Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.955
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 39: 557-581, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33651964

RESUMEN

There is a growing interest in understanding tissue organization, homeostasis, and inflammation. However, despite an abundance of data, the organizing principles of tissue biology remain poorly defined. Here, we present a perspective on tissue organization based on the relationships between cell types and the functions that they perform. We provide a formal definition of tissue homeostasis as a collection of circuits that regulate specific variables within the tissue environment, and we describe how the functional organization of tissues allows for the maintenance of both tissue and systemic homeostasis. This leads to a natural definition of inflammation as a response to deviations from homeostasis that cannot be reversed by homeostatic mechanisms alone. We describe how inflammatory signals act on the same cellular functions involved in normal tissue organization and homeostasis in order to coordinate emergency responses to perturbations and ultimately return the system to a homeostatic state. Finally, we consider the hierarchy of homeostatic and inflammatory circuits and the implications for the development of inflammatory diseases.


Asunto(s)
Inflamación , Animales , Homeostasis , Humanos
2.
Cell ; 187(17): 4605-4620.e17, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38959891

RESUMEN

The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans, neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the Wnt ligand EGL-20, which activate the mitochondrial unfolded protein response (UPRMT) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-periphery UPRMT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, Wnt and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPRMT activation. We also find that the germline tissue itself is essential for UPRMT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Células Germinativas , Mitocondrias , Transducción de Señal , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/metabolismo , Mitocondrias/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Neuronas/metabolismo , Serotonina/metabolismo , Proteínas Wnt/metabolismo
3.
Cell ; 187(9): 2250-2268.e31, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38554706

RESUMEN

Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.


Asunto(s)
Adenosina Trifosfatasas , Replicación del ADN , Inestabilidad Genómica , Proteostasis , Humanos , Adenosina Trifosfatasas/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Células HEK293 , Proteínas de Ciclo Celular/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética
4.
Annu Rev Immunol ; 33: 563-606, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25665078

RESUMEN

In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Comunicación Celular/inmunología , Diferenciación Celular/inmunología , Selección Clonal Mediada por Antígenos , Resistencia a la Enfermedad , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Humanos , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Estrés Fisiológico
5.
Cell ; 185(18): 3356-3374.e22, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055199

RESUMEN

Drug-tolerant persister cells (persisters) evade apoptosis upon targeted and conventional cancer therapies and represent a major non-genetic barrier to effective cancer treatment. Here, we show that cells that survive treatment with pro-apoptotic BH3 mimetics display a persister phenotype that includes colonization and metastasis in vivo and increased sensitivity toward ferroptosis by GPX4 inhibition. We found that sublethal mitochondrial outer membrane permeabilization (MOMP) and holocytochrome c release are key requirements for the generation of the persister phenotype. The generation of persisters is independent of apoptosome formation and caspase activation, but instead, cytosolic cytochrome c induces the activation of heme-regulated inhibitor (HRI) kinase and engagement of the integrated stress response (ISR) with the consequent synthesis of ATF4, all of which are required for the persister phenotype. Our results reveal that sublethal cytochrome c release couples sublethal MOMP to caspase-independent initiation of an ATF4-dependent, drug-tolerant persister phenotype.


Asunto(s)
Citocromos c , Neoplasias/tratamiento farmacológico , Animales , Apoptosis , Proteínas Portadoras , Caspasas/metabolismo , Citocromos c/metabolismo , Resistencia a Antineoplásicos , Humanos , Ratones , Mitocondrias/metabolismo
6.
Cell ; 185(1): 145-157.e13, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995513

RESUMEN

Contrary to multicellular organisms that display segmentation during development, communities of unicellular organisms are believed to be devoid of such sophisticated patterning. Unexpectedly, we find that the gene expression underlying the nitrogen stress response of a developing Bacillus subtilis biofilm becomes organized into a ring-like pattern. Mathematical modeling and genetic probing of the underlying circuit indicate that this patterning is generated by a clock and wavefront mechanism, similar to that driving vertebrate somitogenesis. We experimentally validated this hypothesis by showing that predicted nutrient conditions can even lead to multiple concentric rings, resembling segments. We additionally confirmed that this patterning mechanism is driven by cell-autonomous oscillations. Importantly, we show that the clock and wavefront process also spatially patterns sporulation within the biofilm. Together, these findings reveal a biofilm segmentation clock that organizes cellular differentiation in space and time, thereby challenging the paradigm that such patterning mechanisms are exclusive to plant and animal development.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/genética , Biopelículas/crecimiento & desarrollo , Tipificación del Cuerpo/genética , Bacillus subtilis/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Cinética , Modelos Biológicos , Nitrógeno/metabolismo , Transducción de Señal/genética , Somitos/crecimiento & desarrollo , Esporas Bacterianas/crecimiento & desarrollo , Estrés Fisiológico/genética , Factores de Tiempo
7.
Cell ; 185(14): 2559-2575.e28, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35688146

RESUMEN

A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells. We use transcriptional phenotypes to predict the function of poorly characterized genes, uncovering new regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATA5L1), transcription (C7orf26), and mitochondrial respiration (TMEM242). In addition to assigning gene function, single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena-from RNA processing to differentiation. We leverage this ability to systematically identify genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map reveals a multidimensional portrait of gene and cellular function.


Asunto(s)
Genómica , Análisis de la Célula Individual , Sistemas CRISPR-Cas/genética , Mapeo Cromosómico , Genotipo , Fenotipo , Análisis de la Célula Individual/métodos
8.
Annu Rev Cell Dev Biol ; 39: 223-252, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37339680

RESUMEN

Transfer RNAs (tRNAs) decode messenger RNA codons to peptides at the ribosome. The nuclear genome contains many tRNA genes for each amino acid and even each anticodon. Recent evidence indicates that expression of these tRNAs in neurons is regulated, and they are not functionally redundant. When specific tRNA genes are nonfunctional, this results in an imbalance between codon demand and tRNA availability. Furthermore, tRNAs are spliced, processed, and posttranscriptionally modified. Defects in these processes lead to neurological disorders. Finally, mutations in the aminoacyl tRNA synthetases (aaRSs) also lead to disease. Recessive mutations in several aaRSs cause syndromic disorders, while dominant mutations in a subset of aaRSs lead to peripheral neuropathy, again due to an imbalance between tRNA supply and codon demand. While it is clear that disrupting tRNA biology often leads to neurological disease, additional research is needed to understand the sensitivity of neurons to these changes.

9.
Cell ; 184(20): 5215-5229.e17, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34559986

RESUMEN

Estrogen receptor α (ERα) is a hormone receptor and key driver for over 70% of breast cancers that has been studied for decades as a transcription factor. Unexpectedly, we discover that ERα is a potent non-canonical RNA-binding protein. We show that ERα RNA binding function is uncoupled from its activity to bind DNA and critical for breast cancer progression. Employing genome-wide cross-linking immunoprecipitation (CLIP) sequencing and a functional CRISPRi screen, we find that ERα-associated mRNAs sustain cancer cell fitness and elicit cellular responses to stress. Mechanistically, ERα controls different steps of RNA metabolism. In particular, we demonstrate that ERα RNA binding mediates alternative splicing of XBP1 and translation of the eIF4G2 and MCL1 mRNAs, which facilitates survival upon stress conditions and sustains tamoxifen resistance of cancer cells. ERα is therefore a multifaceted RNA-binding protein, and this activity transforms our knowledge of post-transcriptional regulation underlying cancer development and drug response.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Receptor alfa de Estrógeno/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Neoplasias de la Mama/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/química , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica , Humanos , Ratones Endogámicos NOD , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Oncogenes , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Tamoxifeno/farmacología , Proteína 1 de Unión a la X-Box/metabolismo
10.
Cell ; 184(8): 1990-2019, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811810

RESUMEN

The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.


Asunto(s)
Envejecimiento , Senescencia Celular , Enfermedades Pulmonares , Pulmón , Inmunidad Adaptativa , Anciano , Envejecimiento/inmunología , Envejecimiento/patología , COVID-19/inmunología , COVID-19/patología , Humanos , Pulmón/inmunología , Pulmón/patología , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/patología , Estrés Oxidativo
11.
Cell ; 184(14): 3643-3659.e23, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34166613

RESUMEN

Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chlamydomonas/metabolismo , Multimerización de Proteína , Synechocystis/metabolismo , Tilacoides/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Membrana Celular/metabolismo , Chlamydomonas/ultraestructura , Microscopía por Crioelectrón , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Lípidos/química , Modelos Moleculares , Nucleótidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estrés Fisiológico/efectos de la radiación , Synechocystis/ultraestructura , Tilacoides/ultraestructura
12.
Annu Rev Biochem ; 89: 529-555, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32097570

RESUMEN

Protein folding in the cell is mediated by an extensive network of >1,000 chaperones, quality control factors, and trafficking mechanisms collectively termed the proteostasis network. While the components and organization of this network are generally well established, our understanding of how protein-folding problems are identified, how the network components integrate to successfully address challenges, and what types of biophysical issues each proteostasis network component is capable of addressing remains immature. We describe a chemical biology-informed framework for studying cellular proteostasis that relies on selection of interesting protein-folding problems and precise researcher control of proteostasis network composition and activities. By combining these methods with multifaceted strategies to monitor protein folding, degradation, trafficking, and aggregation in cells, researchers continue to rapidly generate new insights into cellular proteostasis.


Asunto(s)
Chaperonas Moleculares/genética , Técnicas de Sonda Molecular , Proteoma/genética , Deficiencias en la Proteostasis/genética , Proteostasis/genética , Animales , Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Semivida , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Chaperonas Moleculares/metabolismo , Agregado de Proteínas , Ingeniería de Proteínas/métodos , Pliegue de Proteína/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteoma/química , Proteoma/metabolismo , Proteostasis/efectos de los fármacos , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
13.
Cell ; 182(2): 404-416.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32610081

RESUMEN

Problems arising during translation of mRNAs lead to ribosome stalling and collisions that trigger a series of quality control events. However, the global cellular response to ribosome collisions has not been explored. Here, we uncover a function for ribosome collisions in signal transduction. Using translation elongation inhibitors and general cellular stress conditions, including amino acid starvation and UV irradiation, we show that ribosome collisions activate the stress-activated protein kinase (SAPK) and GCN2-mediated stress response pathways. We show that the MAPKKK ZAK functions as the sentinel for ribosome collisions and is required for immediate early activation of both SAPK (p38/JNK) and GCN2 signaling pathways. Selective ribosome profiling and biochemistry demonstrate that although ZAK generally associates with elongating ribosomes on polysomal mRNAs, it specifically auto-phosphorylates on the minimal unit of colliding ribosomes, the disome. Together, these results provide molecular insights into how perturbation of translational homeostasis regulates cell fate.


Asunto(s)
Ribosomas/metabolismo , Estrés Fisiológico , Transportadoras de Casetes de Unión a ATP/metabolismo , Anisomicina/farmacología , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de la radiación , Activación Enzimática , Humanos , Quinasas Quinasa Quinasa PAM/deficiencia , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Fosforilación , Polirribosomas/metabolismo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Rayos Ultravioleta , eIF-2 Quinasa/metabolismo
14.
Cell ; 181(2): 346-361.e17, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302572

RESUMEN

Stressed cells shut down translation, release mRNA molecules from polysomes, and form stress granules (SGs) via a network of interactions that involve G3BP. Here we focus on the mechanistic underpinnings of SG assembly. We show that, under non-stress conditions, G3BP adopts a compact auto-inhibited state stabilized by electrostatic intramolecular interactions between the intrinsically disordered acidic tracts and the positively charged arginine-rich region. Upon release from polysomes, unfolded mRNAs outcompete G3BP auto-inhibitory interactions, engendering a conformational transition that facilitates clustering of G3BP through protein-RNA interactions. Subsequent physical crosslinking of G3BP clusters drives RNA molecules into networked RNA/protein condensates. We show that G3BP condensates impede RNA entanglement and recruit additional client proteins that promote SG maturation or induce a liquid-to-solid transition that may underlie disease. We propose that condensation coupled to conformational rearrangements and heterotypic multivalent interactions may be a general principle underlying RNP granule assembly.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Células HeLa , Humanos , Conformación de Ácido Nucleico , Orgánulos/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Estrés Fisiológico/genética
15.
Cell ; 180(5): 928-940.e14, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109413

RESUMEN

Covalent modifications to histones are essential for development, establishing distinct and functional chromatin domains from a common genetic sequence. Whereas repressed chromatin is robustly inherited, no mechanism that facilitates inheritance of an activated domain has been described. Here, we report that the Set3C histone deacetylase scaffold Snt1 can act as a prion that drives the emergence and transgenerational inheritance of an activated chromatin state. This prion, which we term [ESI+] for expressed sub-telomeric information, is triggered by transient Snt1 phosphorylation upon cell cycle arrest. Once engaged, the prion reshapes the activity of Snt1 and the Set3C complex, recruiting RNA pol II and interfering with Rap1 binding to activate genes in otherwise repressed sub-telomeric domains. This transcriptional state confers broad resistance to environmental stress, including antifungal drugs. Altogether, our results establish a robust means by which a prion can facilitate inheritance of an activated chromatin state to provide adaptive benefit.


Asunto(s)
Cromatina/genética , Histona Desacetilasas/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/genética , Puntos de Control del Ciclo Celular/genética , Código de Histonas/genética , Histonas/genética , Fosforilación/genética , Priones/genética , ARN Polimerasa II/genética , Saccharomyces cerevisiae , Complejo Shelterina , Telómero/genética , Transcripción Genética
16.
Cell ; 183(7): 1801-1812.e13, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33308477

RESUMEN

Cellular stress leads to reprogramming of mRNA translation and formation of stress granules (SGs), membraneless organelles consisting of mRNA and RNA-binding proteins. Although the function of SGs remains largely unknown, it is widely assumed they contain exclusively non-translating mRNA. Here, we re-examine this hypothesis using single-molecule imaging of mRNA translation in living cells. Although we observe non-translating mRNAs are preferentially recruited to SGs, we find unequivocal evidence that mRNAs localized to SGs can undergo translation. Our data indicate that SG-associated translation is not rare, and the entire translation cycle (initiation, elongation, and termination) can occur on SG-localized transcripts. Furthermore, translating mRNAs can be observed transitioning between the cytosol and SGs without changing their translational status. Together, these results demonstrate that mRNA localization to SGs is compatible with translation and argue against a direct role for SGs in inhibition of protein synthesis.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Biosíntesis de Proteínas/genética , Transporte de ARN/genética , Imagen Individual de Molécula , Estrés Fisiológico , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Cell ; 183(6): 1572-1585.e16, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33157040

RESUMEN

Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.


Asunto(s)
Metabolismo Energético , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Temperatura , Adaptación Fisiológica , Adenosina Trifosfato/metabolismo , Difusión , Glucógeno/metabolismo , Homeostasis , Modelos Biológicos , Solubilidad , Trehalosa , Viscosidad
18.
Annu Rev Biochem ; 88: 281-306, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30566372

RESUMEN

Ribosomes, which synthesize the proteins of a cell, comprise ribosomal RNA and ribosomal proteins, which coassemble hierarchically during a process termed ribosome biogenesis. Historically, biochemical and molecular biology approaches have revealed how preribosomal particles form and mature in consecutive steps, starting in the nucleolus and terminating after nuclear export into the cytoplasm. However, only recently, due to the revolution in cryo-electron microscopy, could pseudoatomic structures of different preribosomal particles be obtained. Together with in vitro maturation assays, these findings shed light on how nascent ribosomes progress stepwise along a dynamic biogenesis pathway. Preribosomes assemble gradually, chaperoned by a myriad of assembly factors and small nucleolar RNAs, before they reach maturity and enter translation. This information will lead to a better understanding of how ribosome synthesis is linked to other cellular pathways in humans and how it can cause diseases, including cancer, if disturbed.


Asunto(s)
Eucariontes/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Nucléolo Celular/metabolismo , Microscopía por Crioelectrón , Humanos , Biogénesis de Organelos , Multimerización de Proteína
19.
Cell ; 179(6): 1306-1318.e18, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31761535

RESUMEN

Cells have evolved complex mechanisms to maintain protein homeostasis, such as the UPRER, which are strongly associated with several diseases and the aging process. We performed a whole-genome CRISPR-based knockout (KO) screen to identify genes important for cells to survive ER-based protein misfolding stress. We identified the cell-surface hyaluronidase (HAase), Transmembrane Protein 2 (TMEM2), as a potent modulator of ER stress resistance. The breakdown of the glycosaminoglycan, hyaluronan (HA), by TMEM2 within the extracellular matrix (ECM) altered ER stress resistance independent of canonical UPRER pathways but dependent upon the cell-surface receptor, CD44, a putative HA receptor, and the MAPK cell-signaling components, ERK and p38. Last, and most surprisingly, ectopic expression of human TMEM2 in C. elegans protected animals from ER stress and increased both longevity and pathogen resistance independent of canonical UPRER activation but dependent on the ERK ortholog mpk-1 and the p38 ortholog pmk-1.


Asunto(s)
Caenorhabditis elegans/fisiología , Retículo Endoplásmico/metabolismo , Hialuronoglucosaminidasa/metabolismo , Longevidad/fisiología , Proteínas de la Membrana/metabolismo , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/inmunología , Línea Celular , Proliferación Celular , Resistencia a la Enfermedad , Estrés del Retículo Endoplásmico , Fibroblastos/metabolismo , Humanos , Inmunidad Innata , Modelos Biológicos , Peso Molecular , Transducción de Señal
20.
Annu Rev Cell Dev Biol ; 36: 165-189, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33021824

RESUMEN

As the world's population ages, neurodegenerative disorders are poised to become the commonest cause of death. Despite this, they remain essentially untreatable. Characterized pathologically both by the aggregation of disease-specific misfolded proteins and by changes in cellular stress responses, to date, therapeutic approaches have focused almost exclusively on reducing misfolded protein load-notably amyloid beta (Aß) in Alzheimer's disease. The repeated failure of clinical trials has led to despondency over the possibility that these disorders will ever be treated. We argue that this is in fact a time for optimism: Targeting various generic stress responses is emerging as an increasingly promising means of modifying disease progression across these disorders. New treatments are approaching clinical trials, while novel means of targeting aggregates could eventually act preventively in early disease.


Asunto(s)
Enfermedades Neurodegenerativas/terapia , Agregado de Proteínas , Estrés Fisiológico , Animales , Autofagosomas/metabolismo , Humanos , Lisosomas/metabolismo , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA