RESUMEN
Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.
Asunto(s)
Proteína de Replicación A , Expansión de Repetición de Trinucleótido , Animales , Humanos , Ratones , ADN/genética , Reparación de la Incompatibilidad de ADN , Enfermedad de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelosas/genética , Proteína de Replicación A/metabolismoRESUMEN
Spotted fever group (SFG) rickettsiae are human pathogens that infect cells in the vasculature. They disseminate through host tissues by a process of cell-to-cell spread that involves protrusion formation, engulfment, and vacuolar escape. Other bacterial pathogens rely on actin-based motility to provide a physical force for spread. Here, we show that SFG species Rickettsia parkeri typically lack actin tails during spread and instead manipulate host intercellular tension and mechanotransduction to promote spread. Using transposon mutagenesis, we identified surface cell antigen 4 (Sca4) as a secreted effector of spread that specifically promotes protrusion engulfment. Sca4 interacts with the cell-adhesion protein vinculin and blocks association with vinculin's binding partner, α-catenin. Using traction and monolayer stress microscopy, we show that Sca4 reduces vinculin-dependent mechanotransduction at cell-cell junctions. Our results suggest that Sca4 relieves intercellular tension to promote protrusion engulfment, which represents a distinctive strategy for manipulating cytoskeletal force generation to enable spread.
Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Mecanotransducción Celular , Infecciones por Rickettsia/metabolismo , Infecciones por Rickettsia/microbiología , Rickettsia/patogenicidad , Vinculina/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Cadherinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Elementos Transponibles de ADN/genética , Fiebre/metabolismo , Fiebre/microbiología , Humanos , Mutagénesis Insercional , Mutación , Rickettsia/metabolismo , alfa Catenina/metabolismoRESUMEN
Identifying modifiers of dosage-sensitive genes involved in neurodegenerative disorders is imperative to discover novel genetic risk factors and potential therapeutic entry points. In this study, we focus on Ataxin-1 (ATXN1), a dosage-sensitive gene involved in the neurodegenerative disease spinocerebellar ataxia type 1 (SCA1). While the precise maintenance of ATXN1 levels is essential to prevent disease, the mechanisms that regulate ATXN1 expression remain largely unknown. We demonstrate that ATXN1's unusually long 5' untranslated region (5' UTR) negatively regulates its expression via posttranscriptional mechanisms. Based on recent reports that microRNAs (miRNAs) can interact with both 3' and 5' UTRs to regulate their target genes, we identify miR760 as a negative regulator that binds to a conserved site in ATXN1's 5' UTR to induce RNA degradation and translational inhibition. We found that delivery of Adeno-associated virus (AAV)-expressing miR760 in the cerebellum reduces ATXN1 levels in vivo and mitigates motor coordination deficits in a mouse model of SCA1. These findings provide new insights into the regulation of ATXN1 levels, present additional evidence for miRNA-mediated gene regulation via 5' UTR binding, and raise the possibility that noncoding mutations in the ATXN1 locus may act as risk factors for yet to be discovered progressive ataxias.
Asunto(s)
Regiones no Traducidas 5'/genética , Ataxina-1/genética , Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Ataxias Espinocerebelosas/genética , Animales , Ataxina-1/metabolismo , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Mutación , Factores de Riesgo , Ataxias Espinocerebelosas/fisiopatologíaRESUMEN
Pathomechanistic studies of neurodegenerative diseases have documented the toxic effects of mutant protein expression, misfolding, and aggregation. However, alterations in the expression of the corresponding wild-type (WT) gene, due to either variations in copy number or transcriptional regulation, have also been linked to Alzheimer's and Parkinson's diseases. Another striking example of this mutant and WT duality is spinocerebellar ataxia type 1 (SCA1) caused by an ATXN1 polyglutamine protein, although subtle variations in WT AXTN1 levels also lead to ataxia. In this issue of Genes & Development, Nitschke and colleagues (pp. 1147-1160) delve into posttranscriptional events that fine-tune ATXN1 expression and uncover a key role for 5' untranslated region (5' UTR)-miR760 interactions. Thus, this study not only provides significant insights into the complexities of modulating the expression of a dosage-sensitive gene but also highlights the critical importance of identifying noncoding polymorphisms as disease risk factors.
Asunto(s)
Ataxina-1/genética , Regulación de la Expresión Génica , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/prevención & control , Regiones no Traducidas 5'/genética , Animales , Ataxina-1/metabolismo , Dosificación de Gen , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo Genético , Factores de Riesgo , Ataxias Espinocerebelosas/fisiopatologíaRESUMEN
Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.
Asunto(s)
Mosaicismo , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Humanos , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Femenino , Masculino , Adulto , Persona de Mediana Edad , Cerebelo/metabolismo , Cerebelo/patología , Anciano , Encéfalo/metabolismo , Encéfalo/patología , Ataxina-1/genéticaRESUMEN
Autosomal-dominant ataxia with sensory and autonomic neuropathy is a highly specific combined phenotype that we described in two Swedish kindreds in 2014; its genetic cause had remained unknown. Here, we report the discovery of exonic GGC trinucleotide repeat expansions, encoding poly-glycine, in zinc finger homeobox 3 (ZFHX3) in these families. The expansions were identified in whole-genome datasets within genomic segments that all affected family members shared. Non-expanded alleles carried one or more interruptions within the repeat. We also found ZFHX3 repeat expansions in three additional families, all from the region of Skåne in southern Sweden. Individuals with expanded repeats developed balance and gait disturbances at 15 to 60 years of age and had sensory neuropathy and slow saccades. Anticipation was observed in all families and correlated with different repeat lengths determined through long-read sequencing in two family members. The most severely affected individuals had marked autonomic dysfunction, with severe orthostatism as the most disabling clinical feature. Neuropathology revealed p62-positive intracytoplasmic and intranuclear inclusions in neurons of the central and enteric nervous system, as well as alpha-synuclein positivity. ZFHX3 is located within the 16q22 locus, to which spinocerebellar ataxia type 4 (SCA4) repeatedly had been mapped; the clinical phenotype in our families corresponded well with the unique phenotype described in SCA4, and the original SCA4 kindred originated from Sweden. ZFHX3 has known functions in neuronal development and differentiation n both the central and peripheral nervous system. Our findings demonstrate that SCA4 is caused by repeat expansions in ZFHX3.
Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Expansión de Repetición de Trinucleótido/genética , Ataxias Espinocerebelosas/genética , Ataxia/genética , Ataxia Cerebelosa/genética , Fenotipo , Degeneraciones Espinocerebelosas/genética , Proteínas de Homeodominio/genéticaRESUMEN
One of the characteristic regions of brainstem degeneration across multiple spinocerebellar ataxias (SCAs) is the inferior olive (IO), a medullary nucleus that plays a key role in motor learning. The vulnerability of IO neurons remains a poorly-understood area of SCA pathology. In this work, we address this by evaluating IO disease in SCA1, a prototypic inherited olivopontocerebellar atrophy, using the genetically-precise SCA1 knock-in (SCA1-KI) mouse. We find that these mice exhibit olivary hypertrophy, a phenotype reminiscent of a degenerative disorder known as hypertrophic olivary degeneration (HOD). Similar to early stages of HOD, SCA1-KI IO neurons display early dendritic lengthening and later somatic expansion without frank cell loss. Though HOD is known to be caused by brainstem lesions that disrupt IO inhibitory innervation, we observe no loss of inhibitory terminals in the SCA1-KI IO. Additionally, we find that a separate mouse model of SCA1 in which mutant ATXN1 is expressed solely in cerebellar Purkinje cells shows no evidence of olivary hypertrophy. Patch-clamp recordings from brainstem slices indicate that SCA1-KI IO neurons are hyperexcitable, generating spike trains in response to membrane depolarization. Transcriptome analysis further reveals reduced medullary expression of ion channels responsible for IO neuron spike afterhyperpolarization (AHP)-a result that appears to have a functional consequence, as SCA1-KI IO neuron spikes exhibit a diminished AHP. These findings suggest that expression of mutant ATXN1 in IO neurons results in an HOD-like olivary hypertrophy, in association with increased intrinsic membrane excitability and ion channel transcriptional dysregulation.
RESUMEN
Spinocerebellar ataxia type 10 (SCA10) is a rare autosomal dominant ataxia caused by a large expansion of the (ATTCT)n repeat in ATXN10. SCA10 was described in Native American and Asian individuals which prompted a search for an expanded haplotype to confirm a common ancestral origin for the expansion event. All patients with SCA10 expansions in our cohort share a single haplotype defined at the 5'-end by the minor allele of rs41524547, located ~35 kb upstream of the SCA10 expansion. Intriguingly, rs41524547 is located within the miRNA gene, MIR4762, within its DROSHA cleavage site and just outside the seed sequence for mir4792-5p. The world-wide frequency of rs41524547-G is less than 5% and found almost exclusively in the Americas and East Asia-a geographic distribution that mirrors reported SCA10 cases. We identified rs41524547-G(+) DNA from the 1000 Genomes/International Genome Sample Resource and our own general population samples and identified SCA10 repeat expansions in up to 25% of these samples. The reduced penetrance of these SCA10 expansions may be explained by a young (pre-onset) age at sample collection, a small repeat size, purity of repeat units, or the disruption of miR4762-5p function. We conclude that rs41524547-G is the most robust at-risk SNP allele for SCA10, is useful for screening of SCA10 expansions in population genetics studies and provides the most compelling evidence to date for a single, prehistoric origin of SCA10 expansions sometime prior to or during the migration of individuals across the Bering Land Bridge into the Americas.
Asunto(s)
Ataxina-10 , Haplotipos , Ataxias Espinocerebelosas , Humanos , Haplotipos/genética , Ataxias Espinocerebelosas/genética , Ataxina-10/genética , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple/genética , MicroARNs/genética , Alelos , Frecuencia de los Genes , Expansión de las Repeticiones de ADNRESUMEN
Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.
Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/diagnóstico , Ataxia Cerebelosa/genética , Fenotipo , Ataxia/genética , Pruebas Genéticas , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteasas ATP-Dependientes/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Spinocerebellar ataxia 27B (SCA27B) is a common autosomal dominant ataxia caused by an intronic GAAâ¢TTC repeat expansion in FGF14. Neuropathological studies have shown that neuronal loss is largely restricted to the cerebellum. Although the repeat locus is highly unstable during intergenerational transmission, it remains unknown whether it exhibits cerebral mosaicism and progressive instability throughout life. We conducted an analysis of the FGF14 GAAâ¢TTC repeat somatic instability across 156 serial blood samples from 69 individuals, fibroblasts, induced pluripotent stem cells, and post-mortem brain tissues from six controls and six patients with SCA27B, alongside methylation profiling using targeted long-read sequencing. Peripheral tissues exhibited minimal somatic instability, which did not significantly change over periods of more than 20 years. In post-mortem brains, the GAAâ¢TTC repeat was remarkably stable across all regions, except in the cerebellar hemispheres and vermis. The levels of somatic expansion in the cerebellar hemispheres and vermis were, on average, 3.15 and 2.72 times greater relative to other examined brain regions, respectively. Additionally, levels of somatic expansion in the brain increased with repeat length and tissue expression of FGF14. We found no significant difference in methylation of wild-type and expanded FGF14 alleles in post-mortem cerebellar hemispheres between patients and controls. In conclusion, our study revealed that the FGF14 GAAâ¢TTC repeat exhibits a cerebellar-specific expansion bias, which may explain the pure cerebellar involvement in SCA27B.
RESUMEN
Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominant movement disorders. Among the SCAs associated with impaired ion channel function, SCA19/22 is caused by pathogenic variants in KCND3, which encodes the voltage-gated potassium channel Kv4.3. SCA19/22 is clinically characterized by ataxia, dysarthria and oculomotor dysfunction in combination with other signs and symptoms, including mild cognitive impairment, peripheral neuropathy and pyramidal signs. The known KCND3 pathogenic variants are localized either in the transmembrane segments, the connecting loops, or the C-terminal region of Kv4.3. We have identified a novel pathogenic variant, c.455A>G (p.D152G), localized in the N-terminus of Kv4.3. It is located in the immediate neighbourhood of the T1 domain, which is responsible for multimerization with the ß-subunit KChIP2b and thus for the formation of functional heterooctamers. Electrophysiological studies showed that p.D152G does not affect channel gating, but reduces the ionic current in Kv4.3, even though the variant is not located in the transmembrane domains. Impaired channel trafficking to the plasma membrane may contribute to this effect. In a patient with a clinical picture corresponding to SCA19/22, p.D152G is the first pathogenic variant in the N-terminus of Kv4.3 to be described to date with an effect on ion channel activity.
Asunto(s)
Canales de Potasio Shal , Ataxias Espinocerebelosas , Humanos , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Masculino , Femenino , Animales , Activación del Canal Iónico , Células HEK293 , Proteínas de Interacción con los Canales Kv/metabolismo , Proteínas de Interacción con los Canales Kv/genética , Persona de Mediana Edad , Mutación/genética , Degeneraciones EspinocerebelosasRESUMEN
ß-III-Spectrin is a key cytoskeletal protein that localizes to the soma and dendrites of cerebellar Purkinje cells and is required for dendritic arborization and signaling. A spinocerebellar ataxia type 5 L253P mutation in the cytoskeletal protein ß-III-spectrin causes high-affinity actin binding. Previously we reported a cell-based fluorescence assay for identification of small-molecule actin-binding modulators of the L253P mutant ß-III-spectrin. Here we describe a complementary, in vitro, fluorescence resonance energy transfer (FRET) assay that uses purified L253P ß-III-spectrin actin-binding domain (ABD) and F-actin. To validate the assay for high-throughput compatibility, we first confirmed that our 50% FRET signal was responsive to swinholide A, an actin-severing compound, and that this yielded excellent assay quality with a Z' value > 0.77. Second, we screened a 2684-compound library of US Food and Drug Administration-approved drugs. Importantly, the screening identified numerous compounds that decreased FRET between fluorescently labeled L253P ABD and F-actin. The activity and target of multiple Hit compounds were confirmed in orthologous cosedimentation actin-binding assays. Through future medicinal chemistry, the Hit compounds can potentially be developed into a spinocerebellar ataxia type 5-specific therapeutic. Furthermore, our validated FRET-based in vitro high-throughput screening platform is poised for screening large compound libraries for ß-III-spectrin ABD modulators.
Asunto(s)
Actinas , Espectrina , Ataxias Espinocerebelosas , Humanos , Actinas/genética , Actinas/metabolismo , Descubrimiento de Drogas , Neuronas/metabolismo , Espectrina/metabolismo , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismoRESUMEN
The reduced penetrance of TBP intermediate alleles and the recently proposed possible digenic TBP/STUB1 inheritance raised questions on the possible mechanism involved opening a debate on the existence of SCA48 as a monogenic disorder. We here report clinical and genetic results of two apparently unrelated patients carrying the same STUB1 variant(c.244G > T;p.Asp82Tyr) with normal TBP alleles and a clinical picture fully resembling SCA48, including cerebellar ataxia, dysarthria and mild cognitive impairment. This report provides supportive evidence that this specific ataxia can also occur as a monogenic disease, considering classical TBP allelic ranges.
Asunto(s)
Linaje , Ataxias Espinocerebelosas , Ubiquitina-Proteína Ligasas , Humanos , Ataxias Espinocerebelosas/genética , Masculino , Femenino , Ubiquitina-Proteína Ligasas/genética , Persona de Mediana Edad , Proteína de Unión a TATA-Box/genética , Adulto , Alelos , Mutación/genéticaRESUMEN
An intronic bi-allelic pentanucleotide repeat expansion mutation, (AAGGG)400-2000, at AAAAG repeat locus in RFC1 gene, is known as underlying genetic cause in cases with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) and late-onset sporadic ataxia. Biallelic positive cases carry a common recessive risk haplotype, "AAGA," spanning RFC1 gene. In this study, our aim is to find prevalence of bi-allelic (AAGGG)exp in Indian ataxia and other neurological disorders and investigate the complexity of RFC1 repeat locus and its potential association with neurodegenerative diseases in Indian population-based cohorts. We carried out repeat number and repeat type estimation using flanking PCR and repeat primed PCR (AAAAG/AAAGG/AAGGG) in four Indian disease cohorts and healthy controls. Haplotype assessment of suspected cases was done by genotyping and confirmed by Sanger sequencing. Blood samples and consent of all the cases and detailed clinical details of positive cases were collected in collaboration with A.I.I.M.S. Furthermore, comprehension of RFC1 repeat locus and risk haplotype analysis in Indian background was performed on the NGS data of Indian healthy controls by ExpansionHunter, ExpansionHunter Denovo, and PHASE analysis, respectively. Genetic screening of RFC1-TNR locus in 1998 uncharacterized cases (SCA12: 87; uncharacterized ataxia: 1818, CMT: 93) and 564 heterogenous controls showed that the frequency of subjects with bi-allelic (AAGGG)exp are 1.15%, < 0.05%, 2.15%, and 0% respectively. Two RFC1 positive sporadic late-onset ataxia cases, one bi-allelic (AAGGG)exp and another, (AAAGG)~700/(AAGGG)exp, had recessive risk haplotype and CANVAS symptoms. Long normal alleles, 15-27, are significantly rare in ataxia cohort. In IndiGen control population (IndiGen; N = 1029), long normal repeat range, 15-27, is significantly associated with A3G3 and some rare repeat motifs, AGAGG, AACGG, AAGAG, and AAGGC. Risk-associated "AAGA" haplotype of the original pathogenic expansion of A2G3 was found associated with the A3G3 representing alleles in background population. Apart from bi-allelic (AAGGG)exp, we report cases with a new pathogenic expansion of (AAAGG)exp/(AAGGG)exp in RFC1 and recessive risk haplotype. We found different repeat motifs at RFC1 TNR locus, like AAAAG, AAAGG, AAAGGG, AAAAGG, AAGAG, AACGG, AAGGC, AGAGG, and AAGGG, in Indian background population except ACAGG and (AAAGG)n/(AAGGG)n. Our findings will help in further understanding the role of long normal repeat size and different repeat motifs, specifically AAAGG, AAAGGG, and other rare repeat motifs, at the RFC1 locus.
Asunto(s)
Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Enfermedades Vestibulares , Humanos , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , AtaxiaRESUMEN
BACKGROUND: The ethnic diversity of India provides a unique opportunity to study the history of the origin of mutations of genetic disorders. Spinocerebellar ataxia type 27B (SCA27B), a recently identified dominantly inherited cerebellar disorder is caused by GAA-repeat expansions in intron 1 of Fibroblast Growth Factor 14 (FGF14). Predominantly reported in the European population, we aimed to screen this mutation and study the founder haplotype of SCA27B in Indian ataxia patients. METHODS: We have undertaken screening of GAA repeats in a large Indian cohort of ~ 1400 uncharacterised ataxia patients and kindreds and long-read sequencing-based GAA repeat length assessment. High throughput genotyping-based haplotype analysis was also performed. We utilized ~ 1000 Indian genomes to study the GAA at-risk expansion alleles. FINDINGS: We report a high frequency of 1.83% (n = 23) of SCA27B in the uncharacterized Indian ataxia cohort. We observed several biallelic GAA expansion mutations (n = 5) with younger disease onset. We observed a risk haplotype (AATCCGTGG) flanking the FGF14-GAA locus over a 74 kb region in linkage disequilibrium. We further studied the frequency of this risk haplotype across diverse geographical population groups. The highest prevalence of the risk haplotype was observed in the European population (29.9%) followed by Indians (21.5%). The observed risk haplotype has existed through ~ 1100 generations (~ 22,000 years), assuming a correlated genealogy. INTERPRETATION: This study provides valuable insights into SCA27B and its Upper Paleolithic origin in the Indian subcontinent. The high occurrence of biallelic expansion is probably relevant to the endogamous nature of the Indian population.
Asunto(s)
Factores de Crecimiento de Fibroblastos , Haplotipos , Ataxias Espinocerebelosas , Humanos , India/epidemiología , Factores de Crecimiento de Fibroblastos/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/epidemiología , Ataxias Espinocerebelosas/etnología , Estudios de Cohortes , Masculino , Femenino , Adulto , Expansión de Repetición de Trinucleótido/genética , Mutación , Desequilibrio de Ligamiento , Efecto Fundador , Persona de Mediana Edad , Alelos , AdolescenteRESUMEN
C-terminus of HSP70 interacting protein (CHIP) is an E3 ubiquitin ligase and HSP70 cochaperone. Mutations in the CHIP encoding gene are the cause of two neurodegenerative conditions: spinocerebellar ataxia autosomal dominant type 48 (SCA48) and autosomal recessive type 16 (SCAR16). The mechanisms underlying CHIP-associated diseases are currently unknown. Mitochondrial dysfunction, specifically dysfunction in mitochondrial autophagy (mitophagy), is increasingly implicated in neurodegenerative diseases and loss of CHIP has been demonstrated to result in mitochondrial dysfunction in multiple animal models, although how CHIP is involved in mitophagy regulation has been previously unknown. Here, we demonstrate that CHIP acts as a negative regulator of the PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy pathway, promoting the degradation of PINK1, impairing Parkin translocation to the mitochondria, and suppressing mitophagy in response to mitochondrial stress. We also show that loss of CHIP enhances neuronal mitophagy in a PINK1 and Parkin dependent manner in Caenorhabditis elegans. Furthermore, we find that multiple disease-associated mutations in CHIP dysregulate mitophagy both in vitro and in vivo in C. elegans neurons, a finding which could implicate mitophagy dysregulation in CHIP-associated diseases.
Asunto(s)
Caenorhabditis elegans , Mitofagia , Mutación , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Mitofagia/fisiología , Mitofagia/genética , Animales , Humanos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Neuronas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismoRESUMEN
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited and lethal neurodegenerative disease caused by the abnormal expansion of CAG repeats in the ATAXIN-1 (ATXN1) gene. Pathological studies identified dysfunction and loss of motor neurons (MNs) in the brain stem and spinal cord, which are thought to contribute to premature lethality by affecting the swallowing and breathing of SCA1 patients. However, the molecular and cellular mechanisms of MN pathogenesis remain unknown. To study SCA1 pathogenesis in human MNs, we differentiated induced pluripotent stem cells (iPSCs) derived from SCA1 patients and their unaffected siblings into MNs. We examined proliferation of progenitor cells, neurite outgrowth, spontaneous and glutamate-induced calcium activity of SCA1 MNs to investigate cellular mechanisms of pathogenesis. RNA sequencing was then used to identify transcriptional alterations in iPSC-derived MN progenitors (pMNs) and MNs which could underlie functional changes in SCA1 MNs. We found significantly decreased spontaneous and evoked calcium activity and identified dysregulation of genes regulating calcium signaling in SCA1 MNs. These results indicate that expanded ATXN1 causes dysfunctional calcium signaling in human MNs.
Asunto(s)
Ataxina-1 , Señalización del Calcio , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Neuronas Motoras , Ataxias Espinocerebelosas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ataxina-1/metabolismo , Ataxina-1/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Neuronas Motoras/metabolismo , Señalización del Calcio/fisiología , Diferenciación Celular/fisiología , Transcripción Genética/fisiologíaRESUMEN
Heterogeneity is one of the key features of the healthy brain and selective vulnerability characterizes many, if not all, neurodegenerative diseases. While cerebellum contains majority of brain cells, neither its heterogeneity nor selective vulnerability in disease are well understood. Here we describe molecular, cellular and functional heterogeneity in the context of healthy cerebellum as well as in cerebellar disease Spinocerebellar Ataxia Type 1 (SCA1). We first compared disease pathology in cerebellar vermis and hemispheres across anterior to posterior axis in a knock-in SCA1 mouse model. Using immunohistochemistry, we demonstrated earlier and more severe pathology of PCs and glia in the posterior cerebellar vermis of SCA1 mice. We also demonstrate heterogeneity of Bergmann glia in the unaffected, wild-type mice. Then, using RNA sequencing, we found both shared, as well as, posterior cerebellum-specific molecular mechanisms of pathogenesis that include exacerbated gene dysregulation, increased number of altered signaling pathways, and decreased pathway activity scores in the posterior cerebellum of SCA1 mice. We demonstrated unexpectedly large differences in the gene expression between posterior and anterior cerebellar vermis of wild-type mice, indicative of robust intraregional heterogeneity of gene expression in the healthy cerebellum. Additionally, we found that SCA1 disease profoundly reduces intracerebellar heterogeneity of gene expression. Further, using fiber photometry, we found that population level PC calcium activity was altered in the posterior lobules in SCA1 mice during walking. We also identified regional differences in the population level activity of Purkinje cells (PCs) in unrestrained wild-type mice that were diminished in SCA1 mice.
Asunto(s)
Cerebelo , Ataxias Espinocerebelosas , Animales , Cerebelo/metabolismo , Cerebelo/patología , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/genética , Ratones , Ataxina-1/metabolismo , Ataxina-1/genética , Células de Purkinje/patología , Células de Purkinje/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Modelos Animales de Enfermedad , Ratones Transgénicos , Ratones Endogámicos C57BL , MasculinoRESUMEN
INTRODUCTION: The American continent populations have a wide genetic diversity, as a product of the admixture of three ethnic groups: Amerindian, European, and African Sub-Saharan. Spinocerebellar ataxia type 10 (SCA10) and Huntington disease-like 2 (HDL2) have very ancient ancestral origins but are restricted to two populations: Amerindian and African Sub-Saharan, respectively. This study aimed to investigate the genetic epidemiological features of these diseases in Venezuela. METHODS: In-phase haplotypes with the expanded alleles were established in seven unrelated index cases diagnosed with SCA10 and in 11 unrelated index cases diagnosed with HDL2. The origins of remote ancestors were recorded. RESULTS: The geographic origin of the ancestors showed grouping in clusters. SCA10 had a minimal general prevalence of 1:256,174 families in the country, but within the identified geographic clusters, the prevalence ranged from 5 per 100,000 to 43 per 100,000 families. HDL2 had a general prevalence of 1:163,016 families, however, within the clusters, the prevalence ranged from 31 per 100,000 to 60 per 100,000 families. The locus-specific haplotype shared by all families worldwide, including the Venezuelans, supports a single old ancestral origin in each case. CONCLUSION: Knowing the genetic ancestry and geographic origins of patients in Ibero-American mixed populations could have significant diagnostic implications; thus, both diseases in Venezuela should always be first explored in patients with a suggestive phenotype and ancestors coming from the same known geographic clusters.
Asunto(s)
Efecto Fundador , Haplotipos , Ataxias Espinocerebelosas , Humanos , Venezuela/epidemiología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/epidemiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Prevalencia , Enfermedad de Huntington/genética , Enfermedad de Huntington/epidemiología , Trastornos del Conocimiento , Expansión de las Repeticiones de ADN , Demencia , Trastornos Heredodegenerativos del Sistema Nervioso , CoreaRESUMEN
A pathogenic GAA repeat expansion in the first intron of the fibroblast growth factor 14 gene (FGF14) has been recently identified as the cause of spinocerebellar ataxia 27B (SCA27B). We herein screened 160 Greek index cases with late-onset cerebellar ataxia (LOCA) for FGF14 repeat expansions using a combination of long-range PCR and bidirectional repeat-primed PCRs. We identified 19 index cases (12%) carrying a pathogenic FGF14 GAA expansion, a diagnostic yield higher than that of previously screened repeat-expansion ataxias in Greek LOCA patients. The age at onset of SCA27B patients was 60.5 ± 12.3 years (range, 34-80). Episodic onset (37%), downbeat nystagmus (32%) and vertigo (26%) were significantly more frequent in FGF14 expansion-positive cases compared to expansion-negative cases. Beyond typical cerebellar signs, SCA27B patients often displayed hyperreflexia (47%) and reduced vibration sense in the lower extremities (42%). The frequency and phenotypic profile of SCA27B in Greek patients was similar to most other previously studied populations. We conclude that FGF14 GAA repeat expansions are the commonest known genetic cause of LOCA in the Greek population and recommend prioritizing testing for FGF14 expansions in the diagnostic algorithm of patients with LOCA.