Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chem Rec ; 24(1): e202300285, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37986206

RESUMEN

In recent years, a new class of highly crystalline advanced permeable materials covalent-organic frameworks (COFs) have garnered a great deal of attention thanks to their remarkable properties, such as their large surface area, highly ordered pores and channels, and controllable crystalline structures. The lower physical stability and electrical conductivity, however, prevent them from being widely used in applications like photocatalytic activities and innovative energy storage and conversion devices. For this reason, many studies have focused on finding ways to improve upon these interesting materials while also minimizing their drawbacks. This review article begins with a brief introduction to the history and major milestones of COFs development before moving on to a comprehensive exploration of the various synthesis methods and recent successes and signposts of their potential applications in carbon dioxide (CO2 ) sequestration, supercapacitors (SCs), lithium-ion batteries (LIBs), and hydrogen production (H2 -energy). In conclusion, the difficulties and potential of future developing with highly efficient COFs ideas for photocatalytic as well as electrochemical energy storage applications are highlighted.

2.
J Nanobiotechnology ; 22(1): 220, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698449

RESUMEN

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can differentiate into Schwann cells (SCs) during peripheral nerve injury; in our previous research, we showed that SC-derived exosomes (SC-exos) played a direct induction role while fibroblast-derived exosomes (Fb-exos) had no obvious induction role. The induction role of neural stem cell (NSC)-derived exosomes (NSC-exos) has also been widely confirmed. However, no studies have compared the induction effects of these three types of cells at the same time. Therefore, by investigating the effect of these three cell-derived exosomes upon the induction of BMSCs to differentiate into SCs, this study explored the role of different exosomes in promoting the differentiation of stem cells into SCs cells, and conducted a comparison between the two groups by RNA sequencing to further narrow the range of target genes and related gene pathways in order to study their related mechanisms. MATERIALS AND METHODS: We extracted exosomes from SCs, fibroblasts (Fb) and neural stem cells (NSC) and then investigated the ability of these exosomes to induce differentiation into BMSCs under different culture conditions. The expression levels of key proteins and gene markers were detected in induced cells by fluorescence immunoassays, western blotting and polymerase chain reaction (PCR); then, we statistically compared the relative induction effects under different conditions. Finally, we analyzed the three types of exosomes by RNA-seq to predict target genes and related gene pathways. RESULTS: BMSCs were cultured by three media: conventional (no induction), pre-induction or pre-induction + original induction medium (ODM) with exosomes of the same cell origin under different culture conditions. When adding the three different types of exosomes separately, the overall induction of BMSCs to differentiate into SCs was significantly increased (P < 0.05). The induction ability was ranked as follows: pre-induction + ODM + exosome group > pre-induction + exosome group > non-induction + exosome group. Using exosomes from different cell sources under the same culture conditions, we observed the following trends under the three culture conditions: RSC96-exos group ≥ NSC-exos group > Fb-exos group. The overall ability to induce BMSCs into SCs was significantly greater in the RSC96-exos group and the NSC-exos group. Although there was no significant difference in induction efficiency when comparing these two groups, the overall induction ability of the RSC96-exos group was slightly higher than that of the NSC-exos group. By combining the differentiation induction results with the RNA-seq data, the three types of exosomes were divided into three comparative groups: RSC vs. NSC, RSC vs. Fb and NSC vs. Fb. We identified 203 differentially expressed mRNA target genes in these three groups. Two differentially expressed genes were upregulated simultaneously, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). We did not identify any co-upregulated target genes for the miRNAs, but did identify one target gene of the lncRNAs, namely ENSRNOG00000065005. Analysis identified 90 GO terms related to nerves and axons in the mRNAs; in addition, KEGG enrichment and GASA analysis identified 13 common differential expression pathways in the three groups. CONCLUSIONS: Our analysis found that pre-induction + ODM + RSC96/NSC-exos culture conditions were most conducive with regards to induction and differentiation. RSC96-exos and NSC-exos exhibited significantly greater differentiation efficiency of BMSCs into SCs. Although there was no statistical difference, the data indicated a trend for RSC96-exos to be advantageous We identified 203 differentially expressed mRNAs between the three groups and two differentially expressed target mRNAs were upregulated, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). 90 GO terms were related to nerves and axons. Finally, we identified 13 common differentially expressed pathways across our three types of exosomes. It is hoped that the efficiency of BMSCs induction differentiation into SCs can be improved, bringing hope to patients and more options for clinical treatment.


Asunto(s)
Diferenciación Celular , Exosomas , Células Madre Mesenquimatosas , Células de Schwann , Exosomas/metabolismo , Células de Schwann/citología , Células de Schwann/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Ratas , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Ratas Sprague-Dawley , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38916716

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to evaluate, discuss and explain the current literature regarding management of post dural puncture headaches (PDPH) during spinal cord stimulation (SCS) trials. RECENT FINDINGS: Although an epidural blood patch (EBP) remains the gold standard in treatment of PDPH, current literature describes other modalities including various peripheral nerve blocks and pharmacological treatments to reduce PDPH symptoms. PDPH management in SCS centers around conservative treatment and EBP. It has been shown that some practitioners choose prophylactic measures and/or an EBP at the time of the lead placement. Recent literature regarding obstetric anesthesia related PDPH management has included newer potential modalities for addressing symptom improvement that can also be applied to PDPH from SCS trial dural punctures. Due to limited data overall, further studies are needed to effectively provide a guideline on optimal treatment protocols for PDPH after dural puncture in SCS trials.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38308745

RESUMEN

PURPOSE OF REVIEW: Cervical spine pain with or without radicular symptoms is a common condition leading to high utilization of the healthcare system with over 10 million medical visits per year. Many patients undergo surgical interventions and unfortunately are still left with neck and upper extremity pain, sometimes referred to as "Failed Neck Surgery Syndrome." When these options fail, cervical spinal cord stimulation can be a useful tool to decrease pain and suffering as well as reduce prescription medication use. RECENT FINDINGS: Spinal cord stimulation is a well-established therapy for chronic back and leg pain and is becoming more popular for neck and upper extremity pain. Recent studies have explored cervical spinal cord stimulation with successful outcomes regarding improved pain scores, functional outcomes, and reduction of prescription medication use. Continued research into cervical spinal cord stimulation is essential for maximizing its therapeutic potential for patients with chronic neck and upper extremity pain. This review highlights the importance of cervical spinal cord stimulation as an option for patients with failed neck surgery syndrome.

5.
Neuromodulation ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38829295

RESUMEN

OBJECTIVES: High-frequency spinal cord stimulation (10-kHz SCS) has been shown to be an effective treatment for refractory low back pain and neck pain with and without limb pain in clinical trial and real-world studies. However, limited information is available in the literature on the type and frequency of programming parameters required to optimize pain relief. MATERIALS AND METHODS: Retrospective trial and postimplant clinical and system device data were analyzed from consecutive patients with neck pain and low back pain, with and without limb pain, from a single clinical site, including both thoracic and cervical lead placement. Best bipole, stimulation parameters, and outcomes, including pain relief, change in opioid medication use, sleep, and daily function, were analyzed. RESULTS: Of the 92 patients in the trial, 70 received a permanent implant. Of these, the mean duration of follow-up was 1.8 ± 1.3 years. Pain relief of ≥50% at the last follow-up was achieved by 64% of patients implanted; in addition, 65% reduced their opioid medication use; 65% reported improved sleep, and 71% reported improved function. There was some consistency between the "best" bipole at trial and permanent implant, with 82% of patients within one bipole location, including 54% of permanent implants who were using the same best bipole as at trial. After permanent implant, device reprogramming was minimal, with ≤one reprogramming change per patient per quarter required to maintain pain outcomes. CONCLUSIONS: In the study, 10-kHz SCS was an effective therapy for treating chronic pain, whereby a high responder rate (≥50% pain relief) was achieved with short time to pain relief in trial and maintained with limited device programming after permanent implant. The data presented here provide insight into the programming required during the trial and implant stages to obtain and maintain therapeutic efficacy.

6.
Neuromodulation ; 27(5): 887-898, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456888

RESUMEN

OBJECTIVES: Spinal cord stimulation (SCS) is a surgical treatment for severe, chronic, neuropathic pain. It is based on one to two lead(s) implanted in the epidural space, stimulating the dorsal column. It has long been assumed that when deactivating SCS, there is a variable interval before the patient perceives the return of the pain, a phenomenon often termed echo or carryover effect. Although the carryover effect has been problematized as a source of error in crossover studies, no experimental investigation of the effect has been published. This open, prospective, international multicenter study aimed to systematically document, quantify, and investigate the carryover effect in SCS. MATERIALS AND METHODS: Eligible patients with a beneficial effect from their SCS treatment were instructed to deactivate their SCS device in a home setting and to reactivate it when their pain returned. The primary outcome was duration of carryover time defined as the time interval from deactivation to reactivation. Central clinical parameters (age, sex, indication for SCS, SCS treatment details, pain score) were registered and correlated with carryover time using nonparametric tests (Mann-Whitney/Kruskal-Wallis) for categorical data and linear regression for continuous data. RESULTS: In total, 158 patients were included in the analyses. A median carryover time of five hours was found (interquartile range 2.5;21 hours). Back pain as primary indication for SCS, high-frequency stimulation, and higher pain score at the time of deactivation were correlated with longer carryover time. CONCLUSIONS: This study confirms the existence of the carryover effect and indicates a remarkably high degree of interindividual variation. The results suggest that the magnitude of carryover may be correlated to the nature of the pain condition and possibly stimulation paradigms. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT03386058.


Asunto(s)
Dolor Crónico , Estimulación de la Médula Espinal , Humanos , Estimulación de la Médula Espinal/métodos , Masculino , Femenino , Persona de Mediana Edad , Dolor Crónico/terapia , Anciano , Adulto , Factores de Tiempo , Estudios Prospectivos , Dimensión del Dolor/métodos , Resultado del Tratamiento , Internacionalidad , Neuralgia/terapia
7.
Neuromodulation ; 27(1): 108-117, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38108675

RESUMEN

OBJECTIVES: Recent developments in spinal cord stimulation (SCS) programming have initiated new modalities of imperceptible stimulation. However, the boundaries of sensory perception are not well defined. The BEnchtop NEuromodulation Following endIng of Trial study aimed to create a map of perceptual threshold responses across a broad range of SCS parameters and programming to inform subperception therapy design. MATERIALS AND METHODS: This multicenter study was conducted at seven US sites. A total of 43 patients with low back and/or leg pain who completed a percutaneous commercial SCS trial were enrolled. Test stimulation was delivered through trial leads for approximately 90 minutes before removal. SCS parameters, including amplitude, frequency, pulse width (PW), electrode configuration, cycling, and multifrequency stimulation were varied during testing. Paresthesia threshold (PT), comfort level (CL), perceptual coverage area, and paresthesia quality (through patient selection of keywords) were collected. Differences were evaluated with analysis of variance followed by post hoc multiple comparisons using t-tests with Bonferroni correction. RESULTS: PT was primarily determined by PW and was insensitive to frequency for constant frequency stimulation (range: 20 Hz-10 kHz; F(1284) = 69.58, p < 0.0001). For all tests, CL was approximately 25% higher than PT. The dominant variable that influenced paresthesia quality was frequency. Sensations described as comfortable and tingling were most common for frequencies between 60 Hz and 2.4 kHz; unpleasant sensations were generally more common outside this range. Increasing distance between active electrodes from 7 mm to 14 mm, or cycling the SCS waveform at 1 Hz, decreased PT (p < 0.0001). Finally, PT for a low-frequency stimulus (ie, 60 Hz) was unaffected by mixing with a sub-PT high-frequency stimulus. CONCLUSIONS: In contrast to previous work investigating narrower ranges, PW primarily influenced PT, independently of frequency. Paresthesia quality was primarily influenced by pulse frequency. These findings advance our understanding of SCS therapy and may be used to improve future novel neuromodulation paradigms.


Asunto(s)
Dolor Crónico , Estimulación de la Médula Espinal , Humanos , Parestesia/etiología , Parestesia/terapia , Dolor , Manejo del Dolor , Percepción , Médula Espinal , Dolor Crónico/terapia , Resultado del Tratamiento
8.
Neuromodulation ; 27(1): 95-107, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37978974

RESUMEN

BACKGROUND: Ninety-Hz active-recharge spinal cord stimulation (SCS) applied at below sensory-threshold intensity, as used with fast-acting subperception therapy spinal cord stimulation, has been shown clinically to produce significant analgesia, but additional characterization is required to better understand the therapy. This preclinical study investigates the behavioral effect of multiple 90-Hz SCS variants in a rodent model of neuropathic pain, focusing on charge balance and the relationship between 90-Hz efficacy and stimulation intensity. MATERIALS AND METHODS: Rats (n = 24) received a unilateral partial sciatic nerve ligation to induce neuropathic pain and were implanted with a quadripolar lead at T13. Mechanical hypersensitivity was assessed before, during, and after 60 minutes of SCS. After a prescreen with 50-Hz SCS 67% motor threshold ([MT], the positive control), rats underwent a randomized-crossover study including sham SCS and several 90-Hz SCS paradigms (at 40% MT or 60% MT, either using active or pseudopassive recharge) (experiment 1, n = 16). A second, identical experiment (experiment 2) was performed to supplement data with 90-Hz SCS at 20% and 80% MT (experiment 2, n = 8). RESULTS: Experiment 1: At 40% MT, 90-Hz active-recharge SCS produced a significantly larger recovery to baseline than did 90-Hz pseudopassive SCS at both tested intensities and sham SCS. Experiment 2: Only the 90-Hz SCS active recharge at 40% MT and 50-Hz SCS positive control caused mean recovery to baseline that was statistically better than that of sham SCS. CONCLUSIONS: The degree to which 90-Hz SCS reduced mechanical hypersensitivity during stimulation depended on the nature of charge balance, with 90-Hz active-recharge SCS generating better responses than did 90-Hz pseudopassive recharge SCS. In addition, our findings suggest that the amplitude of 90-Hz active-recharge SCS must be carefully configured for efficacy.


Asunto(s)
Analgesia , Dolor Crónico , Neuralgia , Manejo del Dolor , Estimulación de la Médula Espinal , Animales , Ratas , Analgesia/métodos , Estudios Cruzados , Neuralgia/terapia , Ratas Sprague-Dawley , Médula Espinal , Modelos Animales de Enfermedad , Dolor Crónico/terapia , Manejo del Dolor/métodos
9.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38396887

RESUMEN

Kidney transplantation is preferred for end-stage renal disease. The current gold standard for kidney preservation is static cold storage (SCS) at 4 °C. However, SCS contributes to renal graft damage through ischemia-reperfusion injury (IRI). We previously reported renal graft protection after SCS with a hydrogen sulfide donor, sodium thiosulfate (STS), at 4 °C. Therefore, this study aims to investigate whether SCS at 10 °C with STS and Hemopure (blood substitute), will provide similar protection. Using in vitro model of IRI, we subjected rat renal proximal tubular epithelial cells to hypoxia-reoxygenation for 24 h at 10 °C with or without STS and measured cell viability. In vivo, we preserved 36 donor kidneys of Lewis rats for 24 h in a preservation solution at 10 °C supplemented with STS, Hemopure, or both followed by transplantation. Tissue damage and recipient graft function parameters, including serum creatinine, blood urea nitrogen, urine osmolality, and glomerular filtration rate (GFR), were evaluated. STS-treated proximal tubular epithelial cells exhibited enhanced viability at 10 °C compared with untreated control cells (p < 0.05). Also, STS and Hemopure improved renal graft function compared with control grafts (p < 0.05) in the early time period after the transplant, but long-term function did not reach significance. Overall, renal graft preservation at 10 °C with STS and Hemopure supplementation has the potential to enhance graft function and reduce kidney damage, suggesting a novel approach to reducing IRI and post-transplant complications.


Asunto(s)
Hemoglobinas , Trasplante de Riñón , Daño por Reperfusión , Tiosulfatos , Ratas , Animales , Preservación de Órganos , Supervivencia de Injerto , Ratas Endogámicas Lew , Riñón , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control
10.
Glia ; 71(10): 2309-2322, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37218574

RESUMEN

Tumor erosion and metastasis can invade surrounding tissues, damage nerves, and sensitize the peripheral primary receptors, inducing pain, which can potentially worsen the suffering of patients with cancer. Reception and transmission of sensory signal receptors, abnormal activation of primary sensory neurons, and activation of glial cells are involved in cancer pain. Therefore, exploring promising therapeutic methods to suppress cancer pain is of great significance. Various studies have found that the use of functionally active cells is a potentially effective way to relieve pain. Schwann cells (SCs) act as small, biologically active pumps that secrete pain-relieving neuroactive substances. Moreover, SCs can regulate the progression of tumor cells, including proliferation and metastasis, through neuro-tumor crosstalk, which emphasizes the critical role of SCs in cancer and cancer pain. The mechanisms by which SCs repair injured nerves and exert analgesia include neuroprotection, neurotrophy, nerve regeneration, neuromodulation, immunomodulation, and enhancement of the nerve-injury microenvironment. These factors may ultimately restore the damaged or stimulated nerves and contribute to pain relief. Strategies for pain treatment using cell transplantation mainly focus on analgesia and nerve repair. Although these cells are in the initial stages of nerve repair and pain, they open new avenues for the treatment of cancer pain. Therefore, this paper discusses, for the first time, the possible mechanism of SCs and cancer pain, and new strategies and potential problems in cancer pain treatment.


Asunto(s)
Dolor en Cáncer , Neoplasias , Enfermedades del Sistema Nervioso Periférico , Humanos , Dolor en Cáncer/terapia , Células de Schwann/fisiología , Neuroglía , Regeneración Nerviosa/fisiología , Dolor/etiología
11.
Glia ; 71(7): 1755-1769, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36971489

RESUMEN

Prevascularization strategies have become a hot spot in tissue engineering. As one of the potential candidates for seed cells, skin precursor-derived Schwann cells (SKP-SCs) were endowed with a new role to more efficiently construct prevascularized tissue-engineered peripheral nerves. The silk fibroin scaffolds seeded with SKP-SCs were prevascularized through subcutaneously implantation, which was further assembled with the SKP-SC-containing chitosan conduit. SKP-SCs expressed pro-angiogenic factors in vitro and in vivo. SKP-SCs significantly accelerated the satisfied prevascularization in vivo of silk fibroin scaffolds compared with VEGF. Moreover, the NGF expression revealed that pregenerated blood vessels adapted to the nerve regeneration microenvironment through reeducation. The short-term nerve regeneration of SKP-SCs-prevascularization was obviously superior to that of non-prevascularization. At 12 weeks postinjury, both SKP-SCs-prevascularization and VEGF-prevascularization significantly improved nerve regeneration with a comparable degree. Our figures provide a new enlightenment for the optimization of prevascularization strategies and how to further utilize tissue engineering for better repair.


Asunto(s)
Fibroínas , Ingeniería de Tejidos , Factor A de Crecimiento Endotelial Vascular , Nervios Periféricos , Células de Schwann/fisiología , Regeneración Nerviosa/fisiología
12.
Cell Tissue Res ; 392(2): 565-579, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36575252

RESUMEN

Sertoli cells (SCs) preferentially use glucose to convert to lactate. As an energy source, lactate is essential for survival of developed germ cells (GCs) due to its anti-apoptotic effect. Failure to maintain lactate metabolism homeostasis leads to infertility or germ cell apoptosis. Several Sertoli cell-expressed genes, such as Foxq1 and Gata4, have been identified as critical regulators for lactate synthesis, but the pathways that potentially modulate their expression remain ill defined. Although recent work from our collaborators pointed to an involvement of STIP1 homology and U-box-containing protein 1 (STUB1) in the modulation of Sertoli cell response to GCs-derived IL-1α, a true physiological function of STUB1 signaling in SCs has not been demonstrated. We therefore conditionally ablated Stub1 in SCs using Amh-Cre. Stub1 knockout males exhibited impaired fertility due to oligozoospermia and asthenospermia, possibly caused by lactate deficiency. Furthermore, by means of chromatin immunoprecipitation, in vivo ubiquitination, and luciferase reporter assays, we showed that STUB1 directed forkhead box Q1 (FOXQ1)-mediated transactivation of the lactate dehydrogenase A (Ldha) gene via K63-linked non-proteolytic polyubiquitination, thus facilitating lactate production in follicle-stimulating hormone (FSH)-stimulated SCs. In agreement, overexpression of LDHA by lentivirus infection effectively rescued the lactate production in TM4Stub1-/- cells. Our results collectively identify STUB1-mediated transactivation of FOXQ1 signaling as a post-translationally modified transcriptional regulatory network underlying nursery function in SCs, which may nutritionally contribute to Sertoli cell dysfunction of male infertility.


Asunto(s)
Ácido Láctico , Células de Sertoli , Animales , Masculino , Ratones , Ácido Láctico/metabolismo , Activación Transcripcional/genética , Ubiquitinación , L-Lactato Deshidrogenasa
13.
Cell Tissue Res ; 393(2): 321-342, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37249709

RESUMEN

Development of clinical-grade, cell preparations is central to cGMP (good manufacturing practice compliant) conditions. This study aimed to investigate the potential of two serum/xeno-free, cGMP (StemPro, StemMacs) culture media to maintain "stemness" of human minor salivary gland stem cell (mSG-SC) cultures compared to a complete culture medium (CCM). Overall, StemMacs resulted in higher proliferation rates after p.6 compared to the conventional serum-based medium, while StemPro showed substantial delays in cell proliferation after p.9. The mSG-SCs cultures exhibited two distinct cell populations at early passages a mesenchymal subpopulation and an epithelial-like subpopulation. Expression of several markers (CD146, STRO-1, SSEA-4, CD105, CD106, CD34, K 7/8, K14, K18) variably decreased with prolonged passaging (all three media). The percentage of SA-ß-gal positive cells was initially higher for StemMacs compared to StemPro/CCM and increased with prolonged passaging in all cases. The telomere fragment length decreased with prolonged passaging in all three media but more pronouncedly for the CCM. Expansion under serum-free conditions caused pronounced upregulation of ALP and BMP-2, with parallel complete elimination of the baseline expressions of LPL (all three media) and ACAN (serum-free media), therefore, showing a preferential shift of the mSG-SCs towards osteogenic phenotypes. Finally, several markers (Nanog, SOX-2, PDX-1, OTX2, GSC, HCG) decreased with prolonged culture, indicating successive loss of "stemness". Based on the findings, it seems that StemPro preserve stemness of the mSG-SCs after prolonged culture. Nevertheless, there is still a vacant role for the ideal development of clinical-grade culture conditions.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Diferenciación Celular , Glándulas Salivales Menores , Células Madre , Técnicas de Cultivo de Célula/métodos , Biomarcadores/metabolismo , Proliferación Celular , Medios de Cultivo/farmacología , Células Cultivadas
14.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36991888

RESUMEN

Due to the edaphoclimatic conditions in southeast Spain, which are expected to worsen due to climate change, more efficient ways of using water must be found to maintain sustainable agriculture. Due to the current high price of irrigation control systems in southern Europe, 60-80% of soilless crops are still irrigated, based on the experience of the grower or advisor. The hypothesis of this work is that the development of a low-cost, high-performance control system will allow small farmers to improve the efficiency of water use by obtaining better control of soilless crops. The objective of the present study was to design and develop a cost-effective control system for the optimization of soilless crop irrigation after evaluating the three most commonly used irrigation control systems to determine the most efficient. Based on the agronomic results comparing these methods, a prototype of a commercial smart gravimetric tray was developed. The device records the irrigation and drainage volumes and drainage pH and EC. It also offers the possibility of determining the temperature, EC, and humidity of the substrate. This new design is scalable thanks to the use of an implemented data acquisition system called SDB and the development of software in the Codesys programming environment based on function blocks and variable structures. The reduced wiring achieved by the Modbus-RTU communication protocols means the system is cost-effective even with multiple control zones. It is also compatible with any type of fertigation controller through external activation. Its design and features solve the problems in similar systems available on the market at an affordable cost. The idea is to allow farmers to increase their productivity without having to make a large outlay. The impact of this work will make it possible for small-scale farmers to have access to affordable, state-of-the-art technology for soilless irrigation management leading to a considerable improvement in productivity.

15.
Neuromodulation ; 26(1): 224-232, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35697598

RESUMEN

OBJECTIVES: Spinal cord stimulation (SCS) is a treatment for chronic neuropathic pain. It is based on the delivery of electric impulses to the spinal cord, traditionally in a regular square-wave pattern ("tonic" stimulation) and, more recently, in a rhythmic train-of-five "BurstDR" pattern. The safety of active SCS therapy in pregnancy is not established, and recommendations are based on limited casuistic evidence. We present in this study clinical data on a case series of six women treated with burst SCS during pregnancy. In addition, we present the ultrasonographic flow measurements of fetal and uteroplacental blood flow in a pregnant patient. MATERIALS AND METHODS: Patients were included if they had been implanted with a full SCS system at Aarhus University Hospital, Denmark, between 2006 and 2020 and received active burst SCS stimulation during a pregnancy. Telephone interviews were conducted, including details on SCS therapy, medication, pregnancy course and outcome, and health status of the offspring. In one patient, the uteroplacental and fetal blood flow was assessed in gestational week 29 by Doppler flow measurements performed during both ON and OFF phases of the SCS system. RESULTS: Six patients were included with a total of 11 pregnancies. Three pregnancies ended in miscarriages, all in the same patient who had preexisting significant risk factors for miscarriage. Eight resulted in a live-born child with normal birth weight for gestational age; seven were born at term, and one was born late preterm, in gestational week 36. Ultrasonographic Doppler flow, measured in one patient, was normal and did not reveal any immediate changes between burst SCS ON and OFF. Seven children were reported healthy with normal neurodevelopment and one physically healthy but with developmental delays. CONCLUSIONS: The data presented in this study add to the accumulating evidence of the safety of SCS in pregnancy.


Asunto(s)
Neuralgia , Estimulación de la Médula Espinal , Embarazo , Niño , Recién Nacido , Humanos , Femenino , Estimulación de la Médula Espinal/métodos , Neuralgia/terapia , Médula Espinal/diagnóstico por imagen , Resultado del Tratamiento
16.
Neuromodulation ; 26(1): 35-42, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35551867

RESUMEN

BACKGROUND: Spinal cord stimulation (SCS) is an effective therapy for patients with refractory chronic pain syndromes. Although studies have shown that SCS has both spinal and supraspinal effects, the current understanding of cortical effects is still limited. Neuroimaging techniques, such as magnetoencephalography (MEG) and electroencephalography (EEG), combined here as M/EEG, can reveal modulations in ongoing resting-state cortical activity. We aim to provide an overview of available literature on resting-state M/EEG in patients with chronic pain who have been treated with SCS. MATERIALS AND METHODS: We searched multiple online data bases for studies on SCS, chronic pain, and resting-state M/EEG. Primary outcome measures were changes in spectral features, combined with brain regions in which these changes occurred. RESULTS: We included eight studies reporting various SCS paradigms (tonic, burst, high-dose, and high-frequency stimulation) and revealing heterogeneity in outcome parameters. We summarized changes in cortical activity in various frequency bands: theta (4-7 Hz), alpha (7-12 Hz), beta (13-30 Hz), and gamma (30-44 Hz). In multiple studies, the somatosensory cortex showed modulation of cortical activity under tonic, burst, and high-frequency stimulation. Changes in connectivity were found in the dorsal anterior cingulate cortex, dorsolateral prefrontal cortex, and parahippocampus. CONCLUSIONS: The large heterogeneity observed in outcome measures is probably caused by the large variety in study designs, stimulation paradigms, and spectral features studied. Paresthesia-free paradigms have been compared with tonic stimulation in multiple studies. These studies suggest modulation of medial, lateral, and descending pathways for paresthesia-free stimulation, whereas tonic stimulation predominantly modulates lateral and descending pathways. Moreover, multiple studies have reported an increased alpha peak frequency, increased alpha power, and/or decreased theta power when SCS was compared with baseline, indicating modulation of thalamocortical pathways. Further studies with well-defined groups of responders and nonresponders to SCS are recommended to independently study the cortical effects of pain relief and SCS.


Asunto(s)
Dolor Crónico , Estimulación de la Médula Espinal , Humanos , Dolor Crónico/terapia , Estimulación de la Médula Espinal/métodos , Electroencefalografía , Encéfalo/diagnóstico por imagen , Neuroimagen , Parestesia , Médula Espinal/diagnóstico por imagen
17.
Neuromodulation ; 26(5): 1067-1073, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36526545

RESUMEN

BACKGROUND: Spinal cord stimulator (SCS) placement has been gaining traction as an approach to modulate pain levels for several different chronic pain conditions. This procedure can be performed via a percutaneous or open approach. Data regarding SCS complications are relatively limited. OBJECTIVE: The purpose of this study was to leverage a large national database to examine outcomes between the percutaneous and open SCS placement approaches. Outcomes in this study include length of stay (LOS), complication rates, reoperation rates, and 1-year readmission rates. MATERIALS AND METHODS: Inclusion criteria for the current study is SCS placement between 2015 and 2020, with receipt of an SCS using either a percutaneous approach or an open laminectomy based approach. Encounters included were limited to true SCS placement, such that trial placements were not included in the study. Univariate statistics and multivariable logistic regression was performed to compare outcomes between cohorts. RESULTS: Total SCS case volumes were 9935 between the percutaneous (n = 4477, 45.1%) and open (n = 5458, 54.9%) approach. Patients receiving the percutaneous approach were found to have a mean decrease in LOS of 9.91 hours when compared to those receiving the open approach. The percutaneous approach was significantly associated with the need for reoperation within one year compared to the open approach (odds ratio [OR]: 0.663, p < 0.001), as well as with the need for readmission within 30 days (51.2% vs 40.2%, OR: 0.759, p < 0.001). CONCLUSION: The open approach, when compared to the percutaneous approach, had a longer mean LOS, lower outpatient discharge rates, and higher odds of experiencing an operative complication in comparison to the percutaneous approach. The percutaneous approach had relatively increased odds of thirty-day readmission, although no significant difference in one-year readmission or removal was demonstrated.


Asunto(s)
Estimulación de la Médula Espinal , Humanos , Estimulación de la Médula Espinal/efectos adversos , Estimulación de la Médula Espinal/métodos , Manejo del Dolor/métodos , Reoperación , Médula Espinal/cirugía , Estudios Retrospectivos
18.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37511131

RESUMEN

In higher eukaryotes, distance enhancer-promoter interactions are organized by topologically associated domains, tethering elements, and chromatin insulators/boundaries. While insulators/boundaries play a central role in chromosome organization, the mechanisms regulating their functions are largely unknown. In the studies reported here, we have taken advantage of the well-characterized Drosophila bithorax complex (BX-C) to study one potential mechanism for controlling boundary function. The regulatory domains of BX-C are flanked by boundaries, which block crosstalk with their neighboring domains and also support long-distance interactions between the regulatory domains and their target gene. As many lncRNAs have been found in BX-C, we asked whether readthrough transcription (RT) can impact boundary function. For this purpose, we took advantage of two BX-C boundary replacement platforms, Fab-7attP50 and F2attP, in which the Fab-7 and Fub boundaries, respectively, are deleted and replaced with an attP site. We introduced boundary elements, promoters, and polyadenylation signals arranged in different combinations and then assayed for boundary function. Our results show that RT can interfere with boundary activity. Since lncRNAs represent a significant fraction of Pol II transcripts in multicellular eukaryotes, it is therefore possible that RT may be a widely used mechanism to alter boundary function and regulation of gene expression.


Asunto(s)
Proteínas de Drosophila , ARN Largo no Codificante , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/genética , Genes de Insecto , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
19.
Int J Mol Sci ; 24(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37240073

RESUMEN

Peripheral nerves and Schwann cells (SCs) are privileged and protected sites for initial colonization, survival, and spread of leprosy bacillus. Mycobacterium leprae strains that survive multidrug therapy show a metabolic inactivation that subsequently induces the recurrence of typical clinical manifestations of leprosy. Furthermore, the role of the cell wall phenolic glycolipid I (PGL-I) in the M. leprae internalization in SCs and the pathogenicity of M. leprae have been extensively known. This study assessed the infectivity in SCs of recurrent and non-recurrent M. leprae and their possible correlation with the genes involved in the PGL-I biosynthesis. The initial infectivity of non-recurrent strains in SCs was greater (27%) than a recurrent strain (6.5%). In addition, as the trials progressed, the infectivity of the recurrent and non-recurrent strains increased 2.5- and 2.0-fold, respectively; however, the maximum infectivity was displayed by non-recurrent strains at 12 days post-infection. On the other hand, qRT-PCR experiments showed that the transcription of key genes involved in PGL-I biosynthesis in non-recurrent strains was higher and faster (Day 3) than observed in the recurrent strain (Day 7). Thus, the results indicate that the capacity of PGL-I production is diminished in the recurrent strain, possibly affecting the infective capacity of these strains previously subjected to multidrug therapy. The present work opens the need to address more extensive and in-depth studies of the analysis of markers in the clinical isolates that indicate a possible future recurrence.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Quimioterapia Combinada , Leprostáticos/metabolismo , Lepra/genética , Glucolípidos/metabolismo , Anticuerpos/metabolismo , Células de Schwann/metabolismo , Antígenos Bacterianos/metabolismo
20.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762319

RESUMEN

The global donor kidney shortage crisis has necessitated the use of suboptimal kidneys from donors-after-cardiac-death (DCD). Using an ex vivo porcine model of DCD kidney transplantation, the present study investigates whether the addition of hydrogen sulfide donor, AP39, to University of Wisconsin (UW) solution improves graft quality. Renal pedicles of male pigs were clamped in situ for 30 min and the ureters and arteries were cannulated to mimic DCD. Next, both donor kidneys were nephrectomized and preserved by static cold storage in UW solution with or without AP39 (200 nM) at 4 °C for 4 h followed by reperfusion with stressed autologous blood for 4 h at 37 °C using ex vivo pulsatile perfusion apparatus. Urine and arterial blood samples were collected hourly during reperfusion. After 4 h of reperfusion, kidneys were collected for histopathological analysis. Compared to the UW-only group, UW+AP39 group showed significantly higher pO2 (p < 0.01) and tissue oxygenation (p < 0.05). Also, there were significant increases in urine production and blood flow rate, and reduced levels of urine protein, serum creatinine, blood urea nitrogen, plasma Na+ and K+, as well as reduced intrarenal resistance in the UW+AP39 group compared to the UW-only group. Histologically, AP39 preserved renal structure by reducing the apoptosis of renal tubular cells and immune cell infiltration. Our finding could lay the foundation for improved graft preservation and reduce the increasingly poor outcomes associated with DCD kidney transplantation.


Asunto(s)
Sulfuro de Hidrógeno , Trasplante de Riñón , Humanos , Masculino , Porcinos , Animales , Sulfuro de Hidrógeno/farmacología , Criopreservación , Mitocondrias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA