RESUMEN
Many indicators have been developed to assess the state of benthic communities and identify seabed habitats most at risk from bottom trawling disturbance. However, the large variety of indicators and their development and application under specific geographic areas and management contexts has made it difficult to evaluate their wider utility. We compared the complementarity/uniqueness, sensitivity, and selectivity of 18 benthic indicators to pressure of bottom trawling. Seventeen common datasets with broad regional representation covering a range of pressure gradients from bottom trawling disturbance (n = 14), eutrophication (n = 1), marine pollution (n = 1), and oxygen depletion (n = 1) were used for the comparison. The outcomes of most indicators were correlated to a certain extent with response to bottom trawling disturbance, and two complementary groups of indicators were identified: diversity-based and biological trait-based indicators. Trait-based indicators that quantify the changes in relative abundance of sensitive taxa were most effective in identifying benthic community change in response to bottom trawling disturbance. None of the indicators responded to the trawling pressure gradient in all datasets, and some showed a response that were opposed to the theoretical expectation for some gradients. Indicators that showed clear responses to bottom trawling disturbance also showed clear responses in at least one other pressure gradient, suggesting those indicators are not pressure specific. These results emphasize the importance of selecting several indicators, at least one from each group (diversity and trait-based), to capture the broader signals of change in benthic communities due to bottom trawling activities. Our systematic approach offers the basis from which scientific advisors and/or managers can select suitable combinations of indicators to arrive at a sensitive and comprehensive benthic status assessment.
RESUMEN
Increasing responsiveness to anthropogenic climate change and the loss of global shellfish ecosystems has heightened interest in the carbon storage and sequestration potential of bivalve-dominated systems. While coastal ecosystems are dynamic zones of carbon transformation and change, current uncertainties and notable heterogeneity in the benthic environment make it difficult to ascertain the climate change mitigation capacity of ongoing coastal restoration projects aimed at revitalizing benthic bivalve populations. In this study we sought to distinguish between direct and indirect effects of subtidal green-lipped mussels (Perna canaliculus) on carbon cycling, and combined published literature with in-situ experiments from restored beds to create a carbon budget for New Zealand's shellfish restoration efforts. A direct summation of biogenic calcification, community respiration, and sediment processes suggests a moderate carbon efflux (+100.1 to 179.6 g C m-2 year-1 ) occurs as a result of recent restoration efforts, largely reflective of the heterotrophic nature of bivalves. However, an examination of indirect effects of restoration on benthic community metabolism and sediment dynamics suggests that beds achieve greater carbon fixation rates and support enhanced carbon burial compared to nearby sediments devoid of mussels. We discuss limitations to our first-order approximation and postulate how the significance of mussel restoration to carbon-related outcomes likely increases over longer timescales. Coastal restoration is often conducted to support the provisioning of many ecosystem services, and we propose here that shellfish restoration not be used as a single measure to offset carbon dioxide emissions, but rather used in tandem with other initiatives to recover a bundle of valued ecosystem services.
Asunto(s)
Bivalvos , Ecosistema , Animales , Ciclo del Carbono , Secuestro de Carbono , Cambio ClimáticoRESUMEN
Petroleum can pollute pristine shorelines as a consequence of accidental spills or chronic leaks. In this study, the fate of petroleum hydrocarbons in soft pristine sediment of Caleta Valdés (Argentina) subject to ex situ simulated oil pollution was assessed. Sedimentary columns were exposed to medium and high concentrations of Escalante Crude Oil (ECO) and incubated in the laboratory during 30 days. Levels of aliphatic hydrocarbons at different depths of the sedimentary column were determined by gas chromatography. Oil penetration was limited to the first three centimetres in both treatments, and under this depth, hydrocarbons were clearly biogenic (terrestrial plants) as in the whole sedimentary column of the control assay. Bioturbation by macrobenthic infauna was strongly impacted by oil pollution which resulted in reduced sediment oxygenation and low burial of petroleum hydrocarbons. This may partly explain the limited hydrocarbon biodegradation observed, as indicated by the relatively high values of the ratios nC17/pristane, nC18/phytane, and total resolved aliphatic hydrocarbons/unresolved complex mixture. Correspondingly, at the end of the experiment the most probable number of hydrocarbon-degrading bacteria reached ~ 103 MPNâ¯g-1 dry weight. These values were lower than those found in chronically polluted coastal sediments, reflecting a low activity level of the oil-degrading community. The results highlight the low attenuation capacities of Caleta Valdés pristine sediments to recover its original characteristics in a short time period if an oil spill occurs. In this work, we present a novel and integrative tool to evaluate the fate of petroleum hydrocarbons and their potential damage on pristine sediments.
Asunto(s)
Bioensayo , Sedimentos Geológicos/química , Hidrocarburos/química , Petróleo/análisis , Terpenos/química , Argentina , Bacterias/metabolismo , Biodegradación Ambiental , Cromatografía de Gases , Contaminación por Petróleo , Microbiología del Suelo , Contaminantes del Suelo/análisisRESUMEN
A traditional taxonomic approach coupled to a biological traits analysis was conducted in order to provide a new insight into macrobenthic communities associated with subtidal sandy environments. Results suggest that the macro-scale distribution of benthic communities is mainly driven by the migration rate of bedforms (sandbank, barchan dune and transversal dune) which changes the sediment grain size and reduces macrobenthic diversity. A classic scheme of species/traits succession was also observed from less to more physically disturbed areas. Finally, the high frequency of migration events homogenized macrobenthic communities between the troughs to the crest of bedforms. As bedforms areas are targeted for the commissioning of offshore windfarms the information provided by the present paper will be particularly useful to implement the environmental impact assessment required for such activities at sea.
Asunto(s)
Ecosistema , Arena , Biodiversidad , Ambiente , Sedimentos GeológicosRESUMEN
Functional trait approaches advance the understanding of biodiversity-ecosystem function (BDEF) relationships and its control by the environmental context. Application of these insights into management remains constrained due to lack of evidence from real-world ecosystems that capture the natural spatial and temporal gradients at which biodiversity and environmental conditions operate. In this study we measured macrofauna community traits, ecosystem processes and abiotic properties at 9 locations during 4 months, spanning a wide gradient in sedimentary habitats and salinity in the Scheldt estuary, and quantified the (a)biotic contribution to sediment community oxygen consumption, as a measure of ecosystem function. We found that functional attributes of the macrofauna community and its effect on bio-irrigation can predict ecosystem function, but especially during the colder period of the year. This result highlights that generalizations about BDEF relationships, and biodiversity loss on ecosystem functions, are limited whenever this temporal component is not acknowledged.
Asunto(s)
Ecosistema , Estuarios , Biodiversidad , Salinidad , Estaciones del AñoRESUMEN
Community ecology has traditionally assumed that the distribution of species is mainly influenced by environmental processes. There is, however, growing evidence that environmental (habitat characteristics and biotic interactions) and spatial processes (factors that affect a local assemblage regardless of environmental conditions - typically related to dispersal and movement of species) interactively shape biological assemblages. A metacommunity, which is a set of local assemblages connected by dispersal of individuals, is spatial in nature and can be used as a straightforward approach for investigating the interactive and independent effects of both environmental and spatial processes. Here, we examined (i) how environmental and spatial processes affect the metacommunity organization of marine macroinvertebrates inhabiting the intertidal sediments of a biodiverse coastal ecosystem; (ii) whether the influence of these processes is constant through time or is affected by extreme weather events (storms); and (iii) whether the relative importance of these processes depends on the dispersal abilities of organisms. We found that macrobenthic assemblages are influenced by each of environmental and spatial variables; however, spatial processes exerted a stronger role. We also found that this influence changes through time and is modified by storms. Moreover, we observed that the influence of environmental and spatial processes varies according to the dispersal capabilities of organisms. More effective dispersers (i.e., species with planktonic larvae) are more affected by spatial processes whereas environmental variables had a stronger effect on weaker dispersers (i.e. species with low motility in larval and adult stages). These findings highlight that accounting for spatial processes and differences in species life histories is essential to improve our understanding of species distribution and coexistence patterns in intertidal soft-sediments. Furthermore, it shows that storms modify the structure of coastal assemblages. Given that the influence of spatial and environmental processes is not consistent through time, it is of utmost importance that future studies replicate sampling over different periods so the influence of temporal and stochastic factors on macrobenthic metacommunities can be better understood.
Asunto(s)
Organismos Acuáticos/química , Biodiversidad , Ecosistema , Sedimentos Geológicos/química , Tiempo (Meteorología)RESUMEN
Biological Traits Analysis (BTA) was used to identify functional features of infaunal polychaete assemblages associated with contamination in two Italian coastal areas: the harbour of Trieste (Adriatic Sea) and the Mar Piccolo of Taranto (Ionian Sea). The analysis was performed on 103 taxa, collected at four stations in each area. The two areas differed in species composition. The low diversity and the presence of stress-tolerant species in more polluted sites were not reflected in functional diversity, due to species contributing little to community functions or being functionally redundant. Sand and clay fractions were significant drivers of trait category expressions, however other environmental parameters (depth, total organic carbon and nitrogen, and Hg in sediments) influenced traits composition. Motile was the prevalent trait in environments with coarse sediments, and tube-builder were related to fine-grained ones. Motile, endobenthic and burrower were essential traits for living in contaminated sediments. Epibenthic and sessile polychaetes dominated at stations subjected to high organic loads. BTA offers an integrative approach to detect functional adaptations to contaminated sediments and multiple anthropogenic stressors.
Asunto(s)
Biodiversidad , Monitoreo del Ambiente , Poliquetos/clasificación , Estrés Fisiológico/fisiología , Contaminación del Agua , Animales , Sedimentos Geológicos , Italia , Mercurio , Poliquetos/fisiologíaRESUMEN
Human activities at sea are still increasing. As biodiversity is a central topic in the management of our seas, it is important to understand how diversity responds to different disturbances related with physical impacts. We investigated the effects of three impacts, i.e. sand extraction, dredge disposal and offshore wind energy exploitation, on the soft-bottom macrobenthic assemblages in the Belgian part of the North Sea. We found similar diversity-disturbance responses, mainly related to the fact that different impacts caused similar environmental changes. We observed a sediment refinement which triggered a shift towards a heterogenic, dynamic (transitional) soft-bottom macrobenthic assemblage, with several species typically associated with muddy sands. This led to a local unexpected biodiversity increase in the impacted area. On a wider regional scale, the ever increasing human impacts might lead to a homogenization of the sediment, resulting in a more uniform, yet less diverse benthic ecosystem.