice. Based on tumor growth delay, we determined the tumor growth and regression curves. The enhancement ratio (ER) of the slope of regression lines in the presence of CTLs, relative to the absence of CTLs, indicates the dependency of RT on CTLs for shrinking mouse tumors, and the biological effectiveness (RBE) of CIRT relative to XRT were calculated. Tumor growth curves revealed that the elimination of CD8+ CTLs by administrating anti-CD8 mAb accelerated tumor growth compared to the presence of CTLs in both RTs. The ERs were larger in CIRT compared to XRT in the B16F10-OVA tumor models, but not in the 3LL-OVA models, suggesting a greater contribution of CTL-mediated anti-tumor immunity to tumor reduction in CIRT compared to XRT in the B16F10-OVA tumor model. In addition, the RBE values for both models were larger in the presence of CTLs compared to models without CTLs, suggesting that CIRT may utilize CTL-mediated anti-tumor immunity more than X-ray. The findings from this study suggest that although immunological contribution to therapeutic efficacy may vary depending on the type of tumor cell, CIRT utilizes CTL-mediated immunity to a greater extent compared to XRT.


Asunto(s)
Ratones Endogámicos C57BL , Linfocitos T Citotóxicos , Animales , Linfocitos T Citotóxicos/inmunología , Ratones , Línea Celular Tumoral , Melanoma Experimental/inmunología , Melanoma Experimental/radioterapia , Melanoma Experimental/terapia , Melanoma Experimental/patología , Radioterapia de Iones Pesados/métodos , Terapia por Rayos X , Femenino , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología
2.
Rep Pract Oncol Radiother ; 29(2): 164-175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39143968

RESUMEN

Background: Gamma-H2AX immunofluorescence assay has gained popularity as a DNA double strand break marker. In this work, we have investigated the potential use of gamma H2AX immunofluorescence assay as a biological dosimeter for estimation of dose in our institution. Materials and methods: Seven healthy individuals were selected for the study and the blood samples collected from the first five individuals were irradiated to low doses (0-10 cGy) and high doses (50-500 cGy) in a telecobalt unit. All the samples were processed for gamma-H2AX immunofluorescence assay and the dose-response calibration curves for low and high doses were determined. In order to validate the determined dose-response calibration curves, the blood samples obtained from the sixth and seventh subjects were delivered a test dose of 7.5 cGy and 250 cGy. In addition, time and cost required to complete the assay were also reported. Results: The goodness of fit (R2) values was found to be 0.9829 and 0.9766 for low and high dose-response calibration curves. The time required to perform the gamma-H2AX immunofluorescence assay was found to be 7 hours and 30 minutes and the estimated cost per sample was 5000 rupees (~ 60 USD). Conclusion: Based on this study we conclude that the individual dose-response calibration curves determined with gamma-H2AX immunofluorescence assay for both low and high dose ranges of gamma radiation can be used for biological dosimetry. Further, the gamma-H2AX immunofluorescence assay can be used as a rapid cost-effective biodosimetric tool for institutions with an existing confocal microscope facility.

3.
iScience ; 27(6): 109884, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799580

RESUMEN

An essential interaction between sunlight and eukaryotes involves vitamin D production through exposure to ultraviolet (UV) radiation. While extensively studied in vertebrates, the role of vitamin D in non-animal eukaryotes like microalgae remains unclear. Here, we investigate the potential involvement of vitamin D in the UV-triggered response of Emiliania huxleyi, a microalga inhabiting shallow ocean depths that are exposed to UV. Our results show that E. huxleyi produces vitamin D2 and D3 in response to UV. We further demonstrate that E. huxleyi responds to external administration of vitamin D at the transcriptional level, regulating protective mechanisms that are also responsive to UV. Our data reveal that vitamin D addition enhances algal photosynthetic performance while reducing harmful reactive oxygen species buildup. This study contributes to understanding the function of vitamin D in E. huxleyi and its role in non-animal eukaryotes, as well as its potential importance in marine ecosystems.

4.
Front Bioinform ; 4: 1280971, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812660

RESUMEN

Radiation exposure poses a significant threat to human health. Emerging research indicates that even low-dose radiation once believed to be safe, may have harmful effects. This perception has spurred a growing interest in investigating the potential risks associated with low-dose radiation exposure across various scenarios. To comprehensively explore the health consequences of low-dose radiation, our study employs a robust statistical framework that examines whether specific groups of genes, belonging to known pathways, exhibit coordinated expression patterns that align with the radiation levels. Notably, our findings reveal the existence of intricate yet consistent signatures that reflect the molecular response to radiation exposure, distinguishing between low-dose and high-dose radiation. Moreover, we leverage a pathway-constrained variational autoencoder to capture the nonlinear interactions within gene expression data. By comparing these two analytical approaches, our study aims to gain valuable insights into the impact of low-dose radiation on gene expression patterns, identify pathways that are differentially affected, and harness the potential of machine learning to uncover hidden activity within biological networks. This comparative analysis contributes to a deeper understanding of the molecular consequences of low-dose radiation exposure.

5.
Mol Ther Nucleic Acids ; 35(3): 102260, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39049874

RESUMEN

Space particle radiation is a major environmental factor in spaceflight, and it is known to cause body damage and even trigger cancer, but with unknown molecular etiologies. To examine these causes, we developed a systems biology approach by focusing on the co-expression network analysis of transcriptomics profiles obtained from single high-dose (SE) and multiple low-dose (ME) α-particle radiation exposures of BEAS-2B human bronchial epithelial cells. First, the differential network and pathway analysis based on the global network and the core modules showed that genes in the ME group had higher enrichment for the extracellular matrix (ECM)-receptor interaction pathway. Then, collagen gene COL1A1 was screened as an important gene in the ME group assessed by network parameters and an expression study of lung adenocarcinoma samples. COL1A1 was found to promote the emergence of the neoplastic characteristics of BEAS-2B cells by both in vitro experimental analyses and in vivo immunohistochemical staining. These findings suggested that the degree of malignant transformation of cells in the ME group was greater than that of the SE, which may be caused by the dysregulation of the ECM-receptor pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA