Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(24): 4509-4523.e11, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38134885

RESUMEN

The cytoplasm is highly compartmentalized, but the extent and consequences of subcytoplasmic mRNA localization in non-polarized cells are largely unknown. We determined mRNA enrichment in TIS granules (TGs) and the rough endoplasmic reticulum (ER) through particle sorting and isolated cytosolic mRNAs by digitonin extraction. When focusing on genes that encode non-membrane proteins, we observed that 52% have transcripts enriched in specific compartments. Compartment enrichment correlates with a combinatorial code based on mRNA length, exon length, and 3' UTR-bound RNA-binding proteins. Compartment-biased mRNAs differ in the functional classes of their encoded proteins: TG-enriched mRNAs encode low-abundance proteins with strong enrichment of transcription factors, whereas ER-enriched mRNAs encode large and highly expressed proteins. Compartment localization is an important determinant of mRNA and protein abundance, which is supported by reporter experiments showing that redirecting cytosolic mRNAs to the ER increases their protein expression. In summary, the cytoplasm is functionally compartmentalized by local translation environments.


Asunto(s)
Retículo Endoplásmico , Proteínas , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Proteínas/metabolismo , Citosol/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transporte de Proteínas , Biosíntesis de Proteínas
2.
Annu Rev Genet ; 54: 337-365, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32886545

RESUMEN

The goal of genomics and systems biology is to understand how complex systems of factors assemble into pathways and structures that combine to form living organisms. Great advances in understanding biological processes result from determining the function of individual genes, a process that has classically relied on characterizing single mutations. Advances in DNA sequencing has made available the complete set of genetic instructions for an astonishing and growing number of species. To understand the function of this ever-increasing number of genes, a high-throughput method was developed that in a single experiment can measure the function of genes across the genome of an organism. This occurred approximately 10 years ago, when high-throughput DNA sequencing was combined with advances in transposon-mediated mutagenesis in a method termed transposon insertion sequencing (TIS). In the subsequent years, TIS succeeded in addressing fundamental questions regarding the genes of bacteria, many of which have been shown to play central roles in bacterial infections that result in major human diseases. The field of TIS has matured and resulted in studies of hundreds of species that include significant innovations with a number of transposons. Here, we summarize a number of TIS experiments to provide an understanding of the method and explanation of approaches that are instructive when designing a study. Importantly, we emphasize critical aspects of a TIS experiment and highlight the extension and applicability of TIS into nonbacterial species such as yeast.


Asunto(s)
Elementos Transponibles de ADN/genética , Genes/genética , Animales , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutagénesis/genética , Mutación
3.
BMC Genomics ; 25(1): 261, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38454321

RESUMEN

Enterococcus faecalis, a formidable nosocomial and community-acquired opportunistic pathogen, can persist a wide range of extreme environments, including low pH and nutrient deficiency. Clarifying the survival mechanism of E. faecalis in low-pH conditions is the key to combating the infectious diseases caused by E. faecalis. In this study, we combined transcriptome profiling (RNA-seq) and transposon insertion sequencing (TIS) to comprehensively understand the genes that confer these features on E. faecalis. The metadata showed that genes whose products are involved in cation transportation and amino acid biosynthesis were predominantly differentially expressed under acid conditions. The products of genes such as opp1C and copY reduced the hydrion concentration in the cell, whereas those of gldA2, gnd2, ubiD, and ubiD2 mainly participated in amino metabolism, increasing matters to neutralize excess acid. These, together with the folE and hexB genes, which are involved in mismatch repair, form a network of E. faecalis genes necessary for its survival under acid conditions.


IMPORTANCE: As a serious nosocomial pathogen, Enterococcus faecalis was considered responsible for large numbers of infections. Its ability to survive under stress conditions, such as acid condition and nutrient deficiency was indispensable for its growth and infection. Therefore, understanding how E. faecalis survives acid stress is necessary for the prevention and treatment of related diseases. RNA-seq and TIS provide us a way to analyze the changes in gene expression under such conditions.


Asunto(s)
Enterococcus faecalis , Perfilación de la Expresión Génica , RNA-Seq , Enterococcus faecalis/genética , Genoma
4.
Small ; : e2401194, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984765

RESUMEN

High-sensitive uncooled mid-wave infrared (MWIR) photodetection with fast speed is highly desired for biomedical imaging, optical communication, and night vision technology. Low-dimensional materials with low dark current and broadband photoresponse hold great promise for use in MWIR detection. Here, this study reports a high-performance MWIR photodetector based on a titanium trisulfide (TiS3) nanoribbon. This device demonstrates an ultra-broadband photoresponse ranging from the visible spectrum to the MWIR spectrum (405-4275 nm). In the MWIR spectral range, the photodetector achieves competitive high photoresponsivity (R) of 21.1 A W-1, and an impressive specific detectivity (D*) of 5.9 × 1010 cmHz1/2 W-1 in ambient air. Remarkably, the photoresponse speed in the MWIR with τr = 1.3 ms and τd = 1.5 ms is realized which is much faster than the thermal time constant of 15 ms. These findings pave the way for highly sensitive, room-temperature MWIR photodetectors with exceptionally fast response speed.

5.
Support Care Cancer ; 32(1): 85, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38177894

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a treatment-limiting adverse effect of anticancer therapy that complicates the lifestyle of many cancer survivors. There is currently no gold-standard for the assessment or management of CIPN. Subsequently, understanding the underlying mechanisms that lead to the development of CIPN is essential for finding better pharmacological therapy. Therapy-induced senescence (TIS) is a form of senescence that is triggered in malignant and non-malignant cells in response to the exposure to chemotherapy. Recent evidence has also suggested that TIS develops in the dorsal root ganglia of rodent models of CIPN. Interestingly, several components of the senescent phenotype are commensurate with the currently established primary processes implicated in the pathogenesis of CIPN including mitochondrial dysfunction, oxidative stress, and neuroinflammation. In this article, we review the literature that supports the hypothesis that TIS could serve as a holistic mechanism leading to CIPN, and we propose the potential for investigating senotherapeutics as means to mitigate CIPN in cancer survivors.


Asunto(s)
Antineoplásicos , Supervivientes de Cáncer , Enfermedades del Sistema Nervioso Periférico , Humanos , Antineoplásicos/efectos adversos , Enfermedades del Sistema Nervioso Periférico/patología , Estrés Oxidativo
6.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38544013

RESUMEN

Earth observation by remote sensing plays a crucial role in granite extraction, and many current studies use thermal infrared data from sensors such as ASTER. The challenge lies in the low spatial resolution of these satellites, hindering precise rock type identification. A breakthrough emerges with the Thermal Infrared Spectrometer (TIS) on the Sustainable Development Science Satellite 1 (SDGSAT-1) launched by the Chinese Academy of Sciences. With an exceptional 30 m spatial resolution, SDGSAT-1 TIS opens avenues for accurate granite extraction using remote sensing. This study, exemplified in Xinjiang's Karamay region, introduces the BR-ISauvola method, leveraging SDGSAT-1 TIS data. The approach combines band ratio with adaptive k-value selection using local grayscale statistical features for Sauvola thresholding. Focused on large-scale granite extraction, results show F1 scores above 70% for Otsu, Sauvola, and BR-ISauvola. Notably, BR-ISauvola achieves the highest accuracy at 82.11%, surpassing Otsu and Sauvola by 9.62% and 0.34%, respectively. This underscores the potential of SDGSAT-1 TIS data as a valuable resource for granite extraction. The proposed method efficiently utilizes spectral information, presenting a novel approach for rapid granite extraction using remote sensing TIS imagery, even in scenarios with low spectral resolution and a single data source.

7.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4007-4014, 2024 Aug.
Artículo en Zh | MEDLINE | ID: mdl-39307735

RESUMEN

To investigate the influence of the strigolactone inhibitor Tis108 on the growth of Gastrodia elata, this study treated G. elata tuber with Tis108 solution of 10 µmol·L~(-1) and measured the content of endogenous hormone gibberellin(GA) in the tuber. By using reverse transcription-polymerase chain reaction(RT-PCR) technology, the key enzyme GeCYP714A1 gene involved in GA deactivation was cloned. Bioinformatics analysis on the GeCYP714A1 gene was carried out by using ExPASy, SWISS-MODEL, MEGA, etc., and its expression levels in different parts of G. elata were determined. The results showed that after Tis108 treatment, GA content in G. elata tuber was significantly increased, and the transcription level of the GeCYP714A1 gene was significantly decreased. The full length of the coding region of the GeCYP714A1 gene is 1 173 bp, encoding 390 amino acids. The protein has a molecular weight of 44.85 kDa, a theoretical isoelectric point of 9.83, an instability index of 49.20, an aliphatic index of 89.03, and a grand average of hydropathicity of-0.235, classifying it as an unstable, basic, hydrophilic protein, and the GeCYP714A1 protein was localized in the mitochondria, lacking a signal peptide and a transmembrane structure. Phylogenetic tree analysis revealed that GeCYP714A1 was most closely related to the DcCYP714C2(PKU78454.1) protein from Dendrobium candidum, with a sequence identity of 67.25%. The qRT-PCR analysis of the expression patterns of the GeCYP714A1 gene indicated that GeCYP714A1 had the highest transcription level in G. elata tuber, followed by stem and inflorescence. The study represented that Tis108 inhibited the transcription level of GeCYP714A1 involved in GA deactivation in G. elata tuber, thereby increasing the accumulation of GA and affecting the growth of G. elata tuber. These results provided a basis for further studies of strigolactone regulation of GA signal and tuber development in G. elata.


Asunto(s)
Gastrodia , Giberelinas , Proteínas de Plantas , Gastrodia/genética , Gastrodia/química , Giberelinas/farmacología , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lactonas/farmacología , Filogenia , Secuencia de Aminoácidos
8.
Semin Cancer Biol ; 81: 48-53, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33359514

RESUMEN

Senescence is a tumor suppressor response that prevents the proliferation of mutated cells and alert the immune system for their elimination. However, this program is not perfect and with time additional genetic and epigenetic changes can impair tumor suppression and promote cancer progression both in cell autonomous and non-cell autonomous manners. A polyploid barrier is implemented in senescent cells to further prevent cell expansion but polyploid cells can generate highly malignant tumor cells via de-polyploidization. The nuclear lamina can act as an additional fail safe to prevent cancer in these cells and drugs able to stabilize the nuclear lamina may help to treat cancers by preventing senescence escape.


Asunto(s)
Senescencia Celular , Neoplasias , Ciclo Celular , Proliferación Celular , Senescencia Celular/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Poliploidía
9.
Small ; 19(38): e2303319, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37194967

RESUMEN

Photo-rechargeable (solar) battery can be considered as an energy harvesting cum storage system, where it can charge the conventional metal-ion battery using light instead of electricity, without having other parasitic reactions. Here a two-electrode lithium-ion solar battery with multifaceted TiS2 -TiO2 hybrid sheets as cathode. The choice of TiS2 -TiO2 electrode ensures the formation of a type II semiconductor heterostructure while the lateral heterostructure geometry ensures high mass/charge transfer and light interactions with the electrode. TiS2 has a higher lithium binding energy (1.6 eV) than TiO2 (1.03 eV), ensuring the possibilities of higher amount of Li-ion insertion to TiS2 and hence the maximum recovery with the photocharging, as further confirmed by the experiments. Apart from the demonstration of solar solid-state batteries, the charging of lithium-ion full cell with light indicates the formation of lithium intercalated graphite compounds, ensuring the charging of the battery without any other parasitic reactions at the electrolyte or electrode-electrolyte interfaces. Possible mechanisms proposed here for the charging and discharging processes of solar batteries, based on the experimental and theoretical results, indicate the potential of such systems in the forthcoming era of renewable energies.

10.
Nanotechnology ; 35(1)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37797583

RESUMEN

Generating photocurrent in a condensed matter system involves the excitation, relaxation, and transportation of charge carriers. As such, it is viewed a potent method for probing the dynamics of non-equilibrium carriers and the electronic band structure of solid state materials. In this research, we analyze the photoresponse of the mechanically exfoliated titanium disulfide (TiS2), a transition metal dichalcogenide whose classification as either a semimetal or a semiconductor has been the subject of debate for years. The scanning photocurrent microscopy and the temperature-dependent photoresponse characterization expose the appearance of a photovoltaic current primarily from the metal/TiS2junction in an unbiased sample, while negative photoconductivity due to the bolometric effect is observed in the conductive TiS2channel. The optoelectronic experimental results, combined with electrical transport characterization and angle-resolved photoemission spectroscopy measurements, indicate that the TiS2employed in this study is likely a heavily-doped semiconductor. Our findings unveil the photocurrent generation mechanism of two dimensional TiS2, highlighting its prospective optoelectronic applications in the future.

11.
Nanotechnology ; 35(1)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37725959

RESUMEN

Strain is widely employed to modulate the band structures of two-dimensional (2D) van der Waals (vdW) materials. Such band engineering with strain applied along different crystallographic directions, however, is less explored. Here, we investigate the band gap modulation of layered chalcogenides, MoS2and TiS3, and the dependence of their band gaps on the directions of applied strain, using first-principles calculations. The band gap transition in MoS2is found to reduce in energy linearly as a function of increasing tensile strain, with a weakly directional-dependent gradient, varying by 4.6 meV/% (from -52.7 ± 0.6 to -57.3 ± 0.1 meV/%) from the zigzag to armchair directions. Conversely, the band gap in TiS3decreases with strain applied along the a lattice vector, but increases with strain applied in the perpendicular direction, with a non-linear strain-band gap relationship found between these limits. Analysis of the structure of the materials and character of the band edge states under strain helps explain the origins of the stark differences between MoS2and TiS3. Our results provide new insights for strain engineering in 2D materials and the use of the direction of applied strain as another degree of freedom.

12.
RNA Biol ; 20(1): 248-256, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37231782

RESUMEN

Chloroplast and mitochondrial DNA (cpDNA and mtDNA) are apart from nuclear DNA (nuDNA) in a eukaryotic cell. The transcription system of chloroplasts differs from those of mitochondria and eukaryotes. In contrast to nuDNA and animal mtDNA, the transcription of cpDNA is still not well understood, primarily due to the unresolved identification of transcription initiation sites (TISs) and transcription termination sites (TTSs) on the genome scale. In the present study, we characterized the transcription of chloroplast (cp) genes with greater accuracy and comprehensive information using PacBio full-length transcriptome data from Arabidopsis thaliana. The major findings included the discovery of four types of artifacts, the validation and correction of cp gene annotations, the exact identification of TISs that start with G, and the discovery of polyA-like sites as TTSs. Notably, we proposed a new model to explain cp transcription initiation and termination at the whole-genome level. Four types of artifacts, degraded RNAs and splicing intermediates deserve the attention from researchers working with PacBio full-length transcriptome data, as these contaminant sequences can lead to incorrect downstream analysis. Cp transcription initiates at multiple promoters and terminates at polyA-like sites. Our study provides new insights into cp transcription and new clues to study the evolution of promoters, TISs, TTSs and polyA tails of eukaryotic genes.


Asunto(s)
Arabidopsis , Genoma del Cloroplasto , Animales , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Transcriptoma , ADN Mitocondrial/genética , Cloroplastos/genética , Arabidopsis/genética
13.
Plant Cell Rep ; 42(12): 1927-1936, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37803214

RESUMEN

KEY MESSAGE: Increase of ENHANCER OF SHOOT REGENERATION 2 expression was consistent to treatment with kinetin, TIS108, and KK094 in adventitious shoot formation of ipecac. Unlike many plant species, ipecac (Carapichea ipecacuanha (Brot.) L. Andersson) can form adventitious shoots in tissue culture without cytokinin (CK) treatment. Strigolactone (SL) biosynthesis and signaling inhibitors stimulate adventitious shoot formation in ipecac, suggesting their potential use as novel growth regulators in plant tissue culture, but the molecular mechanism of their action is unclear. In this study, we compared the effects of SL-related inhibitors (TIS108 and KK094) and CKs (2iP, tZ, and kinetin) on adventitious shoot formation in ipecac. Exogenously applied SL-related inhibitors and CKs stimulated adventitious shoot formation. Combinations of SL-related inhibitors and kinetin also promoted adventitious shoot formation, but without additive effects. We also analyzed the expression of CK biosynthesis genes in ipecac. TIS108 increased the expression of the ipecac homolog of ISOPENTENYL TRANSFERASE 3 (CiIPT3) but decreased that of LONELY GUY 7 homolog (CiLOG7), presumably resulting in no change in 2iP-type CK levels. KK094 and kinetin increased CiLOG7 expression, elevating 2iP-type CK levels. Among pluripotency- and meristem-related genes, TIS108, KK094, and kinetin consistently increased the expression of ENHANCER OF SHOOT REGENERATION 2 homolog (CiESR2), which has a key role in shoot regeneration, in the internodal segment region that formed adventitious shoots. We propose that CiESR2 might be a key stimulator of adventitious shoot formation in ipecac.


Asunto(s)
Citocininas , Ipeca , Cinetina/farmacología , Ipeca/farmacología , Brotes de la Planta , Citocininas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología
14.
Sensors (Basel) ; 23(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37430866

RESUMEN

Photodetectors that can operate over a wide range of temperatures, from cryogenic to elevated temperatures, are crucial for a variety of modern scientific fields, including aerospace, high-energy science, and astro-particle science. In this study, we investigate the temperature-dependent photodetection properties of titanium trisulfide (TiS3)- in order to develop high-performance photodetectors that can operate across a wide range of temperatures (77 K-543 K). We fabricate a solid-state photodetector using the dielectrophoresis technique, which demonstrates a quick response (response/recovery time ~0.093 s) and high performance over a wide range of temperatures. Specifically, the photodetector exhibits a very high photocurrent (6.95 × 10-5 A), photoresponsivity (1.624 × 108 A/W), quantum efficiency (3.3 × 108 A/W·nm), and detectivity (4.328 × 1015 Jones) for a 617 nm wavelength of light with a very weak intensity (~1.0 × 10-5 W/cm2). The developed photodetector also shows a very high device ON/OFF ratio (~32). Prior to fabrication, the TiS3 nanoribbons were synthesized using the chemical vapor technique and characterized according to their morphology, structure, stability, and electronic and optoelectronic properties; this was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and a UV-Visible-NIR spectrophotometer. We anticipate that this novel solid-state photodetector will have broad applications in modern optoelectronic devices.

15.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176006

RESUMEN

In this work, we present an analysis of the antibacterial activity of TiS3 nanostructures in water and 0.9% NaCl solution suspensions. TiS3 nanoribbons 1-10 µm long, 100-300 nm wide, and less than 100 nm thick were produced by the direct reaction of pure titanium powder with elemental sulphur in a quartz tube sealed under vacuum. For the toxicity test of a bioluminescent strain of E. coli we used concentrations from 1 to 0.0001 g L-1 and also studied fresh suspensions and suspensions left for 24 h. The strongest toxic effect was observed in freshly prepared water solutions where the luminescence of bacteria decreased by more than 75%. When saline solution was substituted for water or when the solutions were stored for 24 h it resulted in a considerable decrease in the TiS3 antibacterial effect. The toxicity of TiS3 in water exceeded the toxicity of the reference TiO2 nanoparticles, though when saline solution was used instead of water the opposite results were observed. In addition, we did not find a relationship between the antibacterial activity of water suspensions of nanoribbons and the stability of their colloidal systems, which indicates an insignificant contribution to the toxicity of aggregation processes. In 0.9% NaCl solution suspensions, toxicity increased in proportion to the increase in the zeta potential. We suppose that the noted specificity of toxicity is associated with the emission of hydrogen sulphide molecules from the surface of nanoribbons, which, depending on the concentration, can either decrease or increase oxidative stress, which is considered the key mechanism of nanomaterial cytotoxicity. However, the exact underlying mechanisms need further investigation. Thus, we have shown an important role of the dispersion medium and the period of storage in the antibacterial activity of TiS3 nanoribbons. Our results could be used in nanotoxicological studies of other two-dimensional nanomaterials, and for the development of novel antibacterial substances and other biomedical applications of this two-dimensional material.


Asunto(s)
Nanotubos de Carbono , Titanio , Titanio/toxicidad , Titanio/química , Escherichia coli , Solución Salina , Suspensiones , Antibacterianos/farmacología , Antibacterianos/química , Agua/química
16.
Nanotechnology ; 33(48)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35896084

RESUMEN

Herein, the TiS2nanosheets (NSs) are prepared from the TiS2bulk by the liquid-phase exfoliation to fabricate photoelectrochemical-type (PEC) photodetector. SEM images and Raman spectra show the successful acquisition of the TiS2NSs. The as-prepared TiS2photodetector shows self-powered ability with an applicable photoresponsivity that is about 0.37µA W-1under zero bias potential and 80 mW cm-2visible light, and the response time of rise is 0.67 s and the decay time is 2.81 s. In this case, the photodetector is made of ITO-coated polyethylene terephthalate (PET), so it can maintain stable performance under the bending conditions. These results display that the as-prepared photodetector has excellent photoelectric properties, which facilitates the development of TiS2NSs in optoelectronic devices.

17.
Plant Cell Rep ; 41(7): 1613-1626, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35680714

RESUMEN

KEY MESSAGE: We have demonstrated that strigolactone inhibitor, Tis108, could be used to improve shoot regeneration of apple, and provided insights into the molecular mechanism of strigolactone-mediated inhibition of adventitious shoot formation. Lack of an efficient transformation system largely stagnated the application of transgenic and CRISPR technology in apple rootstock. High shoot regeneration ability is an important basis for establishing an effective transformation system. In this study, we first demonstrated the inhibitory effects of strigolactones on the adventitious shoot formation of apple rootstock M26. Next, we successfully verified that strigolactone-biosynthesis inhibitor, Tis108, could be used to improve the shoot regeneration of woody plants. Our results also suggest strigolactone-biosynthesis gene, MdCCD7, can be a target gene for biotechnological improvements of shoot regeneration capacity. Furthermore, we have employed transcriptome analysis to reveal the molecular mechanism of strigolactone-mediated inhibition of adventitious shoot formation. Differentially expressed genes associated with photosynthesis, secondary growth, and organ development were identified. WGCNA suggests SLs might affect shoot regeneration through interaction with other hormones, especially, auxin, cytokinin, and ethylene. We were able to identify important candidate genes mediating the cross-talk between strigolactone and other hormones during the process of adventitious shoot formation. Overall, our findings not only propose a useful chemical for improving shoot regeneration in practice but also provide insights into the molecular mechanism of strigolactone-mediated inhibition of adventitious shoot formation.


Asunto(s)
Malus , Perfilación de la Expresión Génica , Compuestos Heterocíclicos con 3 Anillos , Hormonas , Ácidos Indolacéticos/farmacología , Lactonas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta
18.
Cytopathology ; 33(3): 305-311, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35213747

RESUMEN

BACKGROUND: Cytology of serous effusions is an important diagnostic tool for the diagnosis of cancer, staging, and prognosis of the patient. Herein, we retrospectively applied the International System for Reporting Serous Fluid Cytopathology (TIS) and provided the corresponding risks of malignancy (ROMs). METHODS: Pleural, pericardial, and peritoneal effusion samples were retrieved from the archives of our department and reclassified according to the TIS. The ROM for each category was calculated based on available surgical follow-up. RESULTS: A total of 3790 effusions were studied. Pleural samples (1292) were reclassified as follows: 27 (2.1%) as non-diagnostic (ND), 1014 (78.5%) as negative for malignancy (NFM), 86 (6.6%) as atypia of undetermined significance (AUS), 29 (2.3%) as suspicious of malignancy (SFM), and 136 (10.5%) as malignant (M). Pericardial samples (241) were reclassified as follows: 4 (1.6%) as ND, 173 (71.8%) as NFM, 10 (4.1%) as AUS, 7 (3%) as SFM, and 47 (19.5%), as M. Peritoneal cases (2257) were re-categorised as follows: 31 (1.4%) as ND, 1897 (84%) as NFM, 39 (1.7%) as AUS, 53 (2.4%) as SFM, and 237 (10.5%) as M. The respective ROM values for each category were 18.5%, 15%, 45.3%, 93%, and 100% in pleural effusions; 25%, 13.2%, 35%, 100%, and 100% in pericardial effusions; and 19.3%, 10.4%, 43.5%, 100%, and 100% in peritoneal effusions. CONCLUSIONS: Pleural, pericardial, and peritoneal cytology show high specificity and moderate sensitivity in the evaluation of serous effusions. The ROMs reported in our study were mostly concordant with those published according to the TIS.


Asunto(s)
Neoplasias , Derrame Pericárdico , Citodiagnóstico , Exudados y Transudados , Humanos , Neoplasias/diagnóstico , Neoplasias/patología , Derrame Pericárdico/diagnóstico , Derrame Pericárdico/patología , Estudios Retrospectivos
19.
Proc Natl Acad Sci U S A ; 116(42): 21022-21030, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570624

RESUMEN

RNA molecules cannot fold in the absence of counterions. Experiments are typically performed in the presence of monovalent and divalent cations. How to treat the impact of a solution containing a mixture of both ion types on RNA folding has remained a challenging problem for decades. By exploiting the large concentration difference between divalent and monovalent ions used in experiments, we develop a theory based on the reference interaction site model (RISM), which allows us to treat divalent cations explicitly while keeping the implicit screening effect due to monovalent ions. Our theory captures both the inner shell and outer shell coordination of divalent cations to phosphate groups, which we demonstrate is crucial for an accurate calculation of RNA folding thermodynamics. The RISM theory for ion-phosphate interactions when combined with simulations based on a transferable coarse-grained model allows us to predict accurately the folding of several RNA molecules in a mixture containing monovalent and divalent ions. The calculated folding free energies and ion-preferential coefficients for RNA molecules (pseudoknots, a fragment of the rRNA, and the aptamer domain of the adenine riboswitch) are in excellent agreement with experiments over a wide range of monovalent and divalent ion concentrations. Because the theory is general, it can be readily used to investigate ion and sequence effects on DNA properties.


Asunto(s)
Cationes Bivalentes/metabolismo , Cationes Monovalentes/metabolismo , Pliegue del ARN/fisiología , ARN/metabolismo , Iones/metabolismo , Termodinámica
20.
Cytopathology ; 33(1): 93-99, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34411371

RESUMEN

BACKGROUND: The global pandemic of the coronavirus disease 2019 represents a major concern for health services worldwide, and has also induced major changes in cytopathology practice. AIM: We aimed to verify the diagnostic performance of cytological evaluation under a new safety protocol during the pandemic compared to the standard pre-pandemic procedure. We also aimed to assess how cytological diagnoses and sampling were impacted during the pandemic period compared to the pandemic-free period in 2019. MATERIALS AND METHODS: Cytological samples of peritoneal washings taken during the first 10 months of the pandemic emergency in Italy (March 11, 2020 to January 11, 2021) were compared to samples from the preceding 10-month time frame (May 11, 2019 to March 10, 2020). RESULTS: One hundred ninety-five specimens were analysed in the present study. We observed no noticeable differences in cytological diagnoses during the pandemic period compared to the pre-pandemic period. The case numbers by diagnostic category for the pre-pandemic vs pandemic periods, respectively, were as follows: non-diagnostic, 0 vs 0 cases; negative for malignancy, 86 vs 52 cases; atypia of uncertain significance, 7 vs 1 cases; suspicious for malignancy, 0 vs 2 cases; malignant, 42 vs 4 cases. CONCLUSION: While a consistent reduction in the number of cytological examinations has been observed during the COVID-19 period, our institutional safety protocol for processing cytological samples did not affect the diagnostic reliability of peritoneal washing cytology.


Asunto(s)
COVID-19/diagnóstico , Citodiagnóstico , Técnicas Citológicas , SARS-CoV-2/patogenicidad , COVID-19/complicaciones , Técnicas Citológicas/métodos , Humanos , Italia , Neoplasias/patología , Manejo de Especímenes/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA