Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33707208

RESUMEN

Uterine contractile dysfunction leads to pregnancy complications such as preterm birth and labor dystocia. In humans, it is hypothesized that progesterone receptor isoform PGR-B promotes a relaxed state of the myometrium, and PGR-A facilitates uterine contraction. This hypothesis was tested in vivo using transgenic mouse models that overexpress PGR-A or PGR-B in smooth muscle cells. Elevated PGR-B abundance results in a marked increase in gestational length compared to control mice (21.1 versus 19.1 d respectively, P < 0.05). In both ex vivo and in vivo experiments, PGR-B overexpression leads to prolonged labor, a significant decrease in uterine contractility, and a high incidence of labor dystocia. Conversely, PGR-A overexpression leads to an increase in uterine contractility without a change in gestational length. Uterine RNA sequencing at midpregnancy identified 1,174 isoform-specific downstream targets and 424 genes that are commonly regulated by both PGR isoforms. Gene signature analyses further reveal PGR-B for muscle relaxation and PGR-A being proinflammatory. Elevated PGR-B abundance reduces Oxtr and Trpc3 and increases Plcl2 expression, which manifests a genetic profile of compromised oxytocin signaling. Functionally, both endogenous PLCL2 and its paralog PLCL1 can attenuate uterine muscle cell contraction in a CRISPRa-based assay system. These findings provide in vivo support that PGR isoform levels determine distinct transcriptomic landscapes and pathways in myometrial function and labor, which may help further the understanding of abnormal uterine function in the clinical setting.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Receptores de Oxitocina/genética , Receptores de Progesterona/fisiología , Canales Catiónicos TRPC/genética , Contracción Uterina/genética , Animales , Femenino , Ratones , Ratones Mutantes , Parto/fisiología , Embarazo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Transcriptoma
2.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108544

RESUMEN

EphB4 angiogenic kinase over-expression in Mesothelioma cells relies upon a degradation rescue signal provided by autocrine IGF-II activation of Insulin Receptor A. However, the identity of the molecular machinery involved in EphB4 rapid degradation upon IGF-II signal deprivation are unknown. Using targeted proteomics, protein-protein interaction methods, PCR cloning, and 3D modeling approaches, we identified a novel ubiquitin E3 ligase complex recruited by the EphB4 C tail upon autocrine IGF-II signal deprivation. We show this complex to contain a previously unknown N-Terminal isoform of Deltex3 E3-Ub ligase (referred as "DTX3c"), along with UBA1(E1) and UBE2N(E2) ubiquitin ligases and the ATPase/unfoldase Cdc48/p97. Upon autocrine IGF-II neutralization in cultured MSTO211H (a Malignant Mesothelioma cell line that is highly responsive to the EphB4 degradation rescue IGF-II signal), the inter-molecular interactions between these factors were enhanced and their association with the EphB4 C-tail increased consistently with the previously described EphB4 degradation pattern. The ATPase/unfoldase activity of Cdc48/p97 was required for EphB4 recruitment. As compared to the previously known isoforms DTX3a and DTX3b, a 3D modeling analysis of the DTX3c Nt domain showed a unique 3D folding supporting isoform-specific biological function(s). We shed light on the molecular machinery associated with autocrine IGF-II regulation of oncogenic EphB4 kinase expression in a previously characterized IGF-II+/EphB4+ Mesothelioma cell line. The study provides early evidence for DTX3 Ub-E3 ligase involvement beyond the Notch signaling pathway.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Humanos , Adenosina Trifosfatasas/metabolismo , Factor II del Crecimiento Similar a la Insulina , Mesotelioma/genética , Isoformas de Proteínas , Receptor de Insulina/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas/metabolismo
3.
Hum Reprod ; 35(3): 641-651, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32108901

RESUMEN

STUDY QUESTION: Does the oestrogen receptor isoform, ER46, contribute to regulation of endometrial function? SUMMARY ANSWER: ER46 is expressed in endometrial tissues, is the predominant ER isoform in first trimester decidua and is localised to the cell membrane of uterine natural killer (uNK) cells where activation of ER46 increases cell motility. WHAT IS KNOWN ALREADY: Oestrogens acting via their cognate receptors are essential regulators of endometrial function and play key roles in establishment of pregnancy. ER46 is a 46-kDa truncated isoform of full length ERα (ER66, encoded by ESR1) that contains both ligand- and DNA-binding domains. Expression of ER46 in the human endometrium has not been investigated previously. ER46 is located at the cell membrane of peripheral blood leukocytes and mediates rapid responses to oestrogens. uNK cells are a phenotypically distinct (CD56brightCD16-) population of tissue-resident immune cells that regulate vascular remodelling within the endometrium and decidua. We have shown that oestrogens stimulate rapid increases in uNK cell motility. Previous characterisation of uNK cells suggests they are ER66-negative, but expression of ER46 has not been characterised. We hypothesise that uNK cells express ER46 and that rapid responses to oestrogens are mediated via this receptor. STUDY DESIGN, SIZE, DURATION: This laboratory-based study used primary human endometrial (n = 24) and decidual tissue biopsies (n = 30) as well as uNK cells which were freshly isolated from first trimester human decidua (n = 18). PARTICIPANTS/MATERIALS, SETTING, METHODS: Primary human endometrial and first trimester decidual tissue biopsies were collected using methods approved by the local institutional ethics committee (LREC/05/51104/12 and LREC/10/51402/59). The expression of ERs (ER66, ER46 and ERß) was assessed by quantitative PCR, western blot and immunohistochemistry. uNK cells were isolated from first-trimester human decidua by magnetic bead sorting. Cell motility of uNK cells was measured by live cell imaging: cells were treated with 17ß-oestradiol conjugated to bovine serum albumin (E2-BSA, 10 nM equivalent), the ERß-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN; 10 nM) or dimethylsulphoxide vehicle control. MAIN RESULTS AND THE ROLE OF CHANCE: ER46 was detected in proliferative and secretory phase tissues by western blot and was the predominant ER isoform in first-trimester decidua samples. Immunohistochemistry revealed that ER46 was co-localised with ER66 in cell nuclei during the proliferative phase but detected in both the cytoplasm and cell membrane of stromal cells in the secretory phase and in decidua. Triple immunofluorescence staining of decidua tissues identified expression of ER46 in the cell membrane of CD56-positive uNK cells which were otherwise ER66-negative. Profiling of isolated uNK cells confirmed expression of ER46 by quantitative PCR and western blot and localised ER46 protein to the cell membrane by immunocytochemistry. Functional analysis of isolated uNK cells using live cell imaging demonstrated that activation of ER46 with E2-BSA significantly increased uNK cell motility. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Expression pattern in endometrial tissue was only determined using samples from proliferative and secretory phases. Assessment of first trimester decidua samples was from a range of gestational ages, which may have precluded insights into gestation-specific changes in these tissues. Our results are based on in vitro responses of primary human cells and we cannot be certain that similar mechanisms occur in situ. WIDER IMPLICATIONS OF THE FINDINGS: E2 is an essential regulator of reproductive competence. This study provides the first evidence for expression of ER46 in the human endometrium and decidua of early pregnancy. We describe a mechanism for regulating the function of human uNK cells via expression of ER46 and demonstrate that selective targeting with E2-BSA regulates uNK cell motility. These novel findings identify a role for ER46 in the human endometrium and provide unique insight into the importance of membrane-initiated signalling in modulating the impact of E2 on uNK cell function in women. Given the importance of uNK cells to regulating vascular remodelling in early pregnancy and the potential for selective targeting of ER46, this may be an attractive future therapeutic target in the treatment of reproductive disorders. STUDY FUNDING/COMPETING INTEREST(S): These studies were supported by Medical Research Council (MRC) Programme Grants G1100356/1 and MR/N024524/1 to PTKS. H.O.D.C. was supported by MRC grant G1002033. The authors declare no competing interests related to the published work.


Asunto(s)
Endometrio , Receptores de Estrógenos , Decidua , Femenino , Humanos , Células Asesinas Naturales , Embarazo , Isoformas de Proteínas/genética , Útero
4.
Gynecol Endocrinol ; 35(1): 10-16, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30044157

RESUMEN

Endometriosis is a benign, chronic inflammatory condition characterized by the presence and growth of endometrial implants outside the uterine cavity. The cause of endometriosis is multifactorial. It is due to the diversity of hypothesis and plausibility of hormonal alterations which could play a major role. Evidence has shown that progesterone resistance is a key factor for endometriosis sufferers. Medical therapy can avoid surgical intervention, which may lead to a reduced in ovarian reserve, and its effects of earlier menopause and reduced fecundity. Progesterone receptor isoform has provided new insight as the potential treatment. Progestin, anti-progestin and selective progesterone receptor modulators usage, which target these receptors, could avoid hypo-estrogenic side effects, which can be debilitating. Numerous types of these medications have been used on and off labeled to treat endometriosis with varying success. This review aims to consolidate series of clinical trials using progestins in endometriosis.


Asunto(s)
Endometriosis/tratamiento farmacológico , Progesterona/uso terapéutico , Femenino , Humanos , Resultado del Tratamiento
5.
Int J Mol Sci ; 20(3)2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30754657

RESUMEN

Insulin is a major endocrine hormone also involved in the regulation of energy and lipid metabolism via the activation of an intracellular signaling cascade involving the insulin receptor (INSR), insulin receptor substrate (IRS) proteins, phosphoinositol 3-kinase (PI3K) and protein kinase B (AKT). Specifically, insulin regulates several aspects of the development and function of adipose tissue and stimulates the differentiation program of adipose cells. Insulin can activate its responses in adipose tissue through two INSR splicing variants: INSR-A, which is predominantly expressed in mesenchymal and less-differentiated cells and mainly linked to cell proliferation, and INSR-B, which is more expressed in terminally differentiated cells and coupled to metabolic effects. Recent findings have revealed that different distributions of INSR and an altered INSR-A:INSR-B ratio may contribute to metabolic abnormalities during the onset of insulin resistance and the progression to type 2 diabetes. In this review, we discuss the role of insulin and the INSR in the development and endocrine activity of adipose tissue and the pharmacological implications for the management of obesity and type 2 diabetes.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo Energético , Insulina/metabolismo , Organogénesis , Receptor de Insulina/metabolismo , Animales , Humanos , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo
6.
J Cell Sci ; 126(Pt 24): 5645-56, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24127567

RESUMEN

Despite evidence for the impact of insulin on intestinal epithelial physiology and pathophysiology, the expression patterns, roles, and regulation of insulin receptor (IR) and IR isoforms in the intestinal epithelium are not well characterized. IR-A is thought to mediate the proliferative effects of insulin or insulin growth factors (IGFs) in fetal or cancer cells. IR-B is considered to be the metabolic receptor for insulin in specialized tissues. This study used a novel Sox9-EGFP reporter mouse that permits isolation of intestinal epithelial stem cells (IESCs), progenitors, enteroendocrine cells and differentiated lineages, the Apc(Min/+) mouse model of precancerous adenoma and normal human intestinal and colorectal cancer (CRC) cell lines. We tested the hypothesis that there is differential expression of IR-A or IR-B in stem and tumor cells versus differentiated intestinal epithelial cells (IECs) and that IR-B impacts cell proliferation. Our findings provide evidence that IR-B expression is significantly lower in highly proliferative IESCs and progenitor cells versus post-mitotic, differentiated IECs and in subconfluent and undifferentiated versus differentiated Caco-2 cells. IR-B is also reduced in Apc(Min/+) tumors and highly tumorigenic CRC cells. These differences in IR-B were accompanied by altered levels of mRNAs encoding muscleblind-like 2 (MBNL2), a known regulator of IR alternative splicing. Forced IR-B expression in subconfluent and undifferentiated Caco-2 cells reduced proliferation and increased biomarkers of differentiation. Our findings indicate that the impact of insulin on different cell types in the intestinal epithelium might differ depending on relative IR-B IR-A expression levels and provide new evidence for the roles of IR-B to limit proliferation of CRC cells.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales/metabolismo , Receptor de Insulina/metabolismo , Células Madre/metabolismo , Animales , Células CACO-2 , Diferenciación Celular , Replicación del ADN , Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Ratones , Fenotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor de Insulina/genética , Transducción de Señal , Proteína de la Zonula Occludens-1/metabolismo , beta Catenina/metabolismo
7.
Biochim Biophys Acta ; 1833(12): 2789-2802, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23872421

RESUMEN

Neurturin (NRTN), a member of the GDNF family of ligands (GFL), is currently investigated in a series of clinical trials for Parkinson's disease. NRTN signals through its cognate receptor GFRα2 and co-receptor RET to induce neurite outgrowth, but the underlying mechanism remains to be better understood. STAT3 was previously shown to be activated by oncogenic RET, independent of ligand and GFRα. In this study, we demonstrated that NRTN induced serine(727) but not tyrosine(705) phosphorylation of STAT3 in primary cortical neuron and neuronal cell lines. Remarkably, STAT3 phosphorylation was found to be mediated specifically by GFRα2c and RET9 isoforms. Furthermore, serine but not tyrosine dominant negative mutant of STAT3 impaired NRTN induced neurite outgrowth, indicative of the role of STAT3 as a downstream mediator of NRTN function. Similar to NGF, the NRTN induced P-Ser-STAT3 was localized to the mitochondria but not to the nucleus. Mitochondrial STAT3 was further found to be intimately involved in NRTN induced neurite outgrowth. Collectively, these findings demonstrated the hitherto unrecognized and novel role of specific GFRα2 and RET isoforms in mediating NRTN activation of STAT3 and the transcription independent mechanism whereby the mitochondria localized P-Ser-STAT3 mediated NRTN induced neurite outgrowth.


Asunto(s)
Empalme Alternativo/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Neurturina/farmacología , Proteínas Proto-Oncogénicas c-ret/metabolismo , Factor de Transcripción STAT3/metabolismo , Empalme Alternativo/efectos de los fármacos , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Ligandos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Células PC12 , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-ret/genética , Ratas , Familia-src Quinasas/metabolismo
8.
Fundam Res ; 3(3): 459-468, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933774

RESUMEN

Sweet and umami tastes are elicited by sweet and umami receptors on the tongue and palate epithelium, respectively. However, the molecular machinery allowing the taste reaction remains incompletely understood. Through a phosphoproteomic approach, we identified the key proteins that trigger taste mechanisms based on phosphorylation cascades. Ryanodine receptor isoform 1 (RYR1) was further verified by sensory and behavioral assays. We propose a model of RYR1-mediated sweet/umami signaling in which the RYR1 channel, which mediates Ca2+ release from the endoplasmic reticulum, is closed by dephosphorylation in bud tissue after sweet/umami treatment. The alteration in Ca2+ content in the cytosol induces transient membrane depolarization and generates a cell current for taste signal transduction. We demonstrate that RYR1 is a new channel involved in the regulation of sweet/umami signal transduction and propose a "metabolic clock" notion based on sweet/umami sensing. Our study provides a valuable foundation for a system-level understanding of the taste perception mechanism.

9.
J Steroid Biochem Mol Biol ; 232: 106348, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37315868

RESUMEN

Progestins (synthetic progestogens) are progesterone receptor (PR) ligands used globally by women in both hormonal contraception and menopausal hormone therapy. Although four generations of unique progestins have been developed, studies seldom distinguish between the activities of progestins via the two functionally distinct PR isoforms, PR-A and PR-B. Moreover, not much is known about the action of progestins in breast cancer tumors where PR-A is mostly overexpressed relative to PR-B. Understanding progestin action in breast cancer is crucial since the clinical use of some progestins has been associated with an increased risk of developing breast cancer. This study directly compared the agonist activities of selected progestins from all four generations for transactivation and transrepression via either PR-A or PR-B, and when PR-A and PR-B were co-expressed at ratios comparable to those detected in breast cancer tumors. Comparative dose-response analysis showed that earlier generation progestins mostly displayed similar efficacies for transactivation on a minimal progesterone response element via the PR isoforms, while most of the 4th generation progestins, similar to the natural progestogen, progesterone (P4), were more efficacious via PR-B. Most of the progestogens were however more potent via PR-A. We are the first to show that the efficacies of the selected progestogens via the individual PR isoforms were generally decreased when PR-A and PR-B were co-expressed, irrespective of the ratio of PR-A:PR-B. While the potencies of most progestogens via PR-B were enhanced when the ratio of PR-A relative to PR-B was increased, those via PR-A were minimally influenced. This study is also the first to report that all progestogens evaluated, except 1st generation medroxyprogesterone acetate and 4th generation drospirenone, displayed similar agonist activity for transrepression via PR-A and PR-B on a minimal nuclear factor kappa B containing promoter. Moreover, we showed that the progestogen activity for transrepression was significantly increased when PR-A and PR-B were co-expressed. Taken together, our results highlight that PR agonists (progestogens) do not always display the same activity via PR-A and PR-B, or when PR-A and PR-B are co-expressed at ratios mimicking those found in breast cancer tumors. These results suggest that biological responses are progestogen- and PR isoform-dependent and may differ in target tissues expressing varying PR-A:PR-B ratios.


Asunto(s)
Neoplasias de la Mama , Progestinas , Femenino , Humanos , Progestinas/farmacología , Progesterona/farmacología , Receptores de Progesterona/genética , Acetato de Medroxiprogesterona , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética
10.
Endocr Relat Cancer ; 30(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37130271

RESUMEN

The presence of progesterone receptor (PR) and PR isoform B (PRB) in breast cancer is generally correlated with better clinical outcomes. Additionally, the significance of hormone-independent effects of PR/PRB correlated with better prognosis has been reported in non-small cell lung cancer (NSCLC). However, the detailed mechanism of that still remains unclear. In this study, we examined how microRNAs (miRNAs) could contribute to tumor inhibition via PR/PRB expression, in order to find miRNAs that have tumor-agnostic effects between breast cancer and NSCLC. We obtained miRNA data using human tissues of breast cancer and NSCLC from The Cancer Genome Atlas (TCGA) database and PCR array from NSCLC patients of our cohort. Subsequently, we examined the function of the miRNA through in vitro study using breast cancer cell lines. As a result, only let-7b expression was significantly correlated with PR expression in both cancers. Additionally, the expression of let-7b significantly inhibited cell proliferation by inducing PR and PRB expression in breast cancer cell lines. However, the positive correlation of let-7b and PRB required a mediated factor, E2 promoter binding factor 1 (E2F1), obtained from TCGA database analysis. In vitro experiments showed that let-7b significantly inhibited E2F1, and E2F1 significantly inhibited PRB. This study revealed that PRB inhibits the proliferation of breast cancer cells by the let-7b-E2F1 interaction. In addition, the immunohistochemical analysis in NSCLC was also consistent with these in vitro data. Our results could contribute to developing novel therapeutic strategies for patients with PR/PRB-positive cancer by targeting let-7b or PRB expression in breast cancer and possibly NSCLC.


Asunto(s)
Neoplasias de la Mama , Carcinoma de Pulmón de Células no Pequeñas , Factor de Transcripción E2F1 , Neoplasias Pulmonares , MicroARNs , Receptores de Progesterona , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular , Factor de Transcripción E2F1/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , MicroARNs/genética , Receptores de Progesterona/genética
11.
J Steroid Biochem Mol Biol ; 224: 106160, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35931328

RESUMEN

Myometrial contraction is stringently controlled throughout pregnancy and parturition. Progesterone signaling, effecting through the progesterone receptor (PR), is pivotal in modulating uterine activity. Evidence has shown that two major PR isoforms, PR-A and PR-B, have distinct activities on gene regulation, and the ratio between these isoforms determines the contractility of the myometrium at different gestational stages. Herein, we focus on the regulation of PR activity in the myometrium, especially the differential actions of the two PR isoforms, which maintain uterine quiescence during pregnancy and regulate the switch to a contractile state at the onset of labor. To demonstrate the PR regulatory network and its mechanisms of actions on myometrial activity, we summarized the findings into three parts: Regulation of PR Expression and Isoform Levels, Progesterone Receptor Interacting Factors, and Biological Processes Regulated by Myometrial Progesterone Receptor Isoforms. Recent genomic and epigenomic data, from human specimens and mouse models, are recruited to support the existing knowledge and offer new insights and future directions in myometrial biology.


Asunto(s)
Contracción Muscular , Miometrio , Parto , Embarazo , Receptores de Progesterona , Animales , Femenino , Humanos , Ratones , Embarazo/genética , Embarazo/metabolismo , Miometrio/metabolismo , Parto/genética , Parto/metabolismo , Progesterona/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Contracción Muscular/genética
12.
Trends Endocrinol Metab ; 33(8): 569-586, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35691786

RESUMEN

Type I interferons (IFN-Is) are prototypical inflammatory cytokines produced in response to stress. IFN-Is have a critical role in antitumor immunity by driving the activation of leukocytes and favoring the elimination of malignant cells. However, IFN-I signaling in cancer, specifically in the tumor microenvironment (TME), can have opposing roles. Sustained IFN-I stimulation can promote immune exhaustion or enable tumor cell-intrinsic malignant features. Herein, we discuss the potential impact of the insulin/insulin-like growth factor system (I/IGFs) and of metabolic disorders in aberrant IFN-I signaling in cancer. We consider the possibility that targeting I/IGFs, especially in patients with cancer affected by metabolic disorders, contributes to an effective strategy to inhibit deleterious IFN-I signaling, thereby restoring sensitivity to various cancer therapies, including immunotherapy.


Asunto(s)
Insulina , Neoplasias , Humanos , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Microambiente Tumoral
13.
Reprod Biol ; 22(3): 100674, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35901618

RESUMEN

We examined the consequences of high-fat diet (HFD) on prostate histophysiology in two periods along sexual maturation of rats and the impact on the gland in adulthood. After weaning, male Wistar rats were fed a balanced diet (4 % fat-C3, C6, C9) or a HFD (20 % fat- HF3, HF6, HF9) for 3, 6 or 9 weeks. Fat deposit weights, blood glucose and levels of serum testosterone and estrogen were measured. Prostate was evaluated for histology, proliferative and apoptotic cell index, and for the expression of androgen (AR), estrogen receptors type α (ERα) and aromatase. HFD did not affect estrogen levels and elevated serum testosterone only in HF9. HFD reduced prostate weight in HF6 and increased it in adulthood (HF9) but relative prostate weight was unchanged among groups. Cell proliferation, height and density were higher in epithelium of all HFD-groups, compared to controls, featuring the epithelial hyperplasia. Epithelial apoptosis was lower in HF9. HF3 and HF9 exhibited higher expressions of ERα, indicating that HFD triggers a new activation of ERα expression in the acinar epithelium. The content of prostatic aromatase was also elevated in HF9. Increased numbers of AR-positive cells were observed in all HFD groups, and western blotting analysis showed an increase in the truncated form of 45 kDa (AR45) and a reduction in the expression of 110 kDa-AR for HF3 and HF9. In conclusion, excessive dietary fats during sexual maturation of rats led to developmental programming of the prostate, inducing a hyperplastic status with perturbations in AR isoforms expression and reactivation of ERα in adulthood, whose implications for posterior prostatic health could be detrimental.


Asunto(s)
Receptor alfa de Estrógeno , Próstata , Andrógenos , Animales , Aromatasa , Dieta Alta en Grasa , Estrógenos , Hiperplasia , Masculino , Isoformas de Proteínas , Ratas , Ratas Wistar , Receptores Androgénicos , Maduración Sexual , Testosterona
14.
Orphanet J Rare Dis ; 17(1): 225, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35698232

RESUMEN

BACKGROUND: Aberrations to endoplasmic/sarcoplasmic reticulum (ER/SR) calcium concentration can result in the departure of endogenous proteins in a phenomenon termed exodosis. Redistribution of the ER/SR proteome can have deleterious effects to cell function and cell viability, often contributing to disease pathogenesis. Many proteins prone to exodosis reside in the ER/SR via an ER retention/retrieval sequence (ERS) and are involved in protein folding, protein modification, and protein trafficking. While the consequences of their extracellular presence have yet to be fully delineated, the proteins that have undergone exodosis may be useful for biomarker development. Skeletal muscle cells rely upon tightly coordinated ER/SR calcium release for muscle contractions, and perturbations to calcium homeostasis can result in myopathies. Ryanodine receptor type-1 (RYR1) is a calcium release channel located in the SR. Mutations to the RYR1 gene can compromise calcium homeostasis leading to a vast range of clinical phenotypes encompassing hypotonia, myalgia, respiratory insufficiency, ophthalmoplegia, fatigue and malignant hyperthermia (MH). There are currently no FDA approved treatments for RYR1-related myopathies (RYR1-RM). RESULTS: Here we examine the exodosis profile of skeletal muscle cells following ER/SR calcium depletion. Proteomic analysis identified 4,465 extracellular proteins following ER/SR calcium depletion with 1,280 proteins significantly different than vehicle. A total of 54 ERS proteins were identified and 33 ERS proteins significantly increased following ER/SR calcium depletion. Specifically, ERS protein, mesencephalic astrocyte-derived neurotrophic factor (MANF), was elevated following calcium depletion, making it a potential biomarker candidate for human samples. Despite no significant elevation of MANF in plasma levels among healthy volunteers and RYR1-RM individuals, MANF plasma levels positively correlated with age in RYR1-RM individuals, presenting a potential biomarker of disease progression. Selenoprotein N (SEPN1) was also detected only in extracellular samples following ER/SR calcium depletion. This protein is integral to calcium handling and SEPN1 variants have a causal role in SEPN1-related myopathies (SEPN1-RM). Extracellular presence of ER/SR membrane proteins may provide new insight into proteomic alterations extending beyond ERS proteins. Pre-treatment of skeletal muscle cells with bromocriptine, an FDA approved drug recently found to have anti-exodosis effects, curbed exodosis of ER/SR resident proteins. CONCLUSION: Changes to the extracellular content caused by intracellular calcium dysregulation presents an opportunity for biomarker development and drug discovery.


Asunto(s)
Retículo Endoplásmico , Enfermedades Musculares , Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático , Biomarcadores/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Proteínas/metabolismo , Proteómica , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
15.
JACC Basic Transl Sci ; 7(6): 608-625, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35818510

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating disease affecting approximately 1 in every 3,500 male births worldwide. Multiple mutations in the dystrophin gene have been implicated as underlying causes of DMD. However, there remains no cure for patients with DMD, and cardiomyopathy has become the most common cause of death in the affected population. Extensive research is under way investigating molecular mechanisms that highlight potential therapeutic targets for the development of pharmacotherapy for DMD cardiomyopathy. In this paper, the authors perform a literature review reporting on recent ongoing efforts to identify novel therapeutic strategies to reduce, prevent, or reverse progression of cardiac dysfunction in DMD.

16.
Cells ; 10(11)2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34831367

RESUMEN

The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis.


Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/patología , Receptor de Insulina/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA-Seq , Receptor de Insulina/genética , Análisis de Supervivencia , Transcriptoma/genética , Neoplasias de la Mama Triple Negativas/irrigación sanguínea , Neoplasias de la Mama Triple Negativas/genética , Pez Cebra
17.
Br J Pharmacol ; 178(13): 2709-2726, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33782947

RESUMEN

BACKGROUND AND PURPOSE: The µ-opioid receptor (µ receptor) is the primary target for opioid analgesics. The 7-transmembrane (TM) and 6TM µ receptor isoforms mediate inhibitory and excitatory cellular effects. Here, we developed compounds selective for 6TM- or 7TM-µ receptors to further our understanding of the pharmacodynamic properties of µ receptors. EXPERIMENTAL APPROACH: We performed virtual screening of the ZINC Drug Now library of compounds using in silico 7TM- and 6TM-µ receptor structural models and identified potential compounds that are selective for 6TM- and/or 7TM-µ receptors. Subsequently, we characterized the most promising candidate compounds in functional in vitro studies using Be2C neuroblastoma transfected cells, behavioural in vivo pain assays using various knockout mice and in ex vivo electrophysiology studies. KEY RESULTS: Our virtual screen identified 30 potential candidate compounds. Subsequent functional in vitro cellular assays shortlisted four compounds (#5, 10, 11 and 25) that demonstrated 6TM- or 7TM-µ receptor-dependent NO release. In in vivo pain assays these compounds also produced dose-dependent hyperalgesic responses. Studies using mice that lack specific opioid receptors further established the µ receptor-dependent nature of identified novel ligands. Ex vivo electrophysiological studies on spontaneous excitatory postsynaptic currents in isolated spinal cord slices also validated the hyperalgesic properties of the most potent 6TM- (#10) and 7TM-µ receptor (#5) ligands. CONCLUSION AND IMPLICATIONS: Our novel compounds represent a new class of ligands for µ receptors and will serve as valuable research tools to facilitate the development of opioids with significant analgesic efficacy and fewer side-effects.


Asunto(s)
Analgésicos Opioides , Receptores Opioides mu , Analgésicos Opioides/farmacología , Animales , Ratones , Ratones Noqueados , Dolor , Isoformas de Proteínas
18.
Ann Clin Lab Sci ; 51(6): 805-817, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34921034

RESUMEN

OBJECTIVE: Glucocorticoids (GCs) are the effective first-line drugs and indispensable in chemotherapy regimens to treat patients with multiple myeloma (MM). Previous studies in a variety of hematologic malignancies have shown that the biological action of GC is mediated through the expression and activation and of glucocorticoids receptor (GR) isoforms in vitro. GR and its regulation are crucial determinants of the efficacy of GC independent therapy. There is currently lack of research on patients with MM. METHODS: 132 patients with MM were divided into responders (78 cases) and nonresponders (54 cases) according to the efficacy evaluated after four cycles of GC-dependent regimen. 66 patients with iron-deficiency anemia were served as controls. Preparation of mononuclear bone marrow cells (MBMCs) was purified by Ficoll-Hypaque gradient centrifugation. The mRNA expression of GR α, ß, γ, P, SRp30, SRp40, HSP90, NF-κB and AP-1 were detected by real time RT-PCR. TRIAL REGISTRATION: CHiCTR-RCH-12002872. RESULTS: The expression of four GR isoforms exhibited the following trend in MM patients and controls: GRα>GR-P>GRγ>GRß. GRα and HSP90 expression in responders was significantly higher than that of the nonresponders (P<0.050). HSP90/GRα expression in MM patients exhibited significantly higher than that in controls (P<0.001). SRp30c and SRp40 mRNA expression both showed significant positive correlation with GRα transcript (P<0.001). Compared with controls, NF-kB and AP -1 expression in MM patients was higher. NF-kB and AP-1 expression of nonresponders were significantly higher than that of responders. The difference was not obvious statistically (P>0.050). CONCLUSION: Our findings raise the possibility that low expression of GRα and HSP90 plays important roles in nonresponders. Lack of HSP90 might affect GR structure and further take part in nonresponse. SRp30c and SRp40 mRNA expression both showed significant positive correlation with GRα. That might become new targets for treatment of nonresponders in MM patients, although further studies are needed for clarification.


Asunto(s)
Dexametasona/farmacología , Perfilación de la Expresión Génica/métodos , Glucocorticoides/farmacología , Mieloma Múltiple , Isoformas de Proteínas , ARN Mensajero , Receptores de Glucocorticoides , Antineoplásicos/farmacología , Biomarcadores Farmacológicos/análisis , Bortezomib/farmacología , Monitoreo de Drogas/métodos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , FN-kappa B/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , ARN Mensajero/genética , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Factores de Empalme Serina-Arginina/metabolismo , Talidomida/farmacología , Factor de Transcripción AP-1/metabolismo
19.
F1000Res ; 10: 1019, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745567

RESUMEN

The expression of the calcitonin receptor (CT Receptor) is widespread throughout the life cycle of mammals and in many diseases, and in these contexts the functions of the common isoforms is largely unknown. The relatively recent development of anti-CT Receptor antibodies that bind separate epitopes on the CT a Receptor and CT b Receptor isoforms has advanced our knowledge and understanding of these events. CT Receptor at the protein level is upregulated in programmed cell death including apoptosis (as described in a previous publication) and autophagy, which is discussed in our upcoming, unpublished review. Incomplete data sets are cited in this review on the upregulation of CACLR (encoding CT Receptor) mRNA, in particular the insert-positive isoform (CT b Receptor), in response to cell stress. Cell stress is induced by growth in depleted foetal bovine serum (dFBS) or without FBS, both of which induce degrees of starvation and autophagy, or dFBS plus staurosporine, which induces apoptosis. Details of the methods deployed to generate these data are described here including measurement of the upregulation of CT b Receptor mRNA with qPCR and nanopore long range sequencing. An anti-CT Receptor antibody also known as CalRexin TM, which binds an epitope in the N-terminal domain, was conjugated to either fluorophore 568, which is accumulated into apoptotic cells as previously reported, or pHrodo Red, a pH dependent fluorescent dye, which is accumulated into autophagic and apoptotic cells.  These conjugates are under development to image programmed cell death. The methods for conjugation and high content imaging on the Operetta platform are described. The high fluorescence intensity at low pH of CalRexin:pHrodo Red in both autophagic and apoptotic cells suggests localisation in autophago-lysosomes and lysosomes respectively. Overall, these observations and the methods that underpin them have contributed to our understanding of the widespread expression of CT Receptor isoforms.


Asunto(s)
Autofagia , Receptores de Calcitonina , Animales , Apoptosis , Lisosomas , Transducción de Señal
20.
Biomolecules ; 11(7)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206590

RESUMEN

The insulin receptor isoform A (IR-A), a dual receptor for insulin and IGF2, plays a role in breast cancer (BC) progression and metabolic reprogramming. Notably, discoidin domain receptor 1 (DDR1), a collagen receptor often dysregulated in cancer, is involved in a functional crosstalk and feed forward loop with both the IR-A and the insulin like growth factor receptor 1 (IGF1R). Here, we aimed at investigating whether DDR1 might affect BC cell metabolism by modulating the IGF1R and/or the IR. To this aim, we generated MCF7 BC cells engineered to stably overexpress either IGF2 (MCF7/IGF2) or the IR-A (MCF7/IR-A). In both cell models, we observed that DDR1 silencing induced a significant decrease of total ATP production, particularly affecting the rate of mitochondrial ATP production. We also observed the downregulation of key molecules implicated in both glycolysis and oxidative phosphorylation. These metabolic changes were not modulated by DDR1 binding to collagen and occurred in part in the absence of IR/IGF1R phosphorylation. DDR1 silencing was ineffective in MCF7 knocked out for DDR1. Taken together, these results indicate that DDR1, acting in part independently of IR/IGF1R stimulation, might work as a novel regulator of BC metabolism and should be considered as putative target for therapy in BC.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Femenino , Humanos , Células MCF-7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA