RESUMEN
Sphingomyelin (SM) and its metabolites are crucial regulators of tumor cell growth, differentiation, senescence, and programmed cell death. With the rise in lipid-based nanomaterials, engineered lipidic nanomaterials inspired by SM metabolism, corresponding lipid targeting, and signaling activation have made fascinating advances in cancer therapeutic processes. In this review, we first described the specific pathways of SM metabolism and the roles of their associated bioactive molecules in mediating cell survival or death. We next summarized the advantages and specific applications of SM metabolism-based lipidic nanomaterials in specific cancer therapies. Finally, we discussed the challenges and perspectives of this emerging and promising SM metabolism-based nanomaterials research area.
Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Esfingomielinas , Nanoestructuras/uso terapéutico , Neoplasias/tratamiento farmacológico , Apoptosis , Supervivencia CelularRESUMEN
The renal collecting ducts (CD) are formed by a fully differentiated epithelium, and their tissue organization and function require the presence of mature cell adhesion structures. In certain circumstances, the cells can undergo de-differentiation by a process called epithelial-mesenchymal transition (EMT), in which the cells lose their epithelial phenotype and acquire the characteristics of the mesenchymal cells, which includes loss of cell-cell adhesion. We have previously shown that in renal papillary CD cells, cell adhesion structures are located in sphingomyelin (SM)-enriched plasma membrane microdomains and the inhibition of SM synthase 1 activity induced CD cells to undergo an EMT process. In the present study, we evaluated the influence of SM metabolism during the EMT of the cells that form the CD of the renal papilla during aging. To this end, primary cultures of renal papillary CD cells from young, middle-, and aged-rats were performed. By combining biochemical and immunofluorescence studies, we found experimental evidence that CD cells undergo an increase in spontaneous and reversible EMT during aging and that at least one of the reasons for this phenomenon is the decrease in SM content due to the combination of decreased SM synthase activity and an increase in SM degradation mediated by neutral sphingomyelinase. Age is a risk factor for many diseases, among which renal fibrosis is included. Our findings highlight the importance of sphingolipids and particularly SM as a modulator of the fate of CD cells and probably contribute to the development of treatments to avoid or reverse renal fibrosis during aging.
Asunto(s)
Transición Epitelial-Mesenquimal , Enfermedades Renales , Animales , Células Epiteliales/metabolismo , Fibrosis , Médula Renal/metabolismo , Ratas , Esfingomielina Fosfodiesterasa/genética , Esfingomielinas/metabolismoRESUMEN
BACKGROUND: Sphingomyelin, composed of ceramide (CER), sphingosine (Sph), and sphingosine-1-phosphate (S1P), is an essential structural component of cellular membranes and plays an important role in the signal transduction regulating cell proliferation, differentiation, and apoptosis. CER is mainly metabolized to Sph, and under the action of sphingosine kinases (SphKs), Sph produces S1P, which can be converted back to Sph by S1P phosphatase. It is suggested that the fate of cells is controlled partly by the interconversion of CER and intracellular S1P. SphK2 is considered the main kinase of S1P synthesis in the central nervous system. The objective of this study was to explore the hypothesis that SphK2 and sphingomyelin metabolism participated in the process of cell apoptosis and the protection of mild hypothermia. METHODS: Rat brain microvascular endothelial cells were divided into groups for intervention of SphK2 inhibitor, SphK2 small interfering RNA (SiRNA) transfection, ischemia-reperfusion, and mild hypothermia. After interventions, cell apoptosis was detected by 4,6-diamino-2-phenyl indole (DAPI) and flow cytometry, the expression of apoptosis-related protein was detected by Western Blot, and SphK2 enzyme activity and the content of sphingomyelin were determined. RESULTS: ABC294640 and transfection of SphK2 SiRNA could increase apoptosis, accompanied by the increase of the expression of proapoptotic genes Caspase3 and Bax and the decrease of the expression of BCL-2. This effect could be partially reversed with mild hypothermia. Ischemia-reperfusion injury, transfection of SphK2 SiRNA, and the addition of ABC294640 could significantly inhibit the activity of SphK2, accompanied by the increase of CERs and the decrease of S1P. Mild hypothermia could reverse the changes of sphingolipids but have no significant effect on the activity of sphk2. CONCLUSIONS: Mild hypothermia can inhibit the occurrence of apoptosis and reverse the changes of apoptosis-related genes and sphingomyelin content induced by ischemia-reperfusion injury, but the effect on sphk2 enzyme activity was not significant.
Asunto(s)
Hipotermia , Daño por Reperfusión , Animales , Encéfalo/metabolismo , Células Endoteliales , Humanos , ARN Interferente Pequeño/farmacología , Ratas , Esfingomielinas , Esfingosina/metabolismo , Esfingosina/farmacologíaRESUMEN
The primary site for KRAS signaling is the inner leaflet of the plasma membrane (PM). We previously reported that oxanthroquinone G01 (G01) inhibited KRAS PM localization and blocked KRAS signaling. In this study, we identified acylpeptide hydrolase (APEH) as a molecular target of G01. APEH formed a stable complex with biotinylated G01, and the enzymatic activity of APEH was inhibited by G01. APEH knockdown caused profound mislocalization of KRAS and reduced clustering of KRAS that remained PM localized. APEH knockdown also disrupted the PM localization of phosphatidylserine (PtdSer), a lipid critical for KRAS PM binding and clustering. The mislocalization of KRAS was fully rescued by ectopic expression of APEH in knockdown cells. APEH knockdown disrupted the endocytic recycling of epidermal growth factor receptor and transferrin receptor, suggesting that abrogation of recycling endosome function was mechanistically linked to the loss of KRAS and PtdSer from the PM. APEH knockdown abrogated RAS-RAF-MAPK signaling in cells expressing the constitutively active (oncogenic) mutant of KRAS (KRASG12V), and selectively inhibited the proliferation of KRAS-transformed pancreatic cancer cells. Taken together, these results identify APEH as a novel drug target for a potential anti-KRAS therapeutic.
Asunto(s)
Membrana Celular/enzimología , Sistema de Señalización de MAP Quinasas , Mutación Missense , Péptido Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sustitución de Aminoácidos , Línea Celular , Membrana Celular/genética , Endosomas/enzimología , Endosomas/genética , Humanos , Péptido Hidrolasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genéticaRESUMEN
Studies on the relationship between reactive oxygen species (ROS)/manganese superoxide dismutase (MnSOD) and sphingomyelinase (SMase) are controversial. It has been demonstrated that SMase increases the intracellular ROS level and induces gene expression for MnSOD protein. On the other hand, some authors showed that ROS modulate the activation of SMase. The human recombinant manganese superoxide dismutase (rMnSOD) exerting a radioprotective effect on normal cells, qualifies as a possible pharmaceutical tool to prevent and/or cure damages derived from accidental exposure to ionizing radiation. This study aimed to identify neutral SMase (nSMase) as novel molecule connecting rMnSOD to its radiation protective effects. We used a new, and to this date, unique, experimental model to assess the effect of both radiation and rMnSOD in the brain of mice, within a collaborative project among Italian research groups and the Joint Institute for Nuclear Research, Dubna (Russia). Mice were exposed to a set of minor γ radiation and neutrons and a spectrum of neutrons, simulating the radiation levels to which cosmonauts will be exposed during deep-space, long-term missions. Groups of mice were treated or not-treated (controls) with daily subcutaneous injections of rMnSOD during a period of 10 days. An additional group of mice was also pretreated with rMnSOD for three days before irradiation, as a model for preventive measures. We demonstrate that rMnSOD significantly protects the midbrain cells from radiation-induced damage, inducing a strong upregulation of nSMase gene and protein expression. Pretreatment with rMnSOD before irradiation protects the brain with a value of very high nSMase activity, indicating that high levels of activity might be sufficient to exert the rMnSOD preventive role. In conclusion, the protective effect of rMnSOD from radiation-induced brain damage may require nSMase enzyme.
Asunto(s)
Encéfalo/efectos de los fármacos , Proteínas Recombinantes/farmacología , Esfingomielina Fosfodiesterasa/metabolismo , Superóxido Dismutasa/farmacología , Animales , Encéfalo/patología , Encéfalo/efectos de la radiación , Femenino , Expresión Génica/efectos de los fármacos , Ratones Endogámicos ICR , Radiación Ionizante , Protectores contra Radiación/administración & dosificación , Protectores contra Radiación/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/administración & dosificación , Esfingomielina Fosfodiesterasa/genética , Superóxido Dismutasa/administración & dosificación , Superóxido Dismutasa/genéticaRESUMEN
BACKGROUND: The treatment of gastric cancer (GC) has caused an enormous social burden worldwide. Accumulating studies have reported that N6-methyladenosine (m6A) is closely related to tumor progression. METTL5 is a m6A methyltransferase that plays a pivotal role in maintaining the metabolic stability of cells. However, its aberrant regulation in GC has not been fully elucidated. AIM: To excavate the role of METTL5 in the development of GC. METHODS: METTL5 expression and clinicopathological characteristics were analyzed via The Cancer Genome Atlas dataset and further verified via immunohistochemistry, western blotting and real-time quantitative polymerase chain reaction in tissue microarrays and clinical samples. The tumor-promoting effect of METTL5 on HGC-27 and AGS cells was explored in vitro by Cell Counting Kit-8 assays, colony formation assays, scratch healing assays, transwell assays and flow cytometry. The tumor-promoting role of METTL5 in vivo was evaluated in a xenograft tumor model. The EpiQuik m6A RNA Methylation Quantification Kit was used for m6A quantification. Next, liquid chromatography-mass spectrometry was used to evaluate the association between METTL5 and sphingomyelin metabolism, which was confirmed by Enzyme-linked immunosorbent assay and rescue tests. In addition, we investigated whether METTL5 affects the sensitivity of GC cells to cisplatin via colony formation and transwell experiments. RESULTS: Our research revealed substantial upregulation of METTL5, which suggested a poor prognosis of GC patients. Increased METTL5 expression indicated distant lymph node metastasis, advanced cancer stage and pathological grade. An increased level of METTL5 correlated with a high degree of m6A methylation. METTL5 markedly promotes the proliferation, migration, and invasion of GC cells in vitro. METTL5 also promotes the growth of GC in animal models. METTL5 knockdown resulted in significant changes in sphingomyelin metabolism, which implies that METTL5 may impact the development of GC via sphingomyelin metabolism. In addition, high METTL5 expression led to cisplatin resistance. CONCLUSION: METTL5 was found to be an oncogenic driver of GC and may be a new target for therapy since it facilitates GC carcinogenesis through sphingomyelin metabolism and cisplatin resistance.
RESUMEN
Pathogenic heterozygous variants in SGMS2 cause a rare monogenic form of osteoporosis known as calvarial doughnut lesions with bone fragility (CDL). The clinical presentations of SGMS2-related bone pathology range from childhood-onset osteoporosis with low bone mineral density and sclerotic doughnut-shaped lesions in the skull to a severe spondylometaphyseal dysplasia with neonatal fractures, long-bone deformities, and short stature. In addition, neurological manifestations occur in some patients. SGMS2 encodes sphingomyelin synthase 2 (SMS2), an enzyme involved in the production of sphingomyelin (SM). This review describes the biochemical structure of SM, SM metabolism, and their molecular actions in skeletal and neural tissue. We postulate how disrupted SM gradient can influence bone formation and how animal models may facilitate a better understanding of SGMS2-related osteoporosis.
Asunto(s)
Nervio Facial , Osteoporosis , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Animales , Niño , Humanos , Recién Nacido , Nervio Facial/metabolismo , Nervio Facial/patología , Osteoporosis/complicaciones , Osteoporosis/patología , Parálisis , Cráneo/metabolismo , Esfingomielinas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismoRESUMEN
Pathological variants in SGMS2, encoding sphingomyelin synthase 2 (SMS2), result in a rare autosomal dominant skeletal disorder with cranial doughnut lesions. The disease manifests as early-onset osteoporosis or a more severe skeletal dysplasia with low bone mineral density, frequent fractures, long-bone deformities, and multiple sclerotic cranial lesions. The exact underlying molecular features and skeletal consequences, however, remain elusive. This study investigated bone tissue characteristics in two adult males with a heterozygous SGMS2 mutation p.Arg50* and significant bone fragility. Transiliac bone biopsy samples from both (patient 1: 61 years; patient 2: 29 years) were analyzed by bone histomorphometry, confocal laser scanning microscopy, and quantitative backscattered electron imaging (qBEI). Bone histomorphometry portrayed largely normal values for structural and turnover parameters, but in both patient 1 and patient 2, respectively, osteoid thickness (-1.80 SD, -1.37 SD) and mineralizing surface (-1.03 SD, -2.73 SD) were reduced and osteoid surface increased (+9.03 SD, +0.98 SD), leading to elevated mineralization lag time (+8.16 SD, +4.10 SD). qBEI showed low and heterogeneous matrix mineralization (CaPeak -2.41 SD, -3.72 SD; CaWidth +7.47 SD, +4.41 SD) with a chaotic arrangement of collagenous fibrils under polarized light. Last, osteocyte lacunae appeared abnormally large and round in shape and the canalicular network severely disturbed with short-spanned canaliculi lacking any orderliness or continuity. Taken together, these data underline a central role for functional SMS2 in bone matrix organization and mineralization, lacunocanalicular network, and in maintaining skeletal strength and integrity. These data bring new knowledge on changes in bone histology resulting from abnormal sphingomyelin metabolism and aid en route to better understanding of sphingolipid-related skeletal disorders. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
RESUMEN
Coix Seed Oil (CSO) possesses a wide range of pharmacological activities. Kanglaite Injection, a commercial product of CSO, has been used clinically as an anticancer drug in China for decades. However, its molecular mechanisms on triple-negative breast cancer (TNBC) remains to be elucidated. In this study, the effect of CSO was evaluated on murine TNBC 4T1 cells and the orthotopic tumor-bearing mouse model and underlying mechanisms were explored. CSO suppressed cell proliferation, colony formation in vitro, and tumor growth in vivo. miR-205-5p was substantially altered in CSO treated tumor tissues compared to the control group by miRNA-sequencing analysis. Sphingomyelin metabolism (SM) decreased in serum in model group compared to the control group, while it increased by CSO administration by lipid metabolomics analysis. The expression of sphingosine 1 phosphate receptor 1 (S1PR1), the critical effector of SM, was downregulated upon CSO treatment. Mechanically, miRNA-205 directly targeted S1PR1 to regulate SM and cell proliferation. CSO reduced the expression of S1PR1, cyclinD1, and phosphorylation levels of STAT3, MAPK, and AKT while upregulated p27. These results revealed that CSO exerted an anti-TNBC effect via the miR-205/S1PR1 axis to regulate sphingomyelin metabolism, and the downstream STAT3/MAPK/AKT signal pathways were partly involved.