Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Appl Environ Microbiol ; 89(3): e0217222, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36912632

RESUMEN

Cavities are created by hydrophobic interactions between residue side chain atoms during the folding of enzymes. Redesigning cavities can improve the thermostability and catalytic activity of the enzyme; however, the synergistic effect of cavities remains unclear. In this study, Rhizomucor miehei lipase (RML) was used as a model to explore volume fluctuation and spatial distribution changes of the internal cavities, which could reveal the roles of internal cavities in the thermostability and catalytic activity. We present an inside out cavity engineering (CE) strategy based on computational techniques to explore how changes in the volumes and spatial distribution of cavities affect the thermostability and catalytic activity of the enzyme. We obtained 12 single-point mutants, among which the melting temperatures (Tm) of 8 mutants showed an increase of more than 2°C. Sixteen multipoint mutations were further designed by spatial distribution rearrangement of internal cavities. The Tm of the most stable triple variant, with mutations including T21V (a change of T to V at position 21), S27A, and T198L (T21V/S27A/T198L), was elevated by 11.0°C, together with a 28.7-fold increase in the half-life at 65°C and a specific activity increase of 9.9-fold (up to 5,828 U mg-1), one of the highest lipase activities reported. The possible mechanism of decreased volumes and spatial rearrangement of the internal cavities improved the stability of the enzyme, optimizing the outer substrate tunnel to improve the catalytic efficiency. Overall, the inside out computational redesign of cavities method could help to deeply understand the effect of cavities on enzymatic stability and activity, which would be beneficial for protein engineering efforts to optimize natural enzymes. IMPORTANCE In the present study, R. miehei lipase, which is widely used in various industries, provides an opportunity to explore the effects of internal cavities on the thermostability and catalytic activity of enzymes. Here, we execute high hydrostatic pressure molecular dynamics (HP-MD) simulations to screen the critical internal cavity and reshape the internal cavities through site-directed mutation. We show that as the global internal cavity volume decreases, cavity rearrangement can improve the stability of the protein while optimizing the substrate channel to improve the catalytic efficiency. Our results provide significant insights into understanding the mechanism of action of the internal cavity. Our strategy is expected to be applied to other enzymes to promote increases in thermostability and catalytic activity.


Asunto(s)
Enzimas Inmovilizadas , Lipasa , Lipasa/metabolismo , Estabilidad de Enzimas , Temperatura , Enzimas Inmovilizadas/metabolismo , Rhizomucor
2.
Molecules ; 25(3)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012738

RESUMEN

Functional properties of each enzyme strictly depend on immobilization protocol used for linking enzyme and carrier. Different strategies were applied to prepare the immobilized derivatives of Rhizomucor miehei lipase (RML) and chemically aminated RML (NH2-RML). Both RML and NH2-RML forms were covalently immobilized on glyoxyl sepharose (Gx-RML and Gx-NH2-RML), glyoxyl sepharose dithiothreitol (Gx-DTT-RML and Gx-DTT-NH2-RML), activated sepharose with cyanogen bromide (CNBr-RML and CNBr-NH2-RML) and heterofunctional epoxy support partially modified with iminodiacetic acid (epoxy-IDA-RML and epoxy-IDA-NH2-RML). Immobilization varied from 11% up to 88% yields producing specific activities ranging from 0.5 up to 1.9 UI/mg. Great improvement in thermal stability for Gx-DTT-NH2-RML and epoxy-IDA-NH2-RML derivatives was obtained by retaining 49% and 37% of their initial activities at 70 °C, respectively. The regioselectivity of each derivative was also examined in hydrolysis of fish oil at three different conditions. All the derivatives were selective between cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) in favor of EPA. The highest selectivity (32.9 folds) was observed for epoxy-IDA-NH2-RML derivative in the hydrolysis reaction performed at pH 5 and 4 °C. Recyclability study showed good capability of the immobilized biocatalysts to be used repeatedly, retaining 50-91% of their initial activities after five cycles of the reaction.


Asunto(s)
Enzimas Inmovilizadas/química , Aceites de Pescado/química , Lipasa/química , Rhizomucor/enzimología , Catálisis , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Solventes/química , Temperatura
3.
Mol Biol Rep ; 46(1): 597-608, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30511303

RESUMEN

In this work, the synthesis of two fruit flavor esters, namely methyl and ethyl butyrate, by lipase from Rhizomucor miehei immobilized onto chitosan in the presence of the surfactant sodium dodecyl sulfate SDS was investigated. In the optimized conditions, maximum esterification yield for ethyl butyrate and methyl butyrate was (92 ± 1%) and (89 ± 1%), respectively. Esterification yields for both reactions were comparable or even superior to the ones achieved when the synthesis was catalyzed by a commercial enzyme, Lipozyme®, at the same reaction conditions. For ethyl butyrate, the developed biocatalyst was used for seven consecutive cycles of reaction with retention of its catalytic activity. For methyl butyrate synthesis the biocatalyst was used for four consecutive cycles without loss of its catalytic activity. The results show that chitosan may be employed in obtaining biocatalysts with high catalytic efficiency and can successfully replace the currently commercial available biocatalysts.


Asunto(s)
Butiratos/química , Rhizomucor/metabolismo , Quitosano , Enzimas Inmovilizadas , Esterificación , Ésteres/síntesis química , Aromatizantes/síntesis química , Proteínas Fúngicas , Cinética , Lipasa/metabolismo , Lipasa/farmacología , Dodecil Sulfato de Sodio/química , Tensoactivos
4.
Appl Environ Microbiol ; 84(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29101200

RESUMEN

Rhizomucor miehei lipase (RML), as a kind of eukaryotic protein catalyst, plays an important role in the food, organic chemical, and biofuel industries. However, RML retains its catalytic activity below 50°C, which limits its industrial applications at higher temperatures. Soluble expression of this eukaryotic protein in Escherichia coli not only helps to screen for thermostable mutants quickly but also provides the opportunity to develop rapid and effective ways to enhance the thermal stability of eukaryotic proteins. Therefore, in this study, RML was engineered using multiple computational design methods, followed by filtration via conservation analysis and functional region assessment. We successfully obtained a limited screening library (only 36 candidates) to validate thermostable single point mutants, among which 24 of the candidates showed higher thermostability and 13 point mutations resulted in an apparent melting temperature ([Formula: see text]) of at least 1°C higher. Furthermore, both of the two disulfide bonds predicted from four rational-design algorithms were further introduced and found to stabilize RML. The most stable mutant, with T18K/T22I/E230I/S56C-N63C/V189C-D238C mutations, exhibited a 14.3°C-higher [Formula: see text] and a 12.5-fold increase in half-life at 70°C. The catalytic efficiency of the engineered lipase was 39% higher than that of the wild type. The results demonstrate that rationally designed point mutations and disulfide bonds can effectively reduce the number of screened clones to enhance the thermostability of RML.IMPORTANCER. miehei lipase, whose structure is well established, can be widely applied in diverse chemical processes. Soluble expression of R. miehei lipase in E. coli provides an opportunity to explore efficient methods for enhancing eukaryotic protein thermostability. This study highlights a strategy that combines computational algorithms to predict single point mutations and disulfide bonds in RML without losing catalytic activity. Through this strategy, an RML variant with greatly enhanced thermostability was obtained. This study provides a competitive alternative for wild-type RML in practical applications and further a rapid and effective strategy for thermostability engineering.


Asunto(s)
Calor , Lipasa/metabolismo , Mutación Puntual , Rhizomucor/enzimología , Rhizomucor/genética , Temperatura , Algoritmos , Disulfuros/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Escherichia coli/genética , Biblioteca de Genes , Cinética , Lipasa/genética , Rhizomucor/metabolismo
5.
J Agric Food Chem ; 72(30): 16835-16847, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39028993

RESUMEN

Few reports exist on one-step enzymatic methods for the simultaneous production of biodiesel and eicosapentaenoic acid ethyl ester (EPA-EE), a high-value pharmaceutical compound. This study aimed to efficiently express Rhizomucor miehei lipase (pRML) in Pichia pastoris X-33 via propeptide mutation and high-copy strain screening. The mutated enzyme was then used to simultaneously catalyze the production of both biodiesel and EPA-EE. The P46N mutation in the propeptide (P46N-pRML) significantly boosted its production, with the four-copy strain increasing enzyme yield by 3.7-fold, reaching 3425 U/mL. Meanwhile, its optimal temperature increased to 45-50 °C, pH expanded to 7.0-8.0, specific activity doubled, Km reduced to one-third, and kcat/Km increased 7-fold. Notably, P46N-pRML efficiently converts Nannochloropsis gaditana oil's eicosapentaenoic acid (EPA). Under optimal conditions, it achieves up to 93% biodiesel and 92% EPA-EE yields in 9 h. Our study introduces a novel, efficient one-step green method to produce both biodiesel and EPA-EE using this advanced enzyme.


Asunto(s)
Biocombustibles , Ácido Eicosapentaenoico , Proteínas Fúngicas , Lipasa , Rhizomucor , Estramenopilos , Rhizomucor/enzimología , Rhizomucor/genética , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/análogos & derivados , Lipasa/metabolismo , Lipasa/genética , Lipasa/química , Biocombustibles/análisis , Estramenopilos/genética , Estramenopilos/enzimología , Estramenopilos/metabolismo , Estramenopilos/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Expresión Génica , Estabilidad de Enzimas , Cinética , Temperatura , Concentración de Iones de Hidrógeno , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/enzimología
6.
Enzyme Microb Technol ; 160: 110072, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35689964

RESUMEN

The construction of methanol-resistant lipases with high catalytic activity is world-shattering for biodiesel production. A semi-rational method has been constructed to enhance the properties of Rhizomucor miehei lipase with propeptide (ProRML) by introducing N-glycosylation sites in the Loop structure. The enzyme activities of the mutants N288 (1448.89 ± 68.64 U/mg) and N142 (1073.68 ± 33.87 U/mg) increased to 56.09 and 41.56 times relative to that of wild type ProRML (WT, 25.83 ± 0.73 U/mg), respectively. After incubation in 50 % methanol for 2.5 h, the residual activities of N314 and N174-1 were 95 % and 85%, which were higher than the WT (27 %). Additionally, the biodiesel yield of all mutants was increased after a one-time addition of methanol for 24 h. Among them, N288 increased the quantity of biodiesel from colza oil from 9.49 % to 88 %, and N314 increased the amount of biodiesel from waste soybean oil from 8.44% to 70%. This study provides an effective method to enhance the properties of lipase and improve its application potential in biodiesel production.


Asunto(s)
Biocombustibles , Lipasa , Glicosilación , Lipasa/metabolismo , Metanol/química , Rhizomucor/genética
7.
Bioresour Technol ; 348: 126769, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35092821

RESUMEN

Exploiting highly active and methanol-resistant lipase is of great significance for biodiesel production. A semi-rational directed evolution method combined with N-glycosylation is reported, and all mutants exhibiting higher catalytic activity and methanol tolerance than the wild type (WT). Mutant N267 retained 64% activity after incubation in 50% methanol for 8 h, which was 48% greater than that of WT. The catalytic activity of mutants N267 and N167 was 30- and 71- fold higher than that of WT. Molecular dynamics simulations of N267 showed that the formation of new strong hydrogen bonds between glycan and the protein stabilized the structure of lipase and improved its methanol tolerance. N267 achieved biodiesel yields of 99.33% (colza oil) and 81.70% (waste soybean oil) for 24 h, which was much higher than WT (51.6% for rapeseed oil and 44.73% for wasted soybean oil). The engineered ProRML mutant has high potential for commercial biodiesel production.


Asunto(s)
Biocombustibles , Lipasa , Lipasa/metabolismo , Metanol/química , Rhizomucor/metabolismo
8.
Bioengineering (Basel) ; 9(11)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36354521

RESUMEN

Morphology plays an important role in the fermentation bioprocess of filamentous fungi. In this study, we investigated the controlling strategies of morphology that improved the efficiency of Rhizomucor miehei lipase (RML) production using a high-yield Aspergillus oryzae. First, the inoculated spore concentrations were optimized in seed culture, and the RML activity increased by 43.4% with the well-controlled mycelium pellets in both ideal sizes and concentrations. Then, the initial nitrogen source and agitation strategies were optimized to regulate the morphology of Aspergillus oryzae in a 5 L bioreactor, and the established stable fermentation system increased the RML activity to 232.0 U/mL, combined with an increase in total RML activity from 98,080 U to 487,179 U. Furthermore, the optimized fermentation strategy was verified by a high-yield Aspergillus oryzae and achieved an additional improvement of RML activity, up to 320.0 U/mL. Moreover, this optimized fermentation bioprocess was successfully scaled up to a 50 L bioreactor, and the RML activity reached 550.0 U/mL. This work has established a stable precision fermentation bioprocess for RML production by A. oryzae in bioreactors, and the controlling strategy developed in this study could potentially be extended to an industrial scale for RML production with high efficiency.

9.
Food Chem ; 385: 132705, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35306234

RESUMEN

This study aimed to enzymatically prepare structured monogalactosyldiacylglycerols (MGDGs) with different hydrophile-lipophile balance (HLB) values for use as emulsifiers. Acidolysis of Perilla frutescens-derived MGDGs with capric acid (10:0) was conducted to obtain structured MGDGs containing 10:0. Lewatit VP OC 1600-immobilized Rhizomucor miehei lipase was used as the biocatalyst. Structured MGDGs (HLB value = 2.95-7.17) containing 13.0-70.6 mol% 10:0 were obtained from P. frutescens MGDGs (HLB value = 1.93). A quadratic regression equation (R2 = 0.920) to predict the 10:0 content of the structured MGDGs under the given conditions was established using response surface methodology. Using a linear regression equation (R2 = 0.999) to predict the HLB value by 10:0 content, structured MGDGs containing 27.1-54.6 mol% 10:0 were predicted to have an HLB value of 4-6, indicating their potential applicability as hydrophobic emulsifiers. Structured MGDGs with a purity of âˆ¼ 43% w/w were obtained from the reaction products using silica column chromatography.


Asunto(s)
Lipasa , Perilla frutescens , Emulsionantes/química , Interacciones Hidrofóbicas e Hidrofílicas , Lipasa/química , Dióxido de Silicio
10.
Enzyme Microb Technol ; 144: 109739, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33541574

RESUMEN

Lipase from Rhizomucor miehei (RML) was covalently immobilized on different supports, two silica gels and two carbon nanotube samples, using two different strategies. RML was immobilized on 3-carboxypropyl silica gel (RML@Si-COOH) and multi-wall carbon nanotubes containing carboxylic acid functionalities (RML@MCNT-COOH) using a two-step carbodiimide activation/immobilization reaction. Moreover, the enzyme was also immobilized on 3-aminopropyl silica (RML@Si-Glu) and single-wall carbon nanotubes functionalized with 3-APTES and activated with glutaraldehyde (RML@SCNT-Glu). Before and after RML immobilization, the structurel properties of supports were characterized and compared in detail. After immobilization, the expressed activities were 36.9, 90.2, 16.9, and 26.1 % for RML@Si-COOH, RML@Si-Glu, RML@MCNT-COOH, and RML@SCNT-Glu, respectively. The kinetic parameters of free and immobilized RML samples were determined for three substrates, p-nitrophenyl acetate, p-nitrophenyl butyrate and p-nitrophenyl palmitate, and RML@Si-Glu showed higher catalytic efficiency than the other immobilized RML samples. RML@Si-COOH, RML@Si-Glu, RML@MCNT-COOH, and RML@SCNT-Glu exhibited 5.8, 7.6, 4.2 and 4.6 folds longer half-life values than those of the free enzyme at pH 7.5 and 40 °C. Recyclability studies showed that all the immobilized RML biocatalysts retained over 90 % of their initial activities after ten cycles in the hydrolysis of p-nitrophenyl butyrate.


Asunto(s)
Nanotubos de Carbono , Rhizomucor , Enzimas Inmovilizadas , Lipasa , Silicatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA