Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.661
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant J ; 119(2): 746-761, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733631

RESUMEN

The jasmonic acid (JA) signaling pathway plays an important role in promoting the biosynthesis of tanshinones. While individual transcription factors have been extensively studied in the context of tanshinones biosynthesis regulation, the influence of methyl jasmonate (MeJA)-induced transcriptional complexes remains unexplored. This study elucidates the positive regulatory role of the basic helix-loop-helix protein SmMYC2 in tanshinones biosynthesis in Salvia miltiorrhiza. SmMYC2 not only binds to SmGGPPS1 promoters, activating their transcription, but also interacts with SmMYB36. This interaction enhances the transcriptional activity of SmMYC2 on SmGGPPS1, thereby promoting tanshinones biosynthesis. Furthermore, we identified three JA signaling repressors, SmJAZ3, SmJAZ4, and SmJAZ8, which interact with SmMYC2. These repressors hindered the transcriptional activity of SmMYC2 on SmGGPPS1 and disrupted the interaction between SmMYC2 and SmMYB36. MeJA treatment triggered the degradation of SmJAZ3 and SmJAZ4, allowing the SmMYC2-SmMYB36 complex to subsequently activate the expression of SmGGPPS1, whereas SmJAZ8 inhibited MeJA-mediated degradation due to the absence of the LPIARR motif. These results demonstrate that the SmJAZ-SmMYC2-SmMYB36 module dynamically regulates the JA-mediated accumulation of tanshinones. Our results reveal a new regulatory network for the biosynthesis of tanshinones. This study provides valuable insight for future research on MeJA-mediated modulation of tanshinones biosynthesis.


Asunto(s)
Abietanos , Acetatos , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Proteínas de Plantas , Salvia miltiorrhiza , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/metabolismo , Oxilipinas/farmacología , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/efectos de los fármacos , Acetatos/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Transducción de Señal , Regiones Promotoras Genéticas/genética
2.
Plant J ; 113(4): 819-832, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36579923

RESUMEN

Rosemary (Salvia rosmarinus) is considered a sacred plant because of its special fragrance and is commonly used in cooking and traditional medicine. Here, we report a high-quality chromosome-level assembly of the S. rosmarinus genome of 1.11 Gb in size; the genome has a scaffold N50 value of 95.5 Mb and contains 40 701 protein-coding genes. In contrast to other diploid Labiataceae, an independent whole-genome duplication event occurred in S. rosmarinus at approximately 15 million years ago. Transcriptomic comparison of two S. rosmarinus cultivars with contrasting carnosic acid (CA) content revealed 842 genes significantly positively associated with CA biosynthesis in S. rosmarinus. Many of these genes have been reported to be involved in CA biosynthesis previously, such as genes involved in the mevalonate/methylerythritol phosphate pathways and CYP71-coding genes. Based on the genomes and these genes, we propose a model of CA biosynthesis in S. rosmarinus. Further, comparative genome analysis of the congeneric species revealed the species-specific evolution of CA biosynthesis genes. The genes encoding diterpene synthase and the cytochrome P450 (CYP450) family of CA synthesis-associated genes form a biosynthetic gene cluster (CPSs-KSLs-CYP76AHs) responsible for the synthesis of leaf and root diterpenoids, which are located on S. rosmarinus chromosomes 1 and 2, respectively. Such clustering is also observed in other sage (Salvia) plants, thus suggesting that genes involved in diterpenoid synthesis are conserved in the Labiataceae family. These findings provide new insights into the synthesis of aromatic terpenoids and their regulation.


Asunto(s)
Diterpenos , Rosmarinus , Salvia , Rosmarinus/genética , Rosmarinus/metabolismo , Salvia/genética , Salvia/metabolismo , Abietanos/metabolismo , Diterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Cromosomas
3.
BMC Plant Biol ; 24(1): 446, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778268

RESUMEN

Salvia miltiorrhiza is commonly used as a Chinese herbal medicine to treat different cardiovascular and cerebrovascular illnesses due to its active ingredients. Environmental conditions, especially drought stress, can affect the yield and quality of S. miltiorrhiza. However, moderate drought stress could improve the quality of S. miltiorrhiza without significantly reducing the yield, and the mechanism of this initial drought resistance is still unclear. In our study, transcriptome and metabolome analyses of S. miltiorrhiza under different drought treatment groups (CK, A, B, and C groups) were conducted to reveal the basis for its drought tolerance. We discovered that the leaves of S. miltiorrhiza under different drought treatment groups had no obvious shrinkage, and the malondialdehyde (MDA) contents as well as superoxide dismutase (SOD) and peroxidase (POD) activities dramatically increased, indicating that our drought treatment methods were moderate, and the leaves of S. miltiorrhiza began to initiate drought resistance. The morphology of root tissue had no significant change under different drought treatment groups, and the contents of four tanshinones significantly enhanced. In all, 5213, 6611, and 5241 differentially expressed genes (DEGs) were shared in the A, B, and C groups compared with the CK group, respectively. The results of KEGG and co-expression analysis showed that the DEGs involved in plant-pathogen interactions, the MAPK signaling pathway, phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction responded to drought stress and were strongly correlated with tanshinone biosynthesis. Furthermore, the results of metabolism analysis indicated that 67, 72, and 92 differentially accumulated metabolites (DAMs), including fumarate, ferulic acid, xanthohumol, and phytocassanes, which were primarily involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis pathways, were detected in these groups. These discoveries provide valuable information on the molecular mechanisms by which S. miltiorrhiza responds to drought stress and will facilitate the development of drought-resistant and high-quality S. miltiorrhiza production.


Asunto(s)
Sequías , Metaboloma , Salvia miltiorrhiza , Transcriptoma , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
4.
BMC Plant Biol ; 24(1): 575, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890577

RESUMEN

BACKGROUND: Salvia miltiorrhiza, a well-known traditional Chinese medicine, frequently suffers from replant diseases that adversely affect its quality and yield. To elucidate S. miltiorrhiza's metabolic adaptations to replant disease, we analyzed its metabolome and transcriptome, comparing normal and replant diseased plants for the first time. RESULTS: We identified 1,269 metabolites, 257 of which were differentially accumulated metabolites, and identified 217 differentially expressed genes. Integrated transcriptomic and metabolomic analyses revealed a significant up-regulation and co-expression of metabolites and genes associated with plant hormone signal transduction and flavonoid biosynthesis pathways in replant diseases. Within plant hormone signal transduction pathway, plants afflicted with replant disease markedly accumulated indole-3-acetic acid and abscisic acid, correlating with high expression of their biosynthesis-related genes (SmAmidase, SmALDH, SmNCED, and SmAAOX3). Simultaneously, changes in hormone concentrations activated plant hormone signal transduction pathways. Moreover, under replant disease, metabolites in the local flavonoid metabolite biosynthetic pathway were significantly accumulated, consistent with the up-regulated gene (SmHTC1 and SmHTC2). The qRT-PCR analysis largely aligned with the transcriptomic results, confirming the trends in gene expression. Moreover, we identified 10 transcription factors co-expressed with differentially accumulated metabolites. CONCLUSIONS: Overall, we revealed the key genes and metabolites of S. miltiorrhiza under replant disease, establishing a robust foundation for future inquiries into the molecular responses to combat replant stress.


Asunto(s)
Perfilación de la Expresión Génica , Redes y Vías Metabólicas , Salvia miltiorrhiza , Transcriptoma , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Redes y Vías Metabólicas/genética , Metabolómica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Metaboloma , Transducción de Señal/genética , Flavonoides/metabolismo
5.
BMC Plant Biol ; 24(1): 56, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38238679

RESUMEN

Salvia verticillata L. is a well-known herb rich in rosmarinic acid (RA) and with therapeutic values. To better understand the possible roles of phytohormones in the production of phenolic acids in S. verticillata, in this work, we investigated some physiological and biochemical responses of the species to methyl jasmonate (MJ) and multi-walled carbon nanotubes (MWCNTs) as two effective elicitors. The leaves were sprayed with aqueous solutions containing 100 mg L-1 MWCNTs and 100 µM MJ and then harvested during interval times of exposure up to 96 h. The level of abscisic acid, as the first effective phytohormone, was altered in the leaves in response to MJ and MWCNTs elicitation (2.26- and 3.06-fold more than the control, respectively), followed by significant increases (P ˂ 0.05) detected in jasmonic acid and salicylic acid contents up to 8 h after exposure. Obtained data revealed that simultaneously with changes in phytohormone profiles, significant (P ˂ 0.05) rises were observed in the content of H2O2 (8.85- and 9.74-folds of control), and the amount of lipid peroxidation (10.18- and 17.01-folds of control) during the initial times after exposure to MJ and MWCNTs, respectively. Later, the content of phenolic acids increased in the elicited leaves due to changes in the transcription levels of key enzymes involved in their biosynthesis pathways, so 2.71- and 11.52-fold enhances observed in the RA content of the leaves after exposure to MJ and MWCNTs, respectively. It is reasonable to conclude that putative linkages between changes in some phytohormone pools lead to the accumulation of phenolic acids in the leaves of S. verticillata under elicitation. Overall, the current findings help us improve our understanding of the signal transduction pathways of the applied stimuli that led to enhanced secondary metabolite production in medicinal plants.


Asunto(s)
Acetatos , Nanotubos de Carbono , Salvia , Reguladores del Crecimiento de las Plantas/farmacología , Peróxido de Hidrógeno/farmacología , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo
6.
BMC Plant Biol ; 24(1): 788, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164648

RESUMEN

Salinity stress is one of the most important stress barriers to crop production worldwide. Developing and implementing new strategies against salinity stress is critical for increasing agricultural productivity and supporting sustainable farming. Elicitors such as nanoparticles and Salicylic acid have recently been used potentially for better product yield. Therefore, in our research the Salvia virgata plant was exposed to salinity (NaCl) stress, and zinc oxide nanoparticles (ZnONP), salicylic acid (SA), and the ZnONP + SA combination were applied to plants divided into different groups. While salinity stress decreased the amount of chlorophyll a, chlorophyll b, and carotenoid pigments, SA, ZnONP, and SA + ZnONP elicitors combined with salinity stress enhanced the content of all three pigments. While salt stress raised MDA, H2O2, total phenolic, total flavonoid, soluble sugar and proline content, elicitor applications enhanced proline, soluble sugar, total phenolic and total flavonoid content more. Additionally, the application of NaCl + SA + ZnONP increased proline content by 21.55% and sugar content by 15.73% compared to NaCl application, while decreasing MDA content by 42.28% and H2O2 levels by 42.34%, thereby alleviating the plant's salt stress. It was revealed that DPPH, ABTS, and CUPRAC antioxidant activity sequence used to determine the total antioxidant activity displayed similarities, and it was found as NaCI + ZnONP > NaCI + SA > NaCI + SA + ZnONP > NaCI > Control. Furthermore, all elicitor applications increased CAT, GR, APX, and SOD enzyme activities while reducing oxidative stress in S. virgata plants. When all the data were evaluated, it was confirmed that SA and ZnONP had a synergistic effect and that SA and ZnONP have the potential to support plant development and growth under salinity. SA and ZnONP applications may have the capacity to least the detrimental impacts of salinity stress on plants. However, further research is needed to investigate the effectiveness of SA and ZnONPs in ameliorating salinity or different stress factors in various other plants.


Asunto(s)
Antioxidantes , Ácido Salicílico , Estrés Salino , Salvia , Antioxidantes/metabolismo , Salvia/fisiología , Salvia/efectos de los fármacos , Salvia/metabolismo , Ácido Salicílico/metabolismo , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Carotenoides/metabolismo , Flavonoides/metabolismo
7.
BMC Plant Biol ; 24(1): 914, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39350001

RESUMEN

BACKGROUND: Diviner's sage (Salvia divinorum; Lamiaceae) is the source of the powerful hallucinogen salvinorin A (SalA). This neoclerodane diterpenoid is an agonist of the human Κ-opioid receptor with potential medical applications in the treatment of chronic pain, addiction, and post-traumatic stress disorder. Only two steps of the approximately twelve step biosynthetic sequence leading to SalA have been resolved to date. RESULTS: To facilitate pathway elucidation in this ethnomedicinal plant species, here we report a chromosome level genome assembly. A high-quality genome sequence was assembled with an N50 value of 41.4 Mb and a BUSCO completeness score of 98.4%. The diploid (2n = 22) genome of ~ 541 Mb is comparable in size and ploidy to most other members of this genus. Two diterpene biosynthetic gene clusters were identified and are highly enriched in previously unidentified cytochrome P450s as well as crotonolide G synthase, which forms the dihydrofuran ring early in the SalA pathway. Coding sequences for other enzyme classes with likely involvement in downstream steps of the SalA pathway (BAHD acyl transferases, alcohol dehydrogenases, and O-methyl transferases) were scattered throughout the genome with no clear indication of clustering. Differential gene expression analysis suggests that most of these genes are not inducible by methyl jasmonate treatment. CONCLUSIONS: This genome sequence and associated gene annotation are among the highest resolution in Salvia, a genus well known for the medicinal properties of its members. Here we have identified the cohort of genes responsible for the remaining steps in the SalA pathway. This genome sequence and associated candidate genes will facilitate the elucidation of SalA biosynthesis and enable an exploration of its full clinical potential.


Asunto(s)
Diterpenos de Tipo Clerodano , Genoma de Planta , Salvia , Salvia/genética , Salvia/metabolismo , Cromosomas de las Plantas/genética , Familia de Multigenes , Vías Biosintéticas/genética
8.
Biol Chem ; 405(2): 119-128, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36869860

RESUMEN

Salvia miltiorrhiza (Salvia miltiorrhiza) root, as a traditional herb, is widely applied to pharmacotherapy for vascular system disease. In this study, we elucidate the therapy mechanism of Salvia miltiorrhiza by using a model of hindlimb ischemia. Blood perfusion measurement showed that intravenous administration of the Water Extract of Salvia miltiorrhiza (WES) could facilitate damaged hindlimb blood flow recovery and blood vessel regeneration. In vitro mRNA screen assay in cultured human umbilical vein endothelial cells (HUVECs) show that WES induced increased NOS3, VEGFA, and PLAU mRNA levels. Endothelial NOS (eNOS) promotor reporter analysis revealed that WES and the major ingredients danshensu (DSS) could enhance eNOS promoter activity. Additionally, we found that WES and its ingredients, including DSS, protocatechuic aldehyde (PAI), and salvianolic acid A (SaA), promoted HUVECs growth by the endothelial cell viability assays. A mechanistic approach confirmed that WES augments HUVECs proliferation through the activation of extracellular signal-regulated kinase (ERK) signal pathway. This study reveals that WES promotes ischemic remodeling and angiogenesis through its multiple principal ingredients, which target and regulate multiple sites of the network of the blood vessel endothelial cell regenerating process.


Asunto(s)
Salvia miltiorrhiza , Animales , Humanos , Isquemia/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana , Miembro Posterior , ARN Mensajero
9.
Plant Biotechnol J ; 22(7): 1833-1847, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38363812

RESUMEN

High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Genoma de Planta/genética , Cromosomas de las Plantas/genética , Adaptación Fisiológica/genética , Salvia/genética , Salvia/metabolismo , Antioxidantes/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Depsidos/metabolismo , Multiómica
10.
Metab Eng ; 86: 29-40, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181435

RESUMEN

Tanshinones and phenolic acids are the two main chemical constituents in Salvia miltiorrhiza, which are used clinically for the treatment of hypertension, coronary heart disease, atherosclerosis, and many other diseases, and have broad medicinal value. The efficient synthesis of the target products of these two metabolites in isolated plant tissues cannot be achieved without the regulation and optimization of metabolic pathways, and transcription factors play an important role as common regulatory elements in plant tissue metabolic engineering. However, most of the regulatory effects are specific to one class of metabolites, or an opposing regulation of two classes of metabolites exists. In this study, an artificially modified transcription factor, SmMYB36-VP16, was constructed to enhance tanshinones and phenolic acids in Salvia miltiorrhiza hair roots simultaneously. Further in combination with the elicitors dual-screening technique, by applying the optimal elicitors screened, the tanshinones content in the transgenic hairy roots of Salvia miltiorrhiza reached 6.44 mg/g DW, which was theoretically 6.08-fold that of the controls without any treatment, and the content of phenolic acids reached 141.03 mg/g DW, which was theoretically 5.05-fold that of the controls without any treatment. The combination of artificially modified transcriptional regulatory and elicitors dual-screening techniques has facilitated the ability of plant isolated tissue cell factories to produce targeted medicinal metabolites. This strategy could be applied to other species, laying the foundation for the production of potential natural products for the medicinal industry.

11.
New Phytol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39262232

RESUMEN

Salvia miltiorrhiza holds significant importance in traditional Chinese medicine. Stress-associated proteins (SAP), identified by A20/AN1 zinc finger structural domains, play crucial roles in regulating plant growth, development, resistance to biotic and abiotic stress, and hormone responses. Herein, we conducted a genome-wide identification of the SAP gene family in S. miltiorrhiza. The expression analysis revealed a significant upregulation of SmSAP4 under methyl jasmonate (MeJA) and salt stress. Overexpressing SmSAP4 in S. miltiorrhiza hairy roots increased tanshinones content while decreasing salvianolic acids content, while RNAi-silencing SmSAP4 had the opposite effect. SmSAP4 overexpression in both Arabidopsis thaliana and S. miltiorrhiza hairy roots decreased their salt stress tolerance, accompanied by increased activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a hindered ability to maintain the Na+ : K+ ratio. Further investigations demonstrated that MeJA alleviated the inhibitory effect of SmJAZ3 on SmSAP4 activation by SmbHLH37 and SmERF73. However, MeJA did not affect the inhibition of SmSAP4 activation by SmJAZ8 through SmbHLH37. In summary, our research reveals that SmSAP4 negatively regulates the accumulation of salvianic acid through the SmJAZs-SmbHLH37/SmERF73-SmSAP4 module and positively impacting the accumulation of tanshinones. Additionally, it functions as a negative regulator under salt stress.

12.
Toxicol Appl Pharmacol ; 484: 116871, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423217

RESUMEN

Salvia miltiorrhiza Bunge. (DS), as an important traditional Chinese medicine (TCM), has a long history of usage for promoting blood circulation and removing blood stasis. Modern studies have shown that the chemical components of DS have many biological activities such as cardiovascular protection, anti-arrhythmia, anti-atherosclerosis, improvement of microcirculation, protection of myocardium, inhibition and removal of platelet aggregation. Nevertheless, the action mechanism of DS as well its active compounds on platelet activation has not been fully uncovered. This study aimed to find out the potential targets and mechanisms of DS in the modulation of platelet activation and thrombosis, using network pharmacology and biological experimental. These compounds with anti-thrombotic activity in DS, cryptotanshinone (CPT), isoeugenol (ISO) and tanshinone IIA (TSA), together with the corresponding targets being Src, Akt and RhoA are screened by network pharmacology. We confirmed that ISO, CPT and TSA dose-dependently inhibited platelet activation in vitro, mainly by inhibiting agonist-induced clot retraction, aggregation and P-selectin and ATP release. The western blot findings indicated that ISO, CPT, and TSA led to reduced levels of p-Akt and p-ERK in activated platelets. Additionally, ISO and TSA were observed to decrease p-cSrc expression while increasing RhoA expression. ISO, CPT, and TSA demonstrated a potential to restrict the advancement of carotid arterial thrombosis in vivo. We confirm that ISO, CPT and TSA are the key anti-thrombotic active compounds in DS. These active compounds exhibit unique inhibitory effects on platelet activation and thrombus formation by modulating the Akt/ERK and cSrc/RhoA signaling pathways.


Asunto(s)
Salvia miltiorrhiza , Trombosis , Salvia miltiorrhiza/química , Farmacología en Red , Proteínas Proto-Oncogénicas c-akt/farmacología , Activación Plaquetaria , Trombosis/tratamiento farmacológico
13.
FASEB J ; 37(9): e23125, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37535015

RESUMEN

The evergreen plant rosemary (Salvia rosmarinus) has been employed medicinally for centuries as a memory aid, analgesic, spasmolytic, vasorelaxant and antihypertensive, with recent preclinical and clinical evidence rationalizing some applications. Voltage-gated potassium (Kv) channels in the KCNQ (Kv7) subfamily are highly influential in the nervous system, muscle and epithelia. KCNQ4 and KCNQ5 regulate vascular smooth muscle excitability and contractility and are implicated as antihypertensive drug targets. Here, we found that rosemary extract potentiates homomeric and heteromeric KCNQ4 and KCNQ5 activity, resulting in membrane hyperpolarization. Two rosemary diterpenes, carnosol and carnosic acid, underlie the effects and, like rosemary, are efficacious KCNQ-dependent vasorelaxants, quantified by myography in rat mesenteric arteries. Sex- and estrous cycle stage-dependence of the vasorelaxation matches sex- and estrous cycle stage-dependent KCNQ expression. The results uncover a molecular mechanism underlying rosemary vasorelaxant effects and identify new chemical spaces for KCNQ-dependent vasorelaxants.


Asunto(s)
Plantas Medicinales , Rosmarinus , Ratas , Animales , Músculo Liso Vascular/fisiología , Canales de Potasio KCNQ , Vasodilatadores/farmacología
14.
Mol Pharm ; 21(5): 2298-2314, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38527915

RESUMEN

Hypertrophic scars (HS) still remain an urgent challenge in the medical community. Traditional Chinese medicine (TCM) has unique advantages in the treatment of HS. However, due to the natural barrier of the skin, it is difficult for the natural active components of TCM to more effectively penetrate the skin and exert therapeutic effects. Therefore, the development of an efficient drug delivery system to facilitate enhanced transdermal absorption of TCM becomes imperative for its clinical application. In this study, we designed a compound Salvia miltiorrhiza-Blumea balsamifera nanoemulsion gel (CSB-NEG) and investigated its therapeutic effects on rabbit HS models. The prescription of CSB-NEG was optimized by single-factor, pseudoternary phase diagram, and central composite design experiments. The results showed that the average particle size and PDI of the optimized CSB-NE were 46.0 ± 0.2 nm and 0.222 ± 0.004, respectively, and the encapsulation efficiency of total phenolic acid was 93.37 ± 2.56%. CSB-NEG demonstrated excellent stability and skin permeation in vitro and displayed a significantly enhanced ability to inhibit scar formation compared to the CSB physical mixture in vivo. After 3 weeks of CSB-NEG treatment, the scar appeared to be flat, pink, and flexible. Furthermore, this treatment also resulted in a decrease in the levels of the collagen I/III ratio and TGF-ß1 and Smad2 proteins while simultaneously promoting the growth and remodeling of microvessels. These findings suggest that CSB-NEG has the potential to effectively address the barrier properties of the skin and provide therapeutic benefits for HS, offering a new perspective for the prevention and treatment of HS.


Asunto(s)
Cicatriz Hipertrófica , Emulsiones , Geles , Salvia miltiorrhiza , Absorción Cutánea , Conejos , Animales , Cicatriz Hipertrófica/tratamiento farmacológico , Salvia miltiorrhiza/química , Absorción Cutánea/efectos de los fármacos , Emulsiones/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Modelos Animales de Enfermedad , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo , Administración Cutánea , Tamaño de la Partícula , Masculino , Nanopartículas/química , Medicina Tradicional China/métodos , Oído/patología , Sistemas de Liberación de Medicamentos/métodos
15.
Ann Bot ; 134(2): 295-310, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38733329

RESUMEN

BACKGROUND AND AIMS: The California Floristic Province (CA-FP) is the most species-rich region of North America north of Mexico. One of several proposed hypotheses explaining the exceptional diversity of the region is that the CA-FP harbours myriad recently diverged lineages with nascent reproductive barriers. Salvia subgenus Audibertia is a conspicuous element of the CA-FP, with multiple sympatric and compatible species. METHODS: Using 305 nuclear loci and both organellar genomes, we reconstruct species trees, examine genomic discordance, conduct divergence-time estimation, and analyse contemporaneous patterns of gene flow and mechanical reproductive isolation. KEY RESULTS: Despite strong genomic discordance, an underlying bifurcating tree is supported. Organellar genomes capture additional introgression events not detected in the nuclear genome. Most interfertility is found within clades, indicating that reproductive barriers arise with increasing genetic divergence. Species are generally not mechanically isolated, suggesting that it is unlikely to be the primary factor leading to reproductive isolation. CONCLUSIONS: Rapid, recent speciation with some interspecific gene flow in conjunction with the onset of a Mediterranean-like climate is the underlying cause of extant diversity in Salvia subgenus Audibertia. Speciation has largely not been facilitated by gene flow. Its signal in the nuclear genome seems to mostly be erased by backcrossing, but organellar genomes each capture different instances of historical gene flow, probably characteristic of many CA-FP lineages. Mechanical reproductive isolation appears to be only part of a mosaic of factors limiting gene flow.


Asunto(s)
Flujo Génico , Especiación Genética , Filogenia , Aislamiento Reproductivo , Salvia , California , Salvia/genética , Biodiversidad , Genoma de Planta , Variación Genética
16.
Ann Bot ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082745

RESUMEN

BACKGROUND: Chia (Salvia hispanica L.) seeds have become increasingly popular among health-conscious consumers due to their high content of ω-3 fatty acids, which provide various health benefits. Comprehensive chemical analyses of chia seeds' fatty acids and proteins have been conducted, revealing their functional properties. Recent studies have confirmed the high ω-3 content of chia seed oil and have hinted at additional functional characteristics. SCOPE: This review article aims to provide an overview of the botanical, morphological, and biochemical features of chia plants, seeds, and seed mucilage. Additionally, we discuss the recent developments in genetic and molecular research on chia, including the latest transcriptomic and functional studies that examine the genes responsible for chia fatty acid biosynthesis. In recent years, research on chia seeds has shifted its focus from studying the physicochemical characteristics and chemical composition of seeds to understanding the metabolic pathways and molecular mechanisms that contribute to their nutritional benefits. This has led to a growing interest in various pharmaceutical, nutraceutical, and agricultural applications of chia. In this context, we discuss the latest research on chia, as well as the questions that remain unanswered, and identify areas that require further exploration. CONCLUSIONS: Nutraceutical compounds associated with significant health benefits including ω-3 PUFAs, proteins, and phenolic compounds with antioxidant activity have been measured in high quantities in chia seeds. However, comprehensive investigations through both in vitro experiments and in vivo animal and controlled human trials are expected to provide greater clarity on the medicinal, antimicrobial, and antifungal effects of chia seeds. The recently published genome of chia and gene editing technologies, such as CRISPR, facilitate functional studies deciphering molecular mechanisms of biosynthesis and metabolic pathways in this crop. This necessitates development of stable transformation protocols and creation of a publicly available lipid database, mutant collection, and large-scale transcriptomic datasets for chia.

17.
Int Microbiol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833100

RESUMEN

Salvia miltiorrhiza is a kind of medicinal plant with various pharmacological activities. Few studies on the composition and diversity of rhizosphere microbial communities at different growth stages have been conducted on Salvia miltiorrhiz; in particular, salviorrhiza grows in soil that has been continuously planted for 3 years. The purpose of this study was to understand the changes of soil physicochemical properties of Salvia miltiorrhiza at different growth stages, and to study the composition and diversity of rhizosphere microbial community at different growth stages. Illumina NovaSeq sequencing technology was used to analyze the bacterial 16S rRNA gene and the fungal ITS region in the rhizosphere soil of Salvia miltiorrhiza at different growth stages. The results showed that the dominant bacterial phyla in the Salvia miltiorrhiza rhizosphere were Proteobacteria, Bacteroidetes, Acidobacteria, Firmicutes, Actinobacteria, and Chloroflexi. The dominant fungal phyla were Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota. During the growth of Salvia miltiorrhiza, the physical and chemical properties of soil changed. As the Salvia miltiorrhiza grew, the content of available phosphorus, available potassium, pH, nitrate nitrogen, and ammonium nitrogen significantly decreased. Ammonium nitrogen and nitrate nitrogen had a greater impact on the bacterial community structure in the rhizosphere than on the fungal community structure. The work was to reveal differences in the rhizosphere bacterial and fungal community structure during different growth stages of Salvia miltiorrhiza, further understand the changes of rhizosphere microbial ecological characteristics and soil physicochemical properties during the cultivation of Salvia miltiorrhiza.

18.
Fish Shellfish Immunol ; 146: 109405, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278337

RESUMEN

Plant polysaccharides as immunomodulators are considered one of the effective measures to reduce antibiotic therapy in aquaculture. The immunomodulatory function of Salvia miltiorrhiza polysaccharides (SMP) has been demonstrated and begun to be applied in vertebrates, but its potential effect on crustaceans is unclear. In this study, crayfish (Procambarus clarkii) was fed with 0 %, 0.3 %, 0.7 %, 1.1 %, and 1.5 % SMP for 4 weeks to investigate the effects of SMP on hemocytes phagocytosis, hepatopancreatic function, and intestinal barrier function. The results revealed that hemocyte phagocytic activity was increased in all SMP groups. During the process of hemocytes phagocytic recognition and formation of phagosomes and phagolysosomes, the mRNA expression levels of mas, hem, rab3, ctsb, and lamp-1 were up-regulated mainly in the 0.3 % SMP group. During the clearance phase of phagocytosis, respiratory burst activity, ROS level, T-SOD, CAT, GST, and LZM activities were mainly increased in the 1.5 % SMP group. Hepatopancreas AKP and GOT activity were no significant change in all SMP groups. ACP activity was significantly enhanced in the 1.1 % SMP group. The GPT activity of 0.3-0.7 % SMP group was significantly decreased. The 0.7 % SMP group had the highest intestinal fold height. The highest index values of OTUs, Ace, Chao, and Shannon were in the 0.3 % SMP group. The dietary addition of 0.3 % SMP led to a tendency of increased relative abundance of Firmicutes and Bacteroidota at the phylum level, while the relative abundance of Proteobacteria at the phylum level decreased. In conclusion, dietary SMP could promote crayfish health by enhancing phagocytosis, protecting hepatopancreas and enhancing intestinal barrier function. This study contributes to the theoretical foundation for exploring the potential application of plant polysaccharides in crustaceans.


Asunto(s)
Astacoidea , Salvia miltiorrhiza , Animales , Astacoidea/genética , Hemocitos , Hepatopáncreas , Funcion de la Barrera Intestinal , Fagocitosis , Polisacáridos/farmacología
19.
J Fluoresc ; 34(1): 465-478, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37610703

RESUMEN

Cancer is a broad category of disease that can affect virtually any organ or tissue in the body when abnormal cells grow uncontrollably, invade surrounding tissue, and/or spread to other organs. Dabrafenib is indicated for the treatment of adult patients with advanced non-small cell lung cancer. In the present study, two newly developed spectrofluorimetric probes for the detection of the anticancer drug Dabrafenib (DRF) in its authentic and pharmaceutical products using an ecologically synthesized copper oxide nanoparticle (CuONPs) from Salvia officinalis leaf extract and a copper chelate complex are presented. The first system is based on the influence of the particular optical properties of CuONPs on the enhancement of fluorescence detection. The second system, on the other hand, acts through the formation of a copper charge transfer complex. Various spectroscopic and microscopic studies were performed to confirm the environmentally synthesized CuONPs. The fluorescence detections in the two systems were measured at λex 350 and λem of 432 nm. The results showed the linear concentration ranges for the DRF-CuONPs-SDS and DRF-Cu-SDS complexes were determined to be 1.0-500 ng mL- 1 and 1.0-200 ng mL- 1, respectively. FI = 1.8088x + 21.418 (r = 0.9997) and FI = 2.7536x + 163.37 (r = 0.9989) were the regression equations. The lower detection and quantification limits for the aforementioned fluorescent systems were determined to be 0.4 and 0.8 ng mL- 1 and 1.0 ng mL- 1, respectively. The results also showed that intra-day DRF assays using DRF-CuONPs-SDS and DRF-Cu(NO3)2-SDS systems yielded 0.17% and 0.54%, respectively. However, the inter-day assay results for the above systems were 0.27% and 0.65%, respectively. The aforementioned two systems were effectively used in the study of DRF with excellent percent recoveries of 99.66 ± 0.42% and 99.42 ± 0.56%, respectively. Excipients such as magnesium stearate, titanium dioxide, red iron oxide, and silicon dioxide used in pharmaceutical formulations, as well as various common cations, amino acids, and sugars, had no effect on the detection of compound.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Imidazoles , Neoplasias Pulmonares , Nanopartículas del Metal , Nanopartículas , Oximas , Salvia officinalis , Humanos , Cobre/química , Espectrometría de Fluorescencia , Nanopartículas/química , Dióxido de Silicio , Nanopartículas del Metal/química
20.
Bioorg Chem ; 151: 107701, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39154520

RESUMEN

Four new diterpenoid tropolones, salvirrddones A-D (1-4), and four new icetexanes, salvirrddices A-D (9-12), along with thirteen new 11,12-seco-norabietane diterpenoids, salvirrddnor A-M (14-24, 31, 32) and sixteen known compounds (5-8, 13, 25-30, 33-37), were isolated from the roots and rhizomes of Salvia castanea Diels f. tomentosa Stib. Their structures were elucidated by comprehensive spectroscopic analyses, quantum chemical calculations, and X-ray crystallography. Structurally, compounds 1-8 represent a class of rare natural products featuring a unique cyclohepta-2,4,6-trienone moiety with diterpenoid skeletons. Bioassays showed that only diterpenoid tropolones 3, 5, 6, and 7 exhibited significant activity against several human cancer cell lines with IC50 values ranging from 3.01 to 11.63 µM. Additionally, 3 was shown to inhibit Hep3B cell proliferation, block the G0/G1 phase of the cell cycle, induce mitochondrial dysfunction and oxidative stress, promote apoptosis, as well as inhibit migration and invasion in vitro. Meanwhile, 3 demonstrated anti-proliferative, pro-apoptotic, and migration-inhibitory effects in the Hep3B xenograft zebrafish model in vivo. Network pharmacological analysis and molecular docking results suggested that 3 may treat hepatocellular carcinoma (HCC) through the PI3K-Akt signaling pathway, as well as by binding PARP1 and CDK2 targets. Overall, the present results extremely expand the repertoire of diterpenoids from natural products and may provide a novel chemical scaffold for the discovery of new antitumor drugs.


Asunto(s)
Antineoplásicos Fitogénicos , Apoptosis , Proliferación Celular , Diterpenos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Salvia , Pez Cebra , Humanos , Salvia/química , Proliferación Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Relación Estructura-Actividad , Animales , Estructura Molecular , Diterpenos/farmacología , Diterpenos/química , Diterpenos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA