Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Intervalo de año de publicación
1.
Development ; 151(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39092608

RESUMEN

Melanocytes evolved to produce the melanin that gives colour to our hair, eyes and skin. The melanocyte lineage also gives rise to melanoma, the most lethal form of skin cancer. The melanocyte lineage differentiates from neural crest cells during development, and most melanocytes reside in the skin and hair, where they are replenished by melanocyte stem cells. Because the molecular mechanisms necessary for melanocyte specification, migration, proliferation and differentiation are co-opted during melanoma initiation and progression, studying melanocyte development is directly relevant to human disease. Here, through the lens of advances in cellular omic and genomic technologies, we review the latest findings in melanocyte development and differentiation, and how these developmental pathways become dysregulated in disease.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Melanocitos , Melanoma , Melanocitos/metabolismo , Melanocitos/citología , Humanos , Animales , Melanoma/patología , Melanoma/metabolismo , Melanoma/genética , Cresta Neural/metabolismo , Proliferación Celular , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética
2.
J Mol Cell Cardiol ; 187: 1-14, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38103633

RESUMEN

BACKGROUND: Although aging is known to be associated with an increased incidence of both atrial and ventricular arrhythmias, there is limited knowledge about how Schwann cells (SC) and the intracardiac nervous system (iCNS) remodel with age. Here we investigate the differences in cardiac SC, parasympathetic nerve fibers, and muscarinic acetylcholine receptor M2 (M2R) expression in young and old mice. Additionally, we examine age-related changes in cardiac responses to sympathomimetic and parasympathomimetic drugs. METHODS AND RESULTS: Lower SC density, lower SC proliferation and fewer parasympathetic nerve fibers were observed in cardiac and, as a control sciatic nerves from old (20-24 months) compared to young mice (2-3 months). In old mice, chondroitin sulfate proteoglycan 4 (CSPG4) was increased in sciatic but not cardiac nerves. Expression of M2R was lower in ventricular myocardium and ventricular conduction system from old mice compared to young mice, while no significant difference was seen in M2R expression in sino-atrial or atrio-ventricular node pacemaker tissue. Heart rate was slower and PQ intervals were longer in Langendorff-perfused hearts from old mice. Ventricular tachycardia and fibrillation were more frequently observed in response to carbachol administration in hearts from old mice versus those from young mice. CONCLUSIONS: On the background of reduced presence of SC and parasympathetic nerve fibers, and of lower M2R expression in ventricular cardiomyocytes and conduction system of aged hearts, the propensity of ventricular arrhythmogenesis upon parasympathomimetic drug application is increased. Whether this is caused by an increase in heterogeneity of iCNS structure and function remains to be elucidated.


Asunto(s)
Sistema de Conducción Cardíaco , Miocardio , Ratones , Animales , Miocardio/metabolismo , Arritmias Cardíacas/metabolismo , Atrios Cardíacos , Sistema Nervioso Parasimpático
3.
Glia ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989661

RESUMEN

Rapid nerve conduction in the peripheral nervous system (PNS) is facilitated by the multilamellar myelin sheath encasing many axons of peripheral nerves. Charcot-Marie-Tooth type 1A (CMT1A), and hereditary neuropathy with liability to pressure palsy (HNPP) are common demyelinating inherited peripheral neuropathies and are caused by mutations in the peripheral myelin protein 22 (PMP22) gene. Duplication of PMP22 leads to its overexpression and causes CMT1A, while its deletion results in PMP22 under expression and causes HNPP. Here, we investigated novel targets for modulating the protein level of PMP22 in HNPP. We found that genetic attenuation of the transcriptional coactivator Yap in Schwann cells reduces p-TAZ levels, increased TAZ activity, and increases PMP22 in peripheral nerves. Based on these findings, we ablated Yap alleles in Schwann cells of the Pmp22-haploinsufficient mouse model of HNPP and identified fewer tomacula on morphological assessment and improved nerve conduction in peripheral nerves. These findings suggest YAP modulation may be a new avenue for treatment of HNPP.

4.
Glia ; 72(9): 1572-1589, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38895764

RESUMEN

The velocity of axonal impulse propagation is facilitated by myelination and axonal diameters. Both parameters are frequently impaired in peripheral nerve disorders, but it is not known if the diameters of myelinated axons affect the liability to injury or the efficiency of functional recovery. Mice lacking the adaxonal myelin protein chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6 (CMTM6) specifically from Schwann cells (SCs) display appropriate myelination but increased diameters of peripheral axons. Here we subjected Cmtm6-cKo mice as a model of enlarged axonal diameters to a mild sciatic nerve compression injury that causes temporarily reduced axonal diameters but otherwise comparatively moderate pathology of the axon/myelin-unit. Notably, both of these pathological features were worsened in Cmtm6-cKo compared to genotype-control mice early post-injury. The increase of axonal diameters caused by CMTM6-deficiency thus does not override their injury-dependent decrease. Accordingly, we did not detect signs of improved regeneration or functional recovery after nerve compression in Cmtm6-cKo mice; depleting CMTM6 in SCs is thus not a promising strategy toward enhanced recovery after nerve injury. Conversely, the exacerbated axonal damage in Cmtm6-cKo nerves early post-injury coincided with both enhanced immune response including foamy macrophages and SCs and transiently reduced grip strength. Our observations support the concept that larger peripheral axons are particularly susceptible toward mechanical trauma.


Asunto(s)
Axones , Animales , Axones/patología , Axones/metabolismo , Axones/fisiología , Ratones , Ratones Noqueados , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Células de Schwann/metabolismo , Células de Schwann/patología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Nervio Ciático/lesiones , Nervio Ciático/patología , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología
5.
Glia ; 72(5): 885-898, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311982

RESUMEN

It is well established that axonal Neuregulin 1 type 3 (NRG1t3) regulates developmental myelin formation as well as EGR2-dependent gene activation and lipid synthesis. However, in peripheral neuropathy disease context, elevated axonal NRG1t3 improves remyelination and myelin sheath thickness without increasing Egr2 expression or activity, and without affecting the transcriptional activity of canonical myelination genes. Surprisingly, Pmp2, encoding for a myelin fatty acid binding protein, is the only gene whose expression increases in Schwann cells following overexpression of axonal NRG1t3. Here, we demonstrate PMP2 expression is directly regulated by NRG1t3 active form, following proteolytic cleavage. Then, using a transgenic mouse model overexpressing axonal NRG1t3 (NRG1t3OE) and knocked out for PMP2, we demonstrate that PMP2 is required for NRG1t3-mediated remyelination. We demonstrate that the sustained expression of Pmp2 in NRG1t3OE mice enhances the fatty acid uptake in sciatic nerve fibers and the mitochondrial ATP production in Schwann cells. In sum, our findings demonstrate that PMP2 is a direct downstream mediator of NRG1t3 and that the modulation of PMP2 downstream NRG1t3 activation has distinct effects on Schwann cell function during developmental myelination and remyelination.


Asunto(s)
Vaina de Mielina , Remielinización , Ratones , Animales , Vaina de Mielina/metabolismo , Células de Schwann/metabolismo , Axones/metabolismo , Nervio Ciático/metabolismo , Ratones Transgénicos , Adenosina Trifosfato/metabolismo
6.
Cancer Sci ; 115(3): 871-882, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38279513

RESUMEN

Malignant peripheral nerve sheath tumors (MPNSTs) are malignant tumors that are derived from Schwann cell lineage around peripheral nerves. As in many other cancer types, cancer stem cells (CSCs) have been identified in MPNSTs, and they are considered the cause of treatment resistance, recurrence, and metastasis. As an element defining the cancer stemness of MPNSTs, we previously reported a molecular mechanism by which exogenous adrenaline activates a core cancer stemness factor, YAP/TAZ, through ß2 adrenoceptor (ADRB2). In this study, we found that MPNST cells express catecholamine synthases and that these enzymes are essential for maintaining cancer stemness, such as the ability to self-renew and maintain an undifferentiated state. Through gene knockdown and inhibition of these enzymes, we confirmed that catecholamines are indeed synthesized in MPNST cells. The results confirmed that catecholamine synthase knockdown in MPNST cells reduces the activity of YAP/TAZ. These data suggest that a mechanism of YAP/TAZ activation by de novo synthesized adrenaline, as well as exogenous adrenaline, may exist in the maintenance of cancer stemness of MPNST cells. This mechanism not only helps to understand the pathology of MPNST, but could also contribute to the development of therapeutic strategies for MPNST.


Asunto(s)
Neoplasias de la Vaina del Nervio , Neurofibrosarcoma , Humanos , Neoplasias de la Vaina del Nervio/patología , Catecolaminas , Transducción de Señal , Epinefrina/uso terapéutico
7.
Cell Physiol Biochem ; 58(4): 292-310, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973197

RESUMEN

BACKGROUND/AIMS: Tactile perception relies on mechanoreceptors and nerve fibers, including c-fibers, Aß-fibers and Aδ-fibers. Schwann cells (SCs) play a crucial role in supporting nerve fibers, with non-myelinating SCs enwrapping c-fibers and myelinating SCs ensheathing Aß and Aδ fibers. Recent research has unveiled new functions for cutaneous sensory SCs, highlighting the involvement of nociceptive SCs in pain perception and Meissner corpuscle SCs in tactile sensation. Furthermore, Piezo2, previously associated with Merkel cell tactile sensitivity, has been identified in SCs. The goal of this study was to investigate the channels implicated in SC mechanosensitivity and the release process of neurotrophic factor secretion. METHODS: Immortalized IFRS1 SCs and human primary SCs generated two distinct subtypes of SCs: undifferentiated and differentiated SCs. Quantitative PCR was employed to evaluate the expression of differentiation markers and mechanosensitive channels, including TRP channels (TRPV4, TRPM7 and TRPA1) and Piezo channels (Piezo1 and Piezo2). To validate the functionality of specific mechanosensitive channels, Ca2+ imaging and electronic cell sizing experiments were conducted under hypotonic conditions, and inhibitors and siRNAs were used. Protein expression was assessed by Western blotting and immunostaining. Additionally, secretome analysis was performed to evaluate the release of neurotrophic factors in response to hypotonic stimulation, with BDNF, a representative trophic factor, quantified using ELISA. RESULTS: Induction of differentiation increased Piezo2 mRNA expression levels both in IFRS1 and in human primary SCs. Both cell types were responsive to hypotonic solutions, with differentiated SCs displaying a more pronounced response. Gd3+ and FM1-43 effectively inhibited hypotonicity-induced Ca2+ transients in differentiated SCs, implicating Piezo2 channels. Conversely, inhibitors of Piezo1 and TRPM7 (Dooku1 and NS8593, respectively) had no discernible impact. Moreover, Piezo2 in differentiated SCs appeared to participate in regulatory volume decreases (RVD) after cell swelling induced by hypotonic stimulation. A Piezo2 deficiency correlated with reduced RVD and prolonged cell swelling, leading to heightened release of the neurotrophic factor BDNF by upregulating the function of endogenously expressed Ca2+-permeable TRPV4. CONCLUSION: Our study unveils the mechanosensitivity of SCs and implicates Piezo2 channels in the release of neurotrophic factors from SCs. These results suggest that Piezo2 may contribute to RVD, thereby maintaining cellular homeostasis, and may also serve as a negative regulator of neurotrophic factor release. These findings underscore the need for further investigation into the role of Piezo2 in SC function and neurotrophic regulation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Tamaño de la Célula , Canales Iónicos , Células de Schwann , Células de Schwann/metabolismo , Células de Schwann/citología , Humanos , Canales Iónicos/metabolismo , Tamaño de la Célula/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , ARN Interferente Pequeño/metabolismo , Diferenciación Celular , Células Cultivadas , Interferencia de ARN , Calcio/metabolismo , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/genética , Mecanotransducción Celular
8.
Biochem Biophys Res Commun ; 729: 150353, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972137

RESUMEN

Research into Schwann cell (SC)-related diseases has been hampered by the difficulty of obtaining human-derived SCs, which have limited proliferative capacity. This has resulted in a delay in progress in drug discovery and cell therapy targeting SCs. To overcome these limitations, we developed a robust method for inducing the differentiation of human induced pluripotent stem cells (hiPSCs) into SCs. We established hiPSC lines and successfully generated high-purity Schwann cell precursors (SCPs) from size-controlled hiPSC aggregates by precisely timed treatment with our proprietary enzyme solution. Such SCPs were successfully expanded and further differentiated into myelin basic protein (MBP) expressing SC populations when treated with an appropriate medium containing dibutyryl-cAMP (db-cAMP). These differentiated cells secreted factors that induced neurite outgrowth in vitro. Our method allows for the efficient and stable production of SCPs and SCs from hiPSCs. This robust induction and maturation method has the potential to be a valuable tool in drug discovery and cell therapy targeting SC-related diseases.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Células de Schwann , Células de Schwann/citología , Células de Schwann/metabolismo , Humanos , Diferenciación Celular/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteína Básica de Mielina/metabolismo , Proteína Básica de Mielina/genética , Células Cultivadas , Línea Celular , Bucladesina/farmacología , Técnicas de Cultivo de Célula/métodos
9.
Biochem Biophys Res Commun ; 699: 149496, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38290175

RESUMEN

BACKGROUND: Peripheral nerve injury (PNI) presents a significant clinical challenge, leading to enduring sensory-motor impairments. While mesenchymal stem cell (MSC)-based therapy holds promise for PNI treatment, enhancing its neurotrophic effects remains crucial. Platelet-rich plasma-derived exosomes (PRP-Exo), rich in bioactive molecules for intercellular communication, offer potential for modulating cellular biological activity. METHODS: PRP-Exo was isolated, and its impact on MSC viability was evaluated. The effects of PRP-Exo-treated MSCs (MSCPExo) on Schwann cells (SCs) from injured sciatic nerves and human umbilical vein endothelial cells (HUVECs) were assessed. Furthermore, the conditioned medium from MSCPExo (MSCPExo-CM) was analyzed using a cytokine array and validated through ELISA and Western blot. RESULTS: PRP-Exo enhanced MSC viability. Coculturing MSCPExo with SCs ameliorated apoptosis and promoted SC proliferation following PNI. Similarly, MSCPExo-CM exhibited pro-proliferative, migratory, and angiogenic effects. Cytokine array analysis identified 440 proteins in the MSCPExo secretome, with 155 showing upregulation and 6 showing downregulation, many demonstrating potent pro-regenerative properties. ELISA confirmed the enrichment of several angiotrophic and neurotrophic factors. Additionally, Western blot analysis revealed the activation of the PI3K/Akt signaling pathway in MSCPExo. CONCLUSION: Preconditioning MSCs with PRP-Exo enhanced the paracrine function, particularly augmenting neurotrophic and pro-angiogenic secretions, demonstrating an improved potential for neural repair.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Plasma Rico en Plaquetas , Humanos , Exosomas/metabolismo , Células Endoteliales , Fosfatidilinositol 3-Quinasas/metabolismo , Citocinas/metabolismo , Regeneración Nerviosa
10.
Arch Biochem Biophys ; 753: 109893, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309681

RESUMEN

Adipose tissue-derived stem cells (ADSCs) are a kind of stem cells with multi-directional differentiation potential, which mainly restore tissue repair function and promote cell regeneration. It can be directionally differentiated into Schwann-like cells to promote the repair of peripheral nerve injury. Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the repair of nerve injury, but the underlying mechanism remains unclear, which seriously limits its further application.The study aimed to identify the molecular mechanism by which overexpression of glial cell line-derived neurotrophic factor (GDNF) facilitates the differentiation of ADSCs into Schwann cells, enhancing nerve regeneration after injury. In vitro, ADSCs overexpressing GDNF for 48 h exhibited changes in their morphology, with 80% of the cells having two or more prominences. Compared with that of ADSCs, GDNF-ADSCs exhibited increased expression of the Schwann cell marker S100, nerve damage repair-related factors.ADSC cells in normal culture and ADSC cells were overexpressing GDNF(GDNF-ADSCs) were analysed using TMT-Based Proteomic Analysis and revealed a significantly higher expression of MTA1 in GDNF-ADSCs than in control ADSCs. Hes1 expression was significantly higher in GDNF-ADSCs than in ADSCs and decreased by MTA1 silencing, along with a simultaneous decrease in the expression of S100 and nerve damage repair factors. These findings indicate that GDNF promotes the differentiation of ADSCs into Schwann cells and induces factors that accelerate peripheral nerve damage repair.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , Proteómica , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Regeneración Nerviosa , Tejido Adiposo , Diferenciación Celular , Células de Schwann
11.
Neurochem Res ; 49(8): 2120-2130, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38819695

RESUMEN

Spinal cord injury (SCI) is a severe neurological condition that involves a lengthy pathological process. This process leads to the upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia, which impedes repair and regeneration in the spinal cord. The role of the CSPG-specific receptor protein tyrosine phosphatase-sigma (PTP-σ) in post-SCI remains largely unexplored. Exosomes have great potential in the diagnosis, prognosis, and treatment of SCI due to their ability to easily cross the blood‒brain barrier. Schwann cell-derived exosomes (SCDEs) promote functional recovery in mice post-SCI by decreasing CSPG deposition. However, the mechanism by which SCDEs decrease CSPGs after SCI remains unknown. Herein, we observed elevated levels of PTP-σ and increased CSPG deposition during glial scar formation after SCI in vivo. After SCDEs were injected into SCI mice, CSPG deposition decreased in scar tissue at the injury site, the expression of PTP-σ increased during axonal growth around the injury site, and motor function subsequently recovered. Additionally, we demonstrated that the use of both Rho/ROCK inhibitors and SCDEs inhibited the reparative effects of SCDEs on scar tissue after SCI. In conclusion, our study revealed that treatment with SCDEs targeting the Rho/ROCK signaling pathway reduced PTP-σ activation in the CSPG post-SCI, which inhibited scar tissue formation.


Asunto(s)
Axones , Proteoglicanos Tipo Condroitín Sulfato , Exosomas , Células de Schwann , Traumatismos de la Médula Espinal , Quinasas Asociadas a rho , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Células de Schwann/metabolismo , Exosomas/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Axones/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología , Femenino , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Proteínas de Unión al GTP rho/metabolismo
12.
J Nanobiotechnology ; 22(1): 283, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789980

RESUMEN

BACKGROUND: Endothelial cell (EC)-driven intraneural revascularization (INRV) and Schwann cells-derived exosomes (SCs-Exos) both play crucial roles in peripheral nerve injury (PNI). However, the interplay between them remains unclear. We aimed to elucidate the effects and underlying mechanisms of SCs-Exos on INRV following PNI. RESULTS: We found that GW4869 inhibited INRV, as well as that normoxic SCs-Exos (N-SCs-Exos) exhibited significant pro-INRV effects in vivo and in vitro that were potentiated by hypoxic SCs-Exos (H-SCs-Exos). Upregulation of glycolysis emerged as a pivotal factor for INRV after PNI, as evidenced by the observation that 3PO administration, a glycolytic inhibitor, inhibited the INRV process in vivo and in vitro. H-SCs-Exos more significantly enhanced extracellular acidification rate/oxygen consumption rate ratio, lactate production, and glycolytic gene expression while simultaneously suppressing acetyl-CoA production and pyruvate dehydrogenase E1 subunit alpha (PDH-E1α) expression than N-SCs-Exos both in vivo and in vitro. Furthermore, we determined that H-SCs-Exos were more enriched with miR-21-5p than N-SCs-Exos. Knockdown of miR-21-5p significantly attenuated the pro-glycolysis and pro-INRV effects of H-SCs-Exos. Mechanistically, miR-21-5p orchestrated EC metabolism in favor of glycolysis by targeting von Hippel-Lindau/hypoxia-inducible factor-1α and PDH-E1α, thereby enhancing hypoxia-inducible factor-1α-mediated glycolysis and inhibiting PDH-E1α-mediated oxidative phosphorylation. CONCLUSION: This study unveiled a novel intrinsic mechanism of pro-INRV after PNI, providing a promising therapeutic target for post-injury peripheral nerve regeneration and repair.


Asunto(s)
Células Endoteliales , Exosomas , Glucólisis , Traumatismos de los Nervios Periféricos , Células de Schwann , Células de Schwann/metabolismo , Exosomas/metabolismo , Animales , Células Endoteliales/metabolismo , Ratones , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/terapia , Masculino , Ratas , MicroARNs/metabolismo , MicroARNs/genética , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Ratas Sprague-Dawley , Compuestos de Anilina , Compuestos de Bencilideno
13.
Clin Exp Pharmacol Physiol ; 51(3): e13833, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38302079

RESUMEN

Previous clinical reports have shown that capecitabine, an oral prodrug of 5-fluorouracil (5-Fu), can induce peripheral neuropathy, resulting in numbness, paresthesia and hypoesthesia. However, the mechanism through which capecitabine causes peripheral nerve injury remains unclear. Here, we demonstrate that systemic administration of capecitabine leads to myelin abnormalities in the peripheral nerves of mice, which are possibly attributed to the death of Schwann cells, the myelinating cells in the peripheral nervous system. Furthermore, our results show that 5-Fu induces significant oxidative stress in Schwann cells by inhibiting the expression of the anti-oxidative protein DJ-1, leading to a decrease in Schwann cell markers. We found that the anti-oxidant dihydromyricetin (DMY) reverses 5-Fu-induced Schwann cell death and oxidative stress and alleviates capecitabine-induced myelin abnormalities. Taken together, our data indicate that capecitabine induces peripheral myelin dysfunction by regulating DJ-1-mediated oxidative stress in Schwann cells and reveal DMY as a potential therapeutic strategy for capecitabine-induced peripheral neuropathy.


Asunto(s)
Flavonoles , Vaina de Mielina , Enfermedades del Sistema Nervioso Periférico , Ratones , Animales , Vaina de Mielina/metabolismo , Capecitabina/metabolismo , Estrés Oxidativo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Fluorouracilo/toxicidad
14.
Eur Arch Otorhinolaryngol ; 281(7): 3805-3812, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38649541

RESUMEN

PURPOSE: When operating near cranial motor nerves, transient postoperative weakness of target muscles lasting weeks to months is often observed. As nerves are typically intact at a procedure's completion, paresis is hypothesized to result from a combination of neurapraxia and axonotmesis. As both neurapraxia and axonotmesis involve Schwann cell injury and require remyelination, we developed an in vitro RSC96 Schwann cell model of injury using hydrogen peroxide (H2O2) to induce oxidative stress and investigated the efficacy of candidate therapeutic agents to promote RSC96 viability. As a first step in developing a long-term local administration strategy, the most promising of these agents was incorporated into sustained-release microparticles and investigated for bioactivity using this assay. METHODS: The concentration of H2O2 which reduced viability by 50% was determined to establish a standard for inducing oxidative stress in RSC96 cultures. Fresh cultures were then co-dosed with H2O2 and the potential therapeutics melatonin, N-acetylcysteine, resveratrol, and 4-aminopyridine. Schwann cell viability was evaluated and the most efficacious agent, N-acetylcysteine, was encapsulated into microparticles. Eluted samples of N-acetylcysteine from microparticles was evaluated for retained bioactivity. RESULTS: 100 µM N-acetylcysteine improved the viability of Schwann cells dosed with H2O2. 100 µM Microparticle-eluted N-acetylcysteine also enhanced Schwann cell viability. CONCLUSION: We developed a Schwann cell culture model of iatrogenic nerve injury and used this to identify N-acetylcysteine as an agent to promote recovery. N-acetylcysteine was packaged into microparticles and demonstrated promise as a locally administrable agent to reduce oxidative stress in Schwann cells.


Asunto(s)
Acetilcisteína , Peróxido de Hidrógeno , Estrés Oxidativo , Células de Schwann , Acetilcisteína/farmacología , Acetilcisteína/administración & dosificación , Células de Schwann/efectos de los fármacos , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Resveratrol/farmacología , Resveratrol/administración & dosificación , Enfermedades de los Nervios Craneales/etiología , Enfermedades de los Nervios Craneales/tratamiento farmacológico , Melatonina/farmacología , Supervivencia Celular/efectos de los fármacos , Complicaciones Posoperatorias/prevención & control , Antioxidantes/farmacología
15.
Pract Neurol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174303

RESUMEN

Vestibular schwannoma is a common benign tumour that may cause local complications. However, vestibular schwannoma has a known association with communicating hydrocephalus presenting with symptoms of normal pressure hydrocephalus and requiring treatment by ventricular shunting or tumour resection. We report a 79-year-old woman who presented with subacute gait apraxia, cognitive impairment and urinary incontinence. CT and MR imaging identified a 20 mm vestibular schwannoma and communicating hydrocephalus; her cerebrospinal fluid (CSF) protein was elevated. Her symptoms improved following ventriculoperitoneal shunt insertion. The mechanism by which non-obstructing vestibular schwannoma causes hydrocephalus is unclear, but hyperproteinorrachia is probably important, likely by impeding CSF resorption.

17.
Eur J Case Rep Intern Med ; 11(5): 004461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715874

RESUMEN

Schwann cells are found in the peripheral nervous system and can sometimes appear as benign hamartoma lesions in various parts of the body. Although rare in the gastrointestinal (GI) tract, they have been observed in the colon. Recently, mucosal Schwann cell hamartomas of the GI tract have been studied, and it was discovered that they had yet to be investigated up to 2009. In this context, we present the case of a 60-year-old man who was found to have lesions in the transverse colon during a routine colonoscopy. No further investigations were conducted since these lesions have not been associated with any risk of malignancy transformation and have not been linked to any inherited syndromes. LEARNING POINTS: Mucosal Schwann cell hamartomas are rare types of polyps that can be found anywhere in the gastrointestinal tract.They are benign lesions not usually associated with any inherited syndrome and they are usually found incidentally by endoscopy.These polyps are benign and might not require further follow-up once diagnosed.

18.
Cell Biosci ; 14(1): 52, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649908

RESUMEN

BACKGROUND AND AIMS: The evolution of demyelination in individual internodes remains unclear although it has been noticed the paranodal demyelination precedes internodal demyelination in neuropathies with diverse aetiologies. For therapeutic purpose, it is fundamental to know whether the demyelinating procedure in affected internodes can be interrupted. This study aimed to delineate the development of demyelination in individual internodes in avian riboflavin deficient neuropathy. METHODS: Newborn broiler meat chickens were maintained either on a routine diet containing 5.0 mg/kg riboflavin, a riboflavin deficient diet containing 1.8 mg/kg riboflavin, or initially a riboflavin deficient diet for 11 days and then routine diet plus riboflavin repletion from day 12. Evolution of demyelination in individual internodes was analyzed by teased nerve fibre studies from day 11 to 21. RESULTS: In riboflavin deficient chickens, demyelination was the predominant feature: it was mainly confined to the paranodal region at day 11; extended into internodal region, but less than half of the internodal length in most affected internodes at day 16; involved more than half or whole internode at day 21. In the internode undergoing demyelination, myelin degeneration of varying degrees was noticed in the cytoplasm of the Schwann cell wrapping the internode. Two days after riboflavin repletion, co-existence of remyelination and active demyelination within individual internodes was noticed. Remyelination together with preserved short original internodes was the characteristic feature 4 and 9 days after riboflavin repletion. CONCLUSION: Riboflavin repletion interrupts the progression from paranodal to internodal demyelination in riboflavin deficient chickens and promotes remyelination before complete internodal demyelination.

19.
Cureus ; 16(4): e57674, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38707060

RESUMEN

Mucosal Schwann cell hamartomas (MSCHs) are non-common noncancerous growths derived from Schwann cells in the peripheral nervous system, often found unexpectedly during routine colonoscopy examinations. These growths primarily occur in the colon, although they can also appear in the esophagus and are not linked to familial cancer syndromes. Diagnosis relies on specific histological characteristics and staining patterns. It is essential to distinguish MSCHs accurately since their appearance can closely resemble that of malignant tumors. Characteristically, these hamartomas test positive for S-100 protein but do not exhibit markers typical of other gastrointestinal growths, such as gastrointestinal stromal tumors (negative for KIT), leiomyomas (negative for smooth muscle actin), neurofibromas (negative for CD34), and perineuromas (negative for epithelial membrane antigen or claudin-1). This report discusses the case of a 48-year-old woman who was diagnosed with MSCH during a screening colonoscopy.

20.
Adv Sci (Weinh) ; : e2400066, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973154

RESUMEN

The mechanism and function of the expression of Schwann characteristics by nevus cells in the mature zone of the dermis are unknown. Early growth response 3 (EGR3) induces Schwann cell-like differentiation of melanoma cells by simulating the process of nevus maturation, which leads to a strong phenotypic transformation of the cells, including the formation of long protrusions and a decrease in cell motility, proliferation, and melanin production. Meanwhile, EGR3 regulates the levels of myelin protein zero (MPZ) and collagen type I alpha 1 chain (COL1A1) through SRY-box transcription factor 10 (SOX10)-dependent and independent mechanisms, by binding to non-strictly conserved motifs, respectively. Schwann cell-like differentiation demonstrates significant benefits in both in vivo and clinical studies. Finally, a CD86-P2A-EGR3 recombinant mRNA vaccine is developed which leads to tumor control through forced cell differentiation and enhanced immune infiltration. Together, these data support further development of the recombinant mRNA as a treatment for cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA