Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 461-484, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28654322

RESUMEN

Self-catalyzed DNA depurination is a sequence-specific physiological mechanism mediated by spontaneous extrusion of a stem-loop catalytic intermediate. Hydrolysis of the 5'G residue of the 5'GA/TGG loop and of the first 5'A residue of the 5'GAGA loop, together with particular first stem base pairs, specifies their hydrolysis without involving protein, cofactor, or cation. As such, this mechanism is the only known DNA catalytic activity exploited by nature. The consensus sequences for self-depurination of such G- and A-loop residues occur in all genomes examined across the phyla, averaging one site every 2,000-4,000 base pairs. Because apurinic sites are subject to error-prone repair, leading to substitution and short frameshift mutations, they are both a source of genome damage and a means for creating sequence diversity. Their marked overrepresentation in genomes, and largely unchanging density from the lowest to the highest organisms, indicate their selection over the course of evolution. The mutagenicity at such sites in many human genes is associated with loss of function of key proteins responsible for diverse diseases.


Asunto(s)
Adenina/metabolismo , Síndrome de Bloom/genética , ADN Catalítico/genética , Guanina/metabolismo , Polimorfismo Genético , Síndrome de Werner/genética , Evolución Biológica , Síndrome de Bloom/metabolismo , Síndrome de Bloom/patología , Catálisis , Reparación del ADN , ADN Catalítico/metabolismo , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Hidrólisis , Secuencias Invertidas Repetidas , Mutación , Síndrome de Werner/metabolismo , Síndrome de Werner/patología , Globinas beta/genética , Globinas beta/metabolismo
2.
J Mol Evol ; 85(3-4): 84-98, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29103173

RESUMEN

The Alu element, the most prevalent SINE (short interspersed element) in the human genome, is one of the many RNA-encoding genes that evolved from the 7SL RNA gene. During analysis of the evolution of 7SL-derived RNAs, two distinct evolutionary intermediates capable of self-catalyzed DNA depurination (SDP) were identified. These SDP sequences spontaneously create apurinic sites that can result in increased mutagenesis due to their error-prone repair. This DNA self-depurination mechanism has been shown both in vitro and in vivo to lead to substitution and short frameshift mutations at a frequency that far exceeds their occurrence due to random errors in DNA replication. In both evolutionary intermediates, the same self-depurination sequence overlaps motifs necessary for successful transcription and SRP9/14 (signal recognition particle) binding; hence, mutations in this region could disrupt RNA activity. Yet, the 7SL-derived RNAs that arose from the elements capable of SDP show significant diversity in this region, and every new sequence retains the transcription and SRP9/14-binding motifs, even as it has lost the SDP sequence. While some (but not all) of the mutagenesis can be alternatively attributed to CpG decay, the very fact that the self-depurinating sequences are selectively discarded in all cases suggests that this was evolutionarily motivated to prevent further destructive mutagenesis by the SDP mechanism.


Asunto(s)
Elementos Alu , ADN Catalítico/metabolismo , Evolución Molecular , Mutagénesis , ARN Citoplasmático Pequeño/genética , Partícula de Reconocimiento de Señal/genética , Humanos , Mutación
3.
Mutat Res ; 778: 11-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26042536

RESUMEN

The human ß-globin, δ-globin and ɛ-globin genes contain almost identical coding strand sequences centered about codon 6 having potential to form a stem-loop with a 5'GAGG loop. Provided with a sufficiently stable stem, such a structure can self-catalyze depurination of the loop 5'G residue, leading to a potential mutation hotspot. Previously, we showed that such a hotspot exists about codon 6 of ß-globin, with by far the highest incidence of mutations across the gene, including those responsible for 6 anemias (notably Sickle Cell Anemia) and ß-thalassemias. In contrast, we show here that despite identical loop sequences, there is no mutational hotspot in the δ- or ɛ1-globin potential self-depurination sites, which differ by only one or two base pairs in the stem region from that of the ß-globin gene. These differences result in either one or two additional mismatches in the potential 7-base pair-forming stem region, thereby weakening its stability, so that either DNA cruciform extrusion from the duplex is rendered ineffective or the lifetime of the stem-loop becomes too short to permit self-catalysis to occur. Having that same loop sequence, paralogs HB-γ1 and HB-γ2 totally lack stem-forming potential. Hence the absence in δ- and ɛ1-globin genes of a mutational hotspot in what must now be viewed as non-functional homologs of the self-depurination site in ß-globin. Such stem-destabilizing variants appeared early among vertebrates and remained conserved among mammals and primates. Thus, this study has revealed conserved sequence determinants of self-catalytic DNA depurination associated with variability of mutation incidence among human ß-globin paralogs.


Asunto(s)
ADN/metabolismo , Guanina/metabolismo , Mutación Puntual , Globinas beta/genética , Globinas delta/genética , gamma-Globinas/genética , Animales , Disparidad de Par Base , Secuencia de Bases , Catálisis , Codón/genética , Secuencia Conservada , ADN/química , ADN/genética , Evolución Molecular , Hemoglobinopatías/genética , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Vertebrados/genética , Globinas beta/química , Globinas delta/química , gamma-Globinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA