Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(26): e2309087, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221690

RESUMEN

The severe deterioration of the marine ecosystem significantly negatively impacts the performance of solar-driven steam generation (SSG) and the quality of the obtained freshwater. Herein, a bifunctional Ag/MgFe2O4@SCW reactor with a sandwich structure is designed for efficient SSG and Cr(VI) reduction, which is constructed via in situ deposit Ag nanoparticles (NPs) and MgFe2O4 onto surface carbonized wood (SCW). Owing to the advanced sandwich structure and strong interfacial interactions between each component, an ultra-high evaporation rate of 1.55 kg m-2 h-1 and the efficiency of 88.6% are achieved using Ag/MgFe2O4@SCW under 1 sun. The system exhibits the long-term evaporation performance in the simulated sewage and strong acid/base solutions along with water-harvesting capacity in outdoor solar desalination. The quality of distilled water after desalination of actual seawater and NaCl solutions with different concentrations meets the WHO-recommended drinkable water standards. Furthermore, Ag/MgFe2O4@SCW shows outstanding antibacterial property, self-desalting capacity, as well as reusability and structure stability. Most importantly, the fast carrier separation endows Ag/MgFe2O4@SCW with superior photocatalytic activity and Cr(VI) photoreduction of up to 96.1% after 180 min of illumination. The bifunctional Ag/MgFe2O4@SCW reactor provides an advanced synergistic mechanism for improving SSG and photocatalytic performance, while being promising for solar-powered production of clean water.

2.
J Colloid Interface Sci ; 634: 543-552, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549203

RESUMEN

Solar-driven steam generation is a promising, renewable, effective, and environment-friendly technology for desalination and water purification. However, steam generation from seawater causes severe salt formation on the photothermal material, which hinders long-term and large-scale practical applications. In this study, we develop salt-rejecting plasmonic cellulose-based membranes (CMNF-NP) composed of an optimized ratio of Au/Ag nanoparticles, cellulose micro/nanofibers, and polyethyleneimine for efficient solar-driven desalination. The CMNF-NP exhibits a water evaporation rate of 1.31 kg m-2h-1 (82.1% of solar-to-vapor conversion efficiency) for distilled water under 1-sun. The CMNF-NP shows a comparable evaporation rate for 3.5 wt% brine, which has been maintained for 10 h; the evaporation rate of the filter paper-based counterpart severely decreases because of salt-scaling. The efficient salt-rejecting capability of the CMNF-NP membrane is attributed to the compact structure and electrostatic repulsion of cationic ions of salt that originate from cellulose nanofibers and the amine-functionalized polymer, polyethyleneimine, as a structural binder. This simple fabrication method of casting the CMNF-NP solution on the substrate followed by drying allows a facile coating of a highly efficient and salt-rejecting photothermal membrane on various practical substrates.


Asunto(s)
Nanopartículas del Metal , Nanofibras , Celulosa , Polietileneimina , Vapor , Plata , Cloruro de Sodio
3.
J Colloid Interface Sci ; 643: 247-255, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37060700

RESUMEN

Solar-driven steam generation (SSG) is regarded as a feasible solution to the problem of fresh water scarcity. Although several attempts have been devoted to increase the efficiency of solar-to-steam conversion, it remains difficult to fabricate cost-effective, steady, and multi-angle sunlight-absorbing evaporators from readily available biomass materials. Herein, a novel hierarchical structured SSG evaporator (PDA@Shell-NaClO) is developed through a simple, low-cost, and scalable etching treatment on discarded sea urchin (SU) shells. Attributing to the dedicatedly designed microneedles array structure and porous skeleton structure of the SU shell, this PDA@Shell-NaClO evaporator shows an outstanding average light absorption performance (>90%) in a broad range of angles from 0° to 60° and exceedingly high evaporation rate of 2.81 kg m-2 h-1 under one sun condition. Furthermore, the prepared evaporator also maintains an overall stable evaporation performance and exhibits an excellent durability for a long time of up to two weeks in actual seawater. This full-ocean biomass-based SSG evaporator with plentiful raw material availability offers innovative opportunities for large-scale fresh water production.

4.
ACS Appl Mater Interfaces ; 13(31): 37724-37733, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34338498

RESUMEN

Solar-driven steam generation has been recognized as a sustainable and low-cost solution to freshwater scarcity using abundant solar energy. To harvest freshwater, various interfacial evaporators with rational designs of photothermal materials and structures have been developed concentrating on increasing the evaporation rate in the past few years. However, pathogenic microorganism accumulation on the evaporators by long-duration contact with natural water resources may lead to the deterioration of water transportation and the reduction of the evaporation rate. Here, we develop cationic photothermal hydrogels (CPHs) based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC) and photothermal polypyrrole (PPy) with bacteria-inhibiting capability for freshwater production via solar-driven steam generation. A rapid water evaporation rate of 1.592 kg m-2 h-1 under simulated solar irradiation is achieved with CPHs floating on the water surface. Furthermore, we find that CPHs possess nearly 100% antibacterial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The significant bacteria-inhibiting capability is mainly attributed to the large number of ammonium groups on the CPH network. Moreover, we show that CPHs exhibit good applicability with stable evaporation in natural lake water over 2 weeks, and the number of bacteria in purified lake water is significantly reduced. The device based on CPHs can achieve ∼0.49 kg m-2 h-1 freshwater production from lake water under natural sunlight. This study provides an attractive strategy for the evaporator to inhibit biological contamination and a potential way for long-term stable freshwater production from natural water resources in practical application.


Asunto(s)
Antibacterianos/farmacología , Agua Dulce/química , Hidrogeles/farmacología , Vapor , Antibacterianos/química , Antibacterianos/efectos de la radiación , Escherichia coli/química , Hidrogeles/química , Hidrogeles/efectos de la radiación , Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Metacrilatos/farmacología , Polímeros/química , Polímeros/farmacología , Polímeros/efectos de la radiación , Pirroles/química , Pirroles/farmacología , Pirroles/efectos de la radiación , Energía Solar , Staphylococcus aureus/efectos de los fármacos , Luz Solar , Purificación del Agua/métodos
5.
Glob Chall ; 5(1): 2000085, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437528

RESUMEN

Water scarcity is one of the greatest global challenges at this time. Significant efforts have been made to harvest water from the air, due to widely available water sources present in the atmosphere. Particularly, solar-driven hygroscopic water harvesting based on the adsorption-desorption process has gained tremendous attention because of the abundance of solar energy in combination with substantial improvements in conversion efficiency enabled by advanced sorbents, improved photothermal materials, interfacial heating system designs, and thermal management in recent years. Here, recent developments in atmospheric water harvesting are discussed, with a focus on solar-driven hygroscopic water harvesting. The diverse structural designs and engineering strategies that are being used to improve the rate of the water production, including the design principles for sorbents with high adsorption capacity, high-efficiency light-to-heat conversion, optimization of thermal management, vapor condensation, and water collection, are also explored. The current challenges and future research opportunities are also discussed, providing a roadmap for the future development of solar-driven hygroscopic water harvesting technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA