Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 300(2): 105654, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237680

RESUMEN

The mammalian SID-1 transmembrane family members, SIDT1 and SIDT2, are multipass transmembrane proteins that mediate the cellular uptake and intracellular trafficking of nucleic acids, playing important roles in the immune response and tumorigenesis. Previous work has suggested that human SIDT1 and SIDT2 are N-glycosylated, but the precise site-specific N-glycosylation information and its functional contribution remain unclear. In this study, we use high-resolution liquid chromatography tandem mass spectrometry to comprehensively map the N-glycosites and quantify the N-glycosylation profiles of SIDT1 and SIDT2. Further molecular mechanistic probing elucidates the essential role of N-linked glycans in regulating cell surface expression, RNA binding, protein stability, and RNA uptake of SIDT1. Our results provide crucial information about the potential functional impact of N-glycosylation in the regulation of SIDT1-mediated RNA uptake and provide insights into the molecular mechanisms of this promising nucleic acid delivery system with potential implications for therapeutic applications.


Asunto(s)
Proteínas de Transporte de Nucleótidos , ARN , Humanos , Transporte Biológico , Glicosilación , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , ARN/metabolismo
2.
Mol Cell ; 65(4): 659-670.e5, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28212751

RESUMEN

The importance of transgenerationally inherited epigenetic states to organismal fitness remains unknown as well-documented examples are often not amenable to mechanistic analysis or rely on artificial reporter loci. Here we describe an induced silenced state at an endogenous locus that persists, at 100% transmission without selection, for up to 13 generations. This unusually persistent silencing enables a detailed molecular genetic analysis of an inherited epigenetic state. We find that silencing is dependent on germline nuclear RNAi factors and post-transcriptional mechanisms. Consistent with these later observations, inheritance does not require the silenced locus, and we provide genetic evidence that small RNAs embody the inherited silencing signal. Notably, heritable germline silencing directs somatic epigenetic silencing. Somatic silencing does not require somatic nuclear RNAi but instead requires both maternal germline nuclear RNAi and chromatin-modifying activity. Coupling inherited germline silencing to somatic silencing may enable selection for physiologically important traits.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Silenciador del Gen , Sitios Genéticos , Patrón de Herencia , Proteínas de la Membrana/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Regiones no Traducidas 5' , Animales , Animales Modificados Genéticamente , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Genotipo , Herencia , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
3.
J Lipid Res ; 59(3): 404-415, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29363559

RESUMEN

SID1 transmembrane family member 2 (Sidt2) is an integral lysosomal membrane protein. To investigate its explicit function, we generated a global Sidt2 knockout mouse model (Sidt2-/-). Compared with the littermate controls, Sidt2-/- mice exhibited a remarkable accumulation of lipid droplets in liver. First, it was observed that food consumption, hepatocyte fatty acid uptake and de novo lipogenesis, hepatocyte lipolysis, and TG secretion in the form of very low density lipoprotein were comparable between Sidt2-/- and WT mice. However, the hepatic ß-oxidation of fatty acids decreased significantly as revealed by a low level of serum ß-hydroxybutyrate in the Sidt2-/- mice along with normal mRNA expression of genes involved in fatty acid oxidation. In addition, the classical autophagy pathway marker proteins, p62 and LC3-II, increased in liver, along with compromised autophagic flux in primary hepatocytes, indicating a block of autophagosome maturation due to Sidt2 deficiency, which was also supported by electron microscopy image analysis both in livers and in primary hepatocytes from Sidt2-/- mice. It was concluded that Sidt2 plays an important role in mouse hepatic lipid homeostasis by regulating autophagy at the terminal stage.


Asunto(s)
Autofagia , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Lípidos , Proteínas de la Membrana/metabolismo , Animales , Hepatocitos/química , Homeostasis , Gotas Lipídicas/metabolismo , Lípidos/análisis , Masculino , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Proteínas de Transporte de Nucleótidos
4.
RNA Biol ; 14(12): 1766-1775, 2017 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-28816598

RESUMEN

RNA interference (RNAi) utilizes a conserved cellular autoimmune defense mechanism involving the internalization of dsRNA into cells and the activation of a set of RNAi related genes. Using RNAi, complete sex reversal is achievable in males of the prawn Macrobrachium rosenbergii by knocking down the transcript level of an insulin-like androgenic gland hormone (Mr-IAG) through injections of dsRNA of the entire Mr-IAG ORF sequence (dsMr-IAG - 518bp). Interestingly, in-vivo knockdown success and dsMr-IAG lengths seemed to correlate, with long dsRNA being the most effective and short dsRNA fragments showing no effect. However, little is known about the RNAi machinery in M. rosenbergii. We discovered the Mr-Dicer and Mr-Argonaute gene families, associated with the major knockdown pathways, in our M. rosenbergii transcriptomic library. In response to dsMr-IAG administration, only post-transcriptional pathway-related gene transcript levels were upregulated. In addition, a passive dsRNA channel (a SID1 gene ortholog) that allows external dsRNA to enter cells was found. Its function was validated by observing Mr-SID1 specific upregulation dependent on dsRNA lengths, while attempted loss-of-function experiments were lethal. Our results, which suggest differential systemic responses to dsRNA lengths, provide evidence that the above RNAi-based manipulation occurs via the post-transcriptional pathway. The temporal nature of the latter pathway supports the safety of using such RNAi-based biotechnologies in aquaculture and environmental applications. Unlike reports of RNAi driven by the administration of small dsRNA fragments in-vitro, the case presented here demonstrates length dependency in-vivo, suggesting further complexity in the context of the entire organism.


Asunto(s)
Silenciador del Gen , Procesamiento Postranscripcional del ARN , ARN Bicatenario/genética , Animales , Proteínas Argonautas/genética , Técnicas de Silenciamiento del Gen , Sistemas de Lectura Abierta , Palaemonidae , Filogenia , Interferencia de ARN , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
5.
J Biol Chem ; 290(31): 18904-13, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26067272

RESUMEN

During systemic RNA interference (RNAi) in Caenorhabditis elegans, RNA spreads across different cells and tissues in a process that requires the systemic RNA interference deficient-1 (sid-1) gene, which encodes an integral membrane protein. SID-1 acts cell-autonomously and is required for cellular import of interfering RNAs. Heterologous expression of SID-1 in Drosophila Schneider 2 cells enables passive uptake of dsRNA and subsequent soaking RNAi. Previous studies have suggested that SID-1 may serve as an RNA channel, but its precise molecular role remains unclear. To test the hypothesis that SID-1 mediates a direct biochemical recognition of RNA molecule and subsequent permeation, we expressed the extracellular domain (ECD) of SID-1 and purified it to near homogeneity. Recombinant purified SID-1 ECD selectively binds dsRNA but not dsDNA in a length-dependent and sequence-independent manner. Genetic missense mutations in SID-1 ECD causal for deficient systemic RNAi resulted in significant reduction in its affinity for dsRNA. Furthermore, full-length proteins with these mutations decrease SID-1-mediated RNA transport efficiency, providing evidence that dsRNA binding to SID-1 ECD is related to RNA transport. To examine the functional similarity of mammalian homologs of SID-1 (SIDT1 and SIDT2), we expressed and purified mouse SIDT1 and SIDT2 ECDs. We show that they bind long dsRNA in vitro, supportive of dsRNA recognition. In summary, our study illustrates the functional importance of SID-1 ECD as a dsRNA binding domain that contributes to RNA transport.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/genética , ARN Bicatenario/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , ADN/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , Transporte de ARN , ARN Bicatenario/química
6.
Insect Mol Biol ; 25(3): 315-23, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26959524

RESUMEN

RNA interference (RNAi) is a powerful tool in entomology and shows promise as a crop protection strategy, but variability in its efficiency across different insect species limits its applicability. For oral uptake of the double-stranded RNA (dsRNA), the RNAi trigger, two different mechanisms are known: systemic RNA interference deficient-1 (Sid-1) transmembrane channel-mediated uptake and clathrin-mediated endocytosis. So far, a wide range of experiments has been conducted, confirming the involvement of one of the pathways in dsRNA uptake, but never both pathways in the same species. We investigated the role of both pathways in dsRNA uptake in the Colorado potato beetle, Leptinotarsa decemlineata, known to have an efficient RNAi response. Through RNAi-of-RNAi experiments, we demonstrated the contribution of two different sid-1-like (sil) genes, silA and silC, and clathrin heavy chain and the 16kDa subunit of the vacuolar H(+) ATPase (vha16), elements of the endocytic pathway, to the RNAi response. Furthermore, the sid-1-like genes were examined through phylogenetic and hydrophobicity analysis. This article reports for the first time on the involvement of two pathways in dsRNA uptake in an insect species and stresses the importance of evaluating both pathways through a well-devised reporter system in any future experiments on cellular dsRNA uptake.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Escarabajos/metabolismo , Endocitosis , Proteínas de Insectos/metabolismo , ARN Bicatenario/metabolismo , Animales , Escarabajos/genética , Tracto Gastrointestinal/metabolismo , Genes de Insecto , Genes Reporteros , Proteínas de Transporte de Membrana/metabolismo , Interferencia de ARN
7.
Insect Mol Biol ; 23(3): 320-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24528536

RESUMEN

RNA interference (RNAi) has become a widely used loss-of-function tool in eukaryotes; however, the delivery of double-stranded (ds)RNA) to the target cells remains a major challenge when exploiting the RNAi-technology. In insects, the efficiency of RNAi is highly species-dependent. Yet, the mechanism of cell entry in insects has only been characterized in a cell line of the fruit fly, Drosophila melanogaster, a species that is well known to be poorly amenable to environmental RNAi. In the present paper, we demonstrate that silencing vacuolar H-ATPase 16 (vha16) and clathrin heavy chain (clath), two components of the Clathrin-dependent endocytosis pathway, together with pharmacological inhibition of scavenger receptors with polyinosine and dextran sulphate, can significantly attenuate the highly robust RNAi response in the desert locust, Schistocerca gregaria.


Asunto(s)
Saltamontes/genética , Interferencia de ARN/efectos de los fármacos , Animales , Clatrina , Sulfato de Dextran , Endocitosis , Poli I , ARN Bicatenario/metabolismo , Receptores Depuradores
8.
Arch Insect Biochem Physiol ; 87(3): 164-76, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25136969

RESUMEN

RNA interference (RNAi) signal can spread from the point where the double-stranded RNA (dsRNA) was initially applied to other cells or tissues. SID-related genes in Caenorhabditis elegans help in the spreading of this signal. However, the mechanisms of systemic RNAi are still not unveiled in insects. In this study, we cloned a full-length cDNA of sid-1-like gene, Pxylsid-1, from Plutella xylostella that contains 1,047 bp opening reading frame encoding a putative protein of 348 amino acids. This transcript is very much similar to the sil-1 in Bombyx mori (68.8%). The higher expression levels of Pxylsid-1 were found at the adult and fourth-instar stages compared to the second-instar stage with 21.48- and 10.36-fold increase, respectively. Its expression levels in different tissues were confirmed with the highest expression in the hemolymph, which showed 21.09-fold increase than the midgut; however it was lower in other tissues. The result of RNAi by feeding bacterially expressed dsRNA targeting Pxylace-1, which showed that the mRNA level of Pxylace-1 decreased by 34.52 and 64.04% after 36- and 72-h treatment, respectively. However, the mRNA level of Pxylsid-1 was not significantly induced when the Pxylace-1 was downregulated. Furthermore, we found that downregulation of Pxylsid-1 did not affect the RNAi effect of Pxylace-1. Hence, the Pxylsid-1 may not be involved in absorption of dsRNA from the midgut fluid. A further study is needed to uncover the function of Pxylsid-1.


Asunto(s)
Proteínas de la Membrana/genética , Mariposas Nocturnas/genética , Interferencia de ARN , ARN Bicatenario/metabolismo , Animales , Secuencia de Bases , Clonación Molecular , Larva , Datos de Secuencia Molecular , Mariposas Nocturnas/crecimiento & desarrollo
9.
Gene ; 895: 148014, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37984536

RESUMEN

Intertissue RNA transport recently emerged as a novel signaling mechanism. In mammals, mounting evidence suggests that small RNA transfer between cells is widespread and used in various physiological contexts. In the nematode C. elegans, a similar mechanism is conferred by the systemic RNAi pathway. Members of the Systemic RNA Interference Defective (SID) family act at different steps of cellular RNA uptake and export. The limiting step in systemic RNA interference (RNAi) is the import of extracellular RNAs via the conserved double-stranded (dsRNA)-gated dsRNA channel SID-1. To better understand the role of RNAs as intertissue signaling molecules, we modified the function of SID-1 in specific tissues of C. elegans. We observed that sid-1 loss-of-function mutants are as healthy as wild-type worms. Conversely, overexpression of sid-1 in C. elegans intestine, muscle, or neurons rendered worms short-lived. The effects of intestinal sid-1 overexpression were attenuated by silencing the components of systemic RNAi sid-1, sid-2 and sid-5, implicating systemic RNA signaling in the lifespan reduction. Accordingly, tissue-specific overexpression of sid-2 and sid-5 also reduced worm lifespan. Additionally, an RNAi screen for components of several non-coding RNA pathways revealed that silencing the miRNA biogenesis proteins PASH-1 and DCR-1 rendered the lifespan of worms with intestinal sid-1 overexpression similar to controls. Collectively, our data support the notion that systemic RNA signaling must be tightly regulated, and unbalancing that process provokes a reduction in lifespan. We termed this phenomenon Intercellular/Extracellular Systemic RNA imbalance (InExS).


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Interferencia de ARN , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidad/genética , ARN Bicatenario/metabolismo , Proteínas de la Membrana/genética , Mamíferos/genética
10.
Insect Sci ; 30(5): 1393-1404, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36576078

RESUMEN

Systemic RNA interference deficient-1-like (SIL1) is considered a core component in dsRNA uptake in some insect species. Investigation related to the potential function of SIL1 in dsRNA uptake can contribute to a further understanding of RNA interference (RNAi) mechanisms in insects and agricultural pest control. However, the role of SIL1 in dsRNA uptake in insects such as aphids remains controversial. We have thoroughly analyzed the role of SIL1 from the model aphid Acyrthosiphon pisum (ApSIL1) in cellular dsRNA to clarify its function. First, the induced expression of ApSIL1 upon dsRNA oral exposure provided a vital clue for the possible involvement of ApSIL1 in cellular dsRNA uptake. Subsequent in vivo experiments using the RNAi-of-RNAi approach for ApSIL1 supported our hypothesis that the silencing efficiencies of reporter genes were reduced after inhibition of ApSIL1 expression. The impaired biological phenotypes of aphids, including cumulative average offspring, deformities of the nymph, and mortality upon pathogen infection, were then observed in the treatment group. Thereafter, in vitro dual-luciferase reporter assay showed compelling evidence that the luciferin signal was significantly attenuated when dsluciferase or dsGFP was transferred into ApSIL1-transfected Drosophila S2 cells. These observations further confirmed that the signal of Cy3-labeled dsRNA was rapidly attenuated with time in ApSIL1-transfected Drosophila S2 cells. Overall, these findings conclusively establish that ApSIL1 is involved in dsRNA uptake in A. pisum.


Asunto(s)
Áfidos , Animales , Interferencia de ARN , Áfidos/fisiología , Pisum sativum/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Drosophila/genética
11.
Cell Cycle ; 20(24): 2619-2637, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34781815

RESUMEN

Long non-coding RNA LIFR-AS1 is low-expressed in many cancers, but its functions in papillary thyroid carcinoma (PTC) were not defined and require further study. The relationship between LIFR-AS1 expression and clinicopathological characteristics of patients with PTC was statistically analyzed. The downregulation of LIFR-AS1 in PTC tissues and cell lines was predicted by bioinformatics analysis and verified by qRT-PCR. After overexpressing or silencing LIFR-AS1, the regulatory role of LIFR-AS1 in PTC was examined by performing MTT, colony formation, wound healing, Transwell, ELISA, tube formation and xenograft tumor experiment. MiR-31-5p and SID1 transmembrane family member 2 (SIDT2) expressions in PTC tissues or cell lines were detected by qRT-PCR, Western blot, or in situ hybridization. The relationship between miR-31-5p and LIFR-AS1/SIDT2 was predicted by LncBase, TargetScan or Pearson correlation test and then verified by Dual-Luciferase Reporter assay, RNA pull-down assay and qRT-PCR. The regulatory effect of LIFR-AS1/miR-31-5p/SIDT2 axis on the biological behaviors of PTC cells was confirmed by functional experiments and rescue experiments mentioned above. The tumor size and lymphatic metastasis were correlated with LIFR-AS1 overexpression. Overexpressed LIFR-AS1 suppressed tumorigenesis in vivo. LIFR-AS1 and SIDT2 expressions were suppressed in PTC tissues, while that of miR-31-5p was elevated in PTC tissues. LIFR-AS1 was negatively correlated with miR-31-5p. LIFR-AS1 sponged miR-31-5p to upregulate SIDT2, thereby inhibiting the viability, proliferation, migration, invasion, and the secretion of vascular endothelial growth factor (VEGF) of PTC cells and angiogenesis of human umbilical vein endothelial cells (HUVECs). This paper demonstrates that LIFR-AS1/miR-31-5p/SIDT2 axis modulated the development of PTC.


Asunto(s)
MicroARNs , Proteínas de Transporte de Nucleótidos , ARN Largo no Codificante , Neoplasias de la Tiroides , Línea Celular Tumoral , Proliferación Celular/genética , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
Exp Ther Med ; 16(1): 246-252, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29896245

RESUMEN

The SID1 transmembrane family member 2 (sidt2) deficient mouse model was used to investigate the function of sidt2 in lysosomal membrane permeabilization and lipid metabolism of liver tissue. The mouse model was established by Cre/LoxP technology. Enzymatic methods were used to analyze the sidt2-/- mouse serum lipids, aspartate transaminase, alanine transaminase and serum bilirubin, compared with sidt2+/+ mice. Defective lipid metabolism and damaged liver functions were observed in the sidt2-/- mice. By using hematoxylin and eosin and Oil Red O staining, changes of morphology were observed in sidt2-/- mice with optical microscopy. Transmission electron microscopy was also used. Hepatic steatosis and partial liver tissue apoptosis were observed. The tissue distribution of sidt2 protein and mRNA was measured in knockout mice. The results indicated that negligible sidt2 mRNA and protein expression were observed in sidt2-/- mice, and that sidt2-/- mice had abnormal liver functions. Transmission electron microscopy revealed membrane lipid droplets in the liver cell cytoplasm, and some apoptotic body formation. These results demonstrated that absence of the lysosomal membrane protein sidt2 led to changes in lysosomal membrane permeabilization and lipid metabolism.

13.
G3 (Bethesda) ; 7(12): 3887-3899, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29025917

RESUMEN

In the nematode Caenorhabditis elegans, RNA interference (RNAi) triggered by double-stranded RNA (dsRNA) spreads systemically to cause gene silencing throughout the organism and its progeny. We confirm that Caenorhabditis nematode SID-1 orthologs have dsRNA transport activity and demonstrate that the SID-1 paralog CHUP-1 does not transport dsRNA. Sequence comparison of these similar proteins, in conjunction with analysis of loss-of-function missense alleles, identifies several conserved 2-7 amino acid microdomains within the extracellular domain (ECD) that are important for dsRNA transport. Among these missense alleles, we identify and characterize a sid-1 allele, qt95, which causes tissue-specific silencing defects most easily explained as a systemic RNAi export defect. However, we conclude from genetic and biochemical analyses that sid-1(qt95) disrupts only import, and speculate that the apparent export defect is caused by the cumulative effect of sequentially impaired dsRNA import steps. Thus, consistent with previous studies, we fail to detect a requirement for sid-1 in dsRNA export, but demonstrate for the first time that SID-1 functions in the intestine to support environmental RNAi (eRNAi).


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de la Membrana/genética , Transporte de ARN/genética , ARN Bicatenario/genética , Animales , Animales Modificados Genéticamente/genética , Caenorhabditis elegans/genética , Silenciador del Gen , Mucosa Intestinal/metabolismo , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA