Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Small ; 20(23): e2308145, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38150646

RESUMEN

Carbon fiber composites have great application prospects as a potential electromagnetic (EM) wave-absorbing material, yet it remains extremely challenging to integrate multiple functions of EM wave absorption, mechanical strength, thermal insulation, and flame retardancy. Herein, a novel carbon fiber reinforced C/SiOC aerogel (CF/CS) composite is successfully prepared by sol-gel impregnation combined with an ambient drying process for the first time. The density of the obtained CF/CS composites can be controlled just by changing sol-gel impregnation cycles (original carbon fiber felt (S0), and samples with one (S1) and two (S2) impregnation cycles are 0.249, 0.324, and 0.402 g cm-3, respectively), allowing for efficient tuning of their properties. Remarkably, S2 displays excellent microwave absorption properties, with an optimal reflection loss of -65.45 dB, which is significantly improved than S0 (-10.90 dB). Simultaneously, compared with S0 (0.75 and 0.30 MPa in the x/y and z directions), the mechanical performance of S2 is dramatically improved with a maximum compressive strength of 10.37 and 4.93 MPa in the x/y and z directions, respectively. Moreover, CF/CS composites show superior thermal insulation capability than S0 and obtain good flame-retardant properties. This work provides valuable guidance and inspiration for the development of multifunctional EM wave absorbers.

2.
Molecules ; 29(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39339455

RESUMEN

Polymer-derived silicon oxycarbide (SiOC) ceramics have garnered significant attention as novel silicon-based anode materials. However, the low conductivity of SiOC ceramics is a limiting factor, reducing both their rate capability and cycling stability. Therefore, controlling the free carbon content and its degree of graphitization within SiOC is crucial for determining battery performance. In this study, we regulated the free carbon content using divinylbenzene (DVB) and controlled the graphitization of free carbon with the transition metal iron (Fe). Through a simple pyrolysis process, we synthesized SiOC ceramic materials (CF) and investigated the impact of Fe-induced changes in the carbon phase and the amorphous SiOC phase on the comprehensive electrochemical performance. The results demonstrated that increasing the DVB content in the SiOC precursor enhanced the free carbon content, while the addition of Fe promoted the graphitization of free carbon and induced the formation of carbon nanotubes (CNTs). The electrochemical performance results showed that the CF electrode material exhibited a high reversible capacity of approximately 1154.05 mAh g-1 at a low current density of 100 mA g-1 and maintained good rate capability and cycling stability after 1000 cycles at a high current density of 2000 mA g-1.

3.
Heliyon ; 10(13): e33612, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39035543

RESUMEN

Silicon oxycarbide (SiOC) exhibits good retention and a reasonable specific capacity and is an alternative to silicon used as an anode material for high-performance lithium-ion batteries. However, SiOC generally shows a low Initial Coulombic Efficiency (ICE), wasting the lithium from the cathode. This work explores different sol-gel routes to synthesize SiOC from silanes and compares their performance. We found that the crushed bulk acid-catalyzed SiOC is simple and cost-effective but with excellent performance. Adding dimethyldimethoxysilane (DMDMS) by decreasing the oxygen content further enhances the battery performance. Building upon the excellent performance of SiOC, we further embed nano-silicon into SiOC. The Si/SiOC composites achieved a significantly higher specific capacity of 2185 mAhg-1 and an impressive ICE of 77 % with acceptable battery retention.

4.
Chempluschem ; : e202400240, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949230

RESUMEN

Lithium-ion batteries (LIBs) are widely used in electric vehicles, portable electronic devices, clean energy storage, and other fields due to their long service life, high energy density, and low self-discharge rate, which also puts forward higher requirements for the performance of lithium-ion batteries. As an anode for lithium-ion batteries, SiO materials have garnered significant attention from researchers due to its high specific capacity (2400 mAh g-1), abundance of raw materials, and simple preparation. However, its large volume change (~200 %) and poor electrical conductivity hinder its large-scale commercial application. Researchers employ various methods to reduce the volume change of SiO during lithium intercalation and improve its structural stability during cycling. This work mainly reviews the chemical structure and lithium storage mechanism of SiO, as well as the latest research progress on the preparation methods of SiO/C anode materials, focusing on summarizing the following preparation strategies: chemical vapor deposition, mechanical ball milling, spray drying, and in-situ reduction/oxidation methods. The obtained SiO-based anode materials' structural characteristics and electrochemical properties are compared and summarized. Finally, this review discusses the advantages and disadvantages of the current preparation methods, the future research directions, and the development prospects of SiO-based anode materials.

5.
ACS Appl Mater Interfaces ; 16(29): 38188-38197, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38993009

RESUMEN

Silicon-based anodes have been attracting attention due to their high theoretical specific capacity, but their low initial Coulombic efficiency (ICE) seriously hinders their commercial application. Direct contact prelithiation is considered to be one of the effective means of solving this problem. By means of prelithiation, a specific solid electrolyte interphase (SEI) was constructed, which inhibited the volume expansion of the SiO/C composite anode during prelithiation and reduced the local current generated when the lithium source was in contact with the anode. On the one hand, it can reduce the side reactions derived from the decomposition of electrolytes in the prelithiation process, and on the other hand, it can slow down the prelithiation process and inhibit the volume expansion of the SiO/C composite anode in the prelithiation process. The results of XPS, TOF-SIMS, and other tests show that the use of an electrolyte whose main component is LiTFSI can construct SEI film whose main component is LiF, which to a certain extent can slow down the rate of prelithiation, reduce the local current generated when the lithium source is in contact with the negative electrode, minimize the occurrence of side reactions, and inhibit the volume expansion of the negative electrode material. The full battery assembled with NCM111 positive electrode still exhibits 83.5% capacity retention after 500 cycles at 1 C current density. These studies provide some ideas to enhance the performance of silicon-based materials.

6.
Materials (Basel) ; 16(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36836987

RESUMEN

Ni-SiOC nanocomposites maintain crystal-amorphous dual-phase nanostructures after high-temperature annealing at different temperatures (600 °C, 800 °C and 1000 °C), while the feature sizes of crystal Ni and amorphous SiOC increase with the annealing temperature. Corresponding to the dual-phase nanostructures, Ni-SiOC nanocomposites exhibit a high strength and good plastic flow stability. In this study, we conducted a He implantation in Ni-SiOC nanocomposites at 300 °C by in-situ transmission electron microscope (TEM) irradiation test. In-situ TEM irradiation revealed that both crystal Ni and amorphous SiOC maintain stability under He irradiation. The 600 °C annealed sample presents a better He irradiation resistance, as manifested by a smaller He-bubble size and lower density. Both the grain boundary and crystal-amorphous phase boundary act as a sink to absorb He and irradiation-induced defects in the Ni matrix. More importantly, amorphous SiOC ceramic is immune to He irradiation damage, contributing to the He irradiation resistance of Ni alloy.

7.
Polymers (Basel) ; 15(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37376323

RESUMEN

Porous silicon oxycarbide (SiOC) ceramics with tailorable microstructure and porosity were fabricated using phenyl-substituted cyclosiloxane (C-Ph) as a molecular-scale porogen are analyzed in this study. A gelated precursor was synthesized via the hydrosilylation of hydrogenated and vinyl-functionalized cyclosiloxanes (CSOs), followed by pyrolysis at 800-1400 °C in flowing N2 gas. Tailored morphologies, such as closed-pore and particle-packing structures, with porosities in the range 20.2-68.2% were achieved by utilizing the high boiling point of C-Ph and the molecular aggregation in the precursor gel induced by the conjugation force of phenyl. Moreover, some of the C-Ph participated in pyrolysis as a carbon source, which was confirmed by the carbon content and thermogravimetric analysis (TGA) data. This was further confirmed by the presence of graphite crystals derived from C-Ph, as determined by high-resolution transmission electron microscopy (HRTEM). In addition, the proportion of C-Ph involved in the ceramic process and its mechanism were investigated. The molecular aggregation strategy for phase separation was demonstrated to be facile and efficient, which may promote further research on porous materials. Moreover, the obtained low thermal conductivity of 27.4 mW m-1 K-1 may contribute to the development of thermal insulation materials.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122341, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36634493

RESUMEN

Vibrational spectroscopy is the most effective, efficient and informative method of structural analysis of amorphous materials with silica matrix and, therefore, an indispensable tool for examining silicon oxycarbide-based amorphous materials (SiOC). The subject of this work is a description of the modification process of SiOC glasses with phosphate ions based on the structural examination including mainly Infrared and Raman Spectroscopy. They were obtained as polymer-derived ceramics based on ladder-like silsesquioxanes synthesised via the sol-gel method. With the high phosphate's volatility, it was decided to introduce the co-doping ions to create [AlPO4] and [BPO4] stable structural units. As a result, several samples from the SiPOC, SiPAlOC and SiPBOC systems were obtained with various quantities of the modifiers. All samples underwent a detailed structural evaluation of both polymer precursors and ceramics after high-temperature treatment with Fourier-transformed infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD) and magic angle spinning nuclear magnetic resonance (MAS-NMR). Obtained results proved the efficient preparation of desired materials that exhibit structural parameters similar to the unmodified one. They were X-ray-amorphous with no phase separation and crystallisation. Spectroscopic measurements confirmed the presence of the crucial Si-C bond and how modifying ions are incorporated into the SiOC network. It was also possible to characterise the turbostratic free carbon phase. The modification was aimed to improve the bioperformance of the materials in the context of their future application as bioactive coatings on metallic implants.

9.
Materials (Basel) ; 16(6)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36984326

RESUMEN

Polymer-derived ceramics (PDCs) have many advantages in ceramic molding and ceramic properties, but because of the obvious volume shrinkage in the process of precursor transformation into ceramics, it is easy for defects to appear in the forming process of bulk PDCs. Herein, theoretical analyses and experimental studies were carried out to improve the quality of sintered samples and realize the parametric design of raw materials. Firstly, based on the HPSO/D4Vi cross-linking system, the mathematical model of the free cross-linking ratio was established, and the theoretical value was calculated. After that, the samples with different free cross-linking rates were heated at 450 °C and 650 °C for different holding times. It was found that the free cross-linking ratio (α) had a significant impact on the weight loss of the samples. When the difference of the α value was 10%, the difference of the samples' weight loss ratio could reach 30%. Finally, the morphology of sintered products with different α values was analyzed, and it was found that obvious defects will occur when the free cross-linking ratio is too high or low; when this value is 40.8%, dense and crack-free bulk ceramics can be obtained. According to analysis of the chemical reaction and cross-linking network density during sintering, the appropriate value of the free cross-linking ratio and reasonable control of the cross-linking network are beneficial for reducing the loss of the main chain element and C element, alleviating the sintering stress, and thus obtaining qualified pressureless sintered bulk ceramic samples.

10.
Materials (Basel) ; 16(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36770070

RESUMEN

The development of porous ceramic screens with high chemical stability, low density, and thermal conductivity can lead to promising screen channel liquid acquisition devices (SC-LADs) for propellant management under microgravity conditions in the future. Therefore, SiOC screens with aligned pores were fabricated via freeze-casting and applied as a SC-LAD. The pore window sizes and open porosity varied from 6 µm to 43 µm and 65% or 79%, depending on the freezing temperature or the solid loading, respectively. The pore window size distributions and bubble point tests indicate crack-free screens. On the one hand, SC-LADs with an open porosity of 79% removed gas-free liquid up to a volumetric flow rate of 4 mL s-1. On the other hand, SC-LADs with an open porosity of 65% were limited to 2 mL s-1 as the pressure drop across these screens was relatively higher. SC-LADs with the same open porosity but smaller pore window sizes showed a higher pressure drop across the screen and bubble ingestion at higher values of effective screen area when increasing the applied removal volumetric flow rate. The removed liquid from the SC-LADs was particle-free, thus representing a potential for applications in a harsh chemical environment or broad-range temperatures.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38016024

RESUMEN

High-voltage pouch cells using an LiCoO2 cathode and SiO/C anode are regarded as promising energy storage devices due to their high energy densities. However, their failure is associated with the unstable, high-impedance cathode electrolyte interphase (CEI) film on the cathode and the solid electrolyte interphase (SEI) film on the anode surface, which hinder their practical use. Here, we report a novel approach to ameliorate the above challenges through the rational construction of a stable, low-impedance cathode and anode interface film. Such films are simultaneously formed on both electrodes via the participation of the traditional salt, lithium tetrafluoroborate (LiBF4), as electrolyte additive. The application of 1.0% LiBF4 enhances the capacity retention of the cell from 26.1 to 82.2% after 150 cycles between 3.0 and 4.4 V at 1 C. Besides, the low-temperature discharge performance is also improved by LiBF4 application: the discharge capacity of the cell with LiBF4 is 794 mAh compared with 637 mAh without LiBF4 at 1 C and -20 °C. The excellent electrochemical performance of pouch cells is ascribed to the contribution of LiBF4. Especially, the low binding energy of LiBF4 with the oxygen on the LiCoO2 surface leads to the enrichment of LiBF4 that forms the protective cathode interface, which fills the blanks of previous research.

12.
Materials (Basel) ; 15(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36143708

RESUMEN

Polymer-derived ceramic (PDC) coatings of considerable thickness can offer promising protection for metallic and superalloy substrates against oxidation and corrosion, yet the preparation remains challenging. Here, a SiOC/Al2O3/YSZ coating was prepared on a nickel alloy with a spraying method using Al2O3 and yttria-stabilized zirconia (YSZ) as passive fillers. The thickness can reach up to 97 µm with the optimal mass fraction and particle sizes of the passive fillers. A small or isolated SiOC phase is formed in the coating, which can effectively alleviate the shrinkage and cracking during the pyrolysis. The SiOC/Al2O3/YSZ coating exhibits low thermal conductivity and high bonding strength with the substrate. Moreover, the coating shows good thermal shock resistance between 800 °C-room temperature cycles and oxidation resistance at 1000 °C for 36 h. This work provides an effective guide for the design of thick PDC coatings to further promote their application in the thermal protective field.

13.
Materials (Basel) ; 15(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36556670

RESUMEN

Carbon-based materials have been widely explored as electromagnetic (EM) wave absorbing materials with specific surface areas and low density. Herein, novel porous carbon/SiOC ceramic composites materials (porous C/sp-SiOC) were prepared from the binary mixture, which used the low cost pitch as carbon resource and the polysilylacetylene (PSA) as SiOC ceramic precursor. With the melt-blending-phase separation route, the PSA resin formed micro-spheres in the pitch. Then, numerous SiOC ceramic micro-spheres were generated in porous carbon matrices during the pyrolysis process. By changing the percent of SiOC, the microstructure and wave absorption of porous C/sp-SiOC composites could be adjusted. The synergistic effect of the unique structure, the strong interfacial polarization, and the optimized impedance matching properties contributed to the excellent absorption performance of porous C/sp-SiOC composites. The minimum reflection loss for porous C/sp-SiOC absorber reached -56.85 dB, and the widest effective bandwidth was more than 4 GHz with a thickness of only 1.39 mm. This presented research provides an innovative and practical approach to developing high-performance porous carbon-based microwave absorption materials from green chemistry.

14.
Adv Sci (Weinh) ; 9(20): e2104531, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35524637

RESUMEN

The silicon oxide/graphite (SiO/C) composite anode represents one of the promising candidates for next generation Li-ion batteries over 400 Wh kg-1 . However, the rapid capacity decay and potential safety risks at low temperature restrict their widely practical applications. Herein, the fabrication of sulfide-rich solid electrolyte interface (SEI) layer on surface of SiO/C anode to boost the reversible Li-storage performance at low temperature is reported. Different from the traditional SEI layer, the present modification layer is composed of inorganic-organic hybrid components with three continuous layers as disclosed by time-of-flight secondary ion mass spectrometry (TOF-SIMS). The result shows that ROSO2 Li, ROCO2 Li, and LiF uniformly distribute over different layers. When coupled with LiNi0.8 Co0.1 Mn0.1 O2 cathode, the capacity retention achieves 73% at -20 °C. The first principle calculations demonstrate that the gradient adsorption of sulfide-rich surface layer and traditional intermediate layer can promote the desolvation of Li+ at low temperature. Meanwhile, the inner LiF-rich layer with rapid ionic diffusion capability can inhibit dendrite growth. These results offer new perspective of developing advanced SiO/C anode and low-temperature Li-ion batteries.

15.
Small Methods ; 6(12): e2201299, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36333213

RESUMEN

Poor intrinsic conductivity and the presence of irreversible lithiation phase affect the electrochemical performance of silicon oxycarbide anode materials. Even though it can be improved by increasing free carbon content or composition, scarification of reversible capacity and initial Coulombic efficiency (ICE) remain as challenge. Here, polycarbosilane (PCS) with alternating distribution of silicon and carbon atoms is employed as precursor of SiOC ceramics. Air oxidation cross-linking is used to regulate the content of oxygen and carbon elements in PCS at atom level, so as to explore a solution to improve the intrinsic conductivity and reversible lithium phase content of SiOC ceramics. This strategy provides extremely excellent rate capability, areal/volumetric capacity, and ICE. This is also the first concept for feasible precursor structure design to control the SiOC glass phase and regulate the growth of C nanoribbon that can improve the intrinsic conductivity and reversible capacity of SiOC ceramic anode materials.

16.
Materials (Basel) ; 15(4)2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35207820

RESUMEN

In this article, highly porous and transparent silicon oxycarbide (SiOC) gels are synthesized from Bis(Triethoxysilyl) methane (BTEM). The gels are synthesized by the sol-gel technique followed by both ambient pressure and supercritical drying. Then, the portion of wet gels have been pyrolyzed in a hydrogen atmosphere at 800 and 1100 °C. The FT-IR spectroscopy analysis and nitrogen sorption results indicate the successful synthesis of Si-O-Si bonds and the formation of mesopores. From a hysteresis loop, the SiOC ceramics showed the H1 type characteristic with well-defined cylindrical pore channels for the aerogel and the H2 type for the ambigel samples, indicating that the pores are distorted due to the capillary stress. The produced gels are mesoporous materials having high surface areas with a maximum of 1140 m2/g and pore volume of 2.522 cm3/g obtained from BTEM aerogels. The pyrolysis of BTEM aerogels at 800 °C results in the production of a bulk and transparent sample with a slightly pale white color, while BTEM xerogels are totally transparent and colorless at the same temperature. At 1100 °C, all the aerogels become opaque brown, confirming the formation of free carbon and crystalline silicon.

17.
Nanomaterials (Basel) ; 12(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36500808

RESUMEN

Transition metal dichalcogenides (TMDs) such as the WS2 have been widely studied as potential electrode materials for lithium-ion batteries (LIB) owing to TMDs' layered morphology and reversible conversion reaction with the alkali metals between 0 to 2 V (v/s Li/Li+) potentials. However, works involving TMD materials as electrodes for sodium- (NIBs) and potassium-ion batteries (KIBs) are relatively few, mainly due to poor electrode performance arising from significant volume changes and pulverization by the larger size alkali-metal ions. Here, we show that Na+ and K+ cyclability in WS2 TMD is improved by introducing WS2 nanosheets in a chemically and mechanically robust matrix comprising precursor-derived ceramic (PDC) silicon oxycarbide (SiOC) material. The WS2/SiOC composite in fibermat morphology was achieved via electrospinning followed by thermolysis of a polymer solution consisting of a polysiloxane (precursor to SiOC) dispersed with exfoliated WS2 nanosheets. The composite electrode was successfully tested in Na-ion and K-ion half-cells as a working electrode, which rendered the first cycle charge capacity of 474.88 mAh g-1 and 218.91 mAh g-1, respectively. The synergistic effect of the composite electrode leads to higher capacity and improved coulombic efficiency compared to the neat WS2 and neat SiOC materials in these cells.

18.
Nanomaterials (Basel) ; 11(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34947616

RESUMEN

Luminescent carbon nanoparticles are a relatively new class of luminescent materials that have attracted the increasing interest of chemists, physicists, biologists and engineers. The present review has a particular focus on the synthesis and luminescent properties of carbon nanoparticles dispersed inside nanostructured silica of different natures: oxidized porous silicon, amorphous thin films, nanopowders, and nanoporous sol-gel-derived ceramics. The correlations of processing conditions with emission/excitation spectral properties, relaxation kinetics, and photoluminescence photodegradation behaviors are analyzed. Following the evolution of the photoluminescence (PL) through the "from-bottom-to-up" synthesis procedure, the transformation of molecular-like ultraviolet emission of organic precursor into visible emission of carbon nanoparticles is demonstrated. At the end of the review, a novel method for the synthesis of luminescent and transparent composites, in form of nanoporous silica filled with luminescent carbon nanodots, is presented. A prototype of white light emitting devices, constructed on the basis of such luminophores and violet light emitting diodes, is demonstrated.

19.
ACS Appl Mater Interfaces ; 13(33): 40106-40117, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34383473

RESUMEN

Radiation-tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Nanostructuring is a key strategy to improve the radiation tolerance of materials. SiOC polymer-derived ceramics (PDCs) are unique synthetic nanocomposites consisting of ß-SiC nanocrystals and turbostratic graphite distributed in amorphous SiOC matrix, which are "all-rounder" materials for many advanced structural and functional applications. Radiation effects in the crystalline-amorphous system have been investigated in detail by experiments and molecular dynamics (MD) simulations. The results indicate that the amorphous SiOC structure retains amorphous accompanied by redistribution of the Si-containing tetrahedra. The graphite is shown to amorphize more easily than ß-SiC nanocrystals under the same irradiation condition. The sample richer in oxygen, namely, containing more amorphous SiOC, shows less disordering of graphite, resulting from greater mitigation of radiation damage by the amorphous phase as efficient sinks. This study provides details of the microstructure evolution of SiOC PDCs under ion irradiation, as well as insights for the design and development of advanced ion damage-resistant materials.

20.
Materials (Basel) ; 14(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34576394

RESUMEN

Silicone resins, filled with phosphates and other oxide fillers, yield upon firing in air at 1100 °C, a product resembling Biosilicate® glass-ceramics, one of the most promising systems for tissue engineering applications. The process requires no preliminary synthesis of parent glass, and the polymer route enables the application of direct ink writing (DIW) of silicone-based mixtures, for the manufacturing of reticulated scaffolds at room temperature. The thermal treatment is later applied for the conversion into ceramic scaffolds. The present paper further elucidates the flexibility of the approach. Changes in the reference silicone and firing atmosphere (from air to nitrogen) were studied to obtain functional composite biomaterials featuring a carbon phase embedded in a Biosilicate®-like matrix. The microstructure was further modified either through a controlled gas release at a low temperature, or by the revision of the adopted additive manufacturing technology (from DIW to digital light processing).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA