Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35112131

RESUMEN

Stem cells enter and exit quiescence as part of normal developmental programs and to maintain tissue homeostasis in adulthood. Although it is clear that stem cell intrinsic and extrinsic cues, local and systemic, regulate quiescence, it remains unclear whether intrinsic and extrinsic cues coordinate to control quiescence and how cue coordination is achieved. Here, we report that Notch signaling coordinates neuroblast intrinsic temporal programs with extrinsic nutrient cues to regulate quiescence in Drosophila. When Notch activity is reduced, quiescence is delayed or altogether bypassed, with some neuroblasts dividing continuously during the embryonic-to-larval transition. During embryogenesis before quiescence, neuroblasts express Notch and the Notch ligand Delta. After division, Delta is partitioned to adjacent GMC daughters where it transactivates Notch in neuroblasts. Over time, in response to intrinsic temporal cues and increasing numbers of Delta-expressing daughters, neuroblast Notch activity increases, leading to cell cycle exit and consequently, attenuation of Notch pathway activity. Quiescent neuroblasts have low to no active Notch, which is required for exit from quiescence in response to nutrient cues. Thus, Notch signaling coordinates proliferation versus quiescence decisions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Ciclo Celular , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
2.
J Biol Chem ; 299(8): 104803, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37172723

RESUMEN

Interleukin-1ß is one of the most potent inducers of beta cell inflammation in the lead-up to type 1 diabetes. We have previously reported that IL1ß-stimulated pancreatic islets from mice with genetic ablation of stress-induced pseudokinase TRB3(TRB3KO) show attenuated activation kinetics for the MAP3K MLK3 and JNK stress kinases. However, JNK signaling constitutes only a portion of the cytokine-induced inflammatory response. Here we report that TRB3KO islets also show a decrease in amplitude and duration of IL1ß-induced phosphorylation of TAK1 and IKK, kinases that drive the potent NF-κB proinflammatory signaling pathway. We observed that TRB3KO islets display decreased cytokine-induced beta cell death, preceded by a decrease in select downstream NF-κB targets, including iNOS/NOS2 (inducible nitric oxide synthase), a mediator of beta cell dysfunction and death. Thus, loss of TRB3 attenuates both pathways required for a cytokine-inducible, proapoptotic response in beta cells. In order to better understand the molecular basis of TRB3-enhanced, post-receptor IL1ß signaling, we interrogated the TRB3 interactome using coimmunoprecipitation followed by mass spectrometry to identify immunomodulatory protein Flightless homolog 1 (Fli1) as a novel, TRB3-interacting protein. We show that TRB3 binds and disrupts Fli1-dependent sequestration of MyD88, thereby increasing availability of this most proximal adaptor required for IL1ß receptor-dependent signaling. Fli1 sequesters MyD88 in a multiprotein complex resulting in a brake on the assembly of downstream signaling complexes. By interacting with Fli1, we propose that TRB3 lifts the brake on IL1ß signaling to augment the proinflammatory response in beta cells.


Asunto(s)
Proteínas de Ciclo Celular , Interleucina-1beta , Transducción de Señal , Animales , Ratones , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal/genética , Inhibidores Enzimáticos/farmacología , Apoptosis/efectos de los fármacos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Activación Transcripcional/genética
3.
J Hepatol ; 80(5): 778-791, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38237865

RESUMEN

BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress of hepatocytes plays a causative role in non-alcoholic fatty liver disease (NAFLD). Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. Whether ER stress regulates HNF4α expression remains unknown. The aim of this study was to delineate the machinery of HNF4α protein degradation and explore a therapeutic strategy based on protecting HNF4α stability during NAFLD progression. METHODS: Correlation of HNF4α and tribbles homologue 3 (TRIB3), an ER stress sensor, was evaluated in human and mouse NAFLD tissues. RNA-sequencing, mass spectrometry analysis, co-immunoprecipitation, in vivo and in vitro ubiquitination assays were used to elucidate the mechanisms of TRIB3-mediated HNF4α degradation. Molecular docking and co-immunoprecipitation analyses were performed to identify a cell-penetrating peptide that ablates the TRIB3-HNF4α interaction. RESULTS: TRIB3 directly interacts with HNF4α and mediates ER stress-induced HNF4α degradation. TRIB3 recruits tripartite motif containing 8 (TRIM8) to form an E3 ligase complex that catalyzes K48-linked polyubiquitination of HNF4α on lysine 470. Abrogating the degradation of HNF4α attenuated the effect of TRIB3 on a diet-induced NAFLD model. Moreover, the TRIB3 gain-of-function variant p.Q84R is associated with NAFLD progression in patients, and induces lower HNF4α levels and more severe hepatic steatosis in mice. Importantly, disrupting the TRIB3-HNF4α interaction using a cell-penetrating peptide restores HNF4α levels and ameliorates NAFLD progression in mice. CONCLUSIONS: Our findings unravel the machinery of HNF4α protein degradation and indicate that targeting TRIB3-TRIM8 E3 complex-mediated HNF4α polyubiquitination may be an ideal strategy for NAFLD therapy. IMPACT AND IMPLICATIONS: Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. However, the mechanism of HNF4α protein degradation remains unknown. Herein, we reveal that TRIB3-TRIM8 E3 ligase complex is responsible for HNF4α degradation during NAFLD. Inhibiting the TRIB3-HNF4α interaction effectively stabilized HNF4α protein levels and transcription factor activity in the liver and ameliorated TRIB3-mediated NAFLD progression. Our findings demonstrate that disturbing the TRIM8-TRIB3-HNF4α interaction may provide a novel approach to treat NAFLD and even other liver diseases by stabilizing the HNF4α protein.


Asunto(s)
Péptidos de Penetración Celular , Enfermedad del Hígado Graso no Alcohólico , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Ratones , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Péptidos de Penetración Celular/metabolismo , Hígado/patología , Simulación del Acoplamiento Molecular , Proteínas del Tejido Nervioso , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras , Ubiquitina-Proteína Ligasas/metabolismo
4.
EMBO J ; 38(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30692133

RESUMEN

COP1 is a highly conserved ubiquitin ligase that regulates diverse cellular processes in plants and metazoans. Tribbles pseudokinases, which only exist in metazoans, act as scaffolds that interact with COP1 and its substrates to facilitate ubiquitination. Here, we report that, in addition to this scaffolding role, TRIB1 promotes nuclear localization of COP1 by disrupting an intramolecular interaction between the WD40 domain and a previously uncharacterized regulatory site within COP1. This site, which we have termed the pseudosubstrate latch (PSL), resembles the consensus COP1-binding motif present in known COP1 substrates. Our findings support a model in which binding of the PSL to the WD40 domain stabilizes a conformation of COP1 that is conducive to CRM1-mediated nuclear export, and TRIB1 displaces this intramolecular interaction to induce nuclear retention of COP1. Coevolution of Tribbles and the PSL in metazoans further underscores the importance of this role of Tribbles in regulating COP1 function.


Asunto(s)
Núcleo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Carioferinas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Repeticiones WD40 , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Núcleo Celular/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Carioferinas/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Homología de Secuencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteína Exportina 1
5.
Genes Cells ; 27(2): 145-151, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34918430

RESUMEN

Limited oxygen availability impairs normal body growth, although the underlying mechanisms are not fully understood. In Drosophila, hypoxic responses in the larval fat body (FB) disturb the secretion of insulin-like peptides from the brain, inhibiting body growth. However, the cell-autonomous effects of hypoxia on the insulin-signaling pathway in larval FB have been underexplored. In this study, we aimed to examine the effects of overexpression of Sima, a Drosophila hypoxia-inducible factor-1 (HIF-1) α homolog and a key component of HIF-1 transcription factor essential for hypoxic adaptation, on the insulin-signaling pathway in larval FB. Forced expression of Sima in FB reduced the larval body growth with reduced Akt phosphorylation levels in FB cells and increased hemolymph sugar levels. Sima-mediated growth inhibition was reversed by overexpression of TOR or suppression of FOXO. After Sima overexpression, larvae showed higher expression levels of Tribbles, a negative regulator of Akt activity, and a simultaneous knockdown of Tribbles completely abolished the effects of Sima on larval body growth. Furthermore, a reporter analysis revealed Tribbles as a direct target gene of Sima. These results suggest that Sima in FB evokes Tribbles-mediated insulin resistance and consequently protects against aberrant insulin-dependent larval body growth under hypoxia.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Proteínas de Drosophila , Drosophila , Proteínas Serina-Treonina Quinasas , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cuerpo Adiposo/metabolismo , Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Larva/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
6.
Turk J Med Sci ; 53(6): 1697-1703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38813505

RESUMEN

Background/aim: This study was designed to evaluate the relationship of two new biomarkers [tribbles homolog 3 (TRB3) and sestrin 2 levels], which were previously associated with obesity, with metabolic parameters in obese and nonobese women with polycystic ovary syndrome (PCOS). Materials and methods: This cross-sectional case control study was conducted between September 2017 and August 2019 in the gynecology department of a tertiary referral hospital. The values of the plasma sestrin 2, TRB3, insulin, fasting plasma glucose, lipid profile, and homeostasis model assessment of insulin resistance (HOMA-IR) were compared in 90 obese women with PCOS (BMI > 30), 90 women with nonobese PCOS (BMI < 30), and 90 control patients (BMI < 30). Results: The mean age of the study group consisting of all PCOS patients (26.11 ± 4.64 years) and the mean age of the control group (26.3 ± 4.4 years) were statistically similar (p = 0.239). The serum sestrin 2 values of the obese PCOS group were found to be statistically significantly lower than the control and non-obese PCOS groups (p = 0.001, p = 0.0001), while the sestrin 2 values of the nonobese PCOS group were found to be statistically significantly lower than the control group (p = 0.0001). The TRB3 values of the control group were found to be statistically significantly lower than the obese and nonobese PCOS groups (p = 0.0001), while the TRB3 values of the nonobese PCOS group were found to be statistically significantly lower than the obese PCOS group (p = 0.0001). A negative correlation was observed between the sestrin 2 level and BMI (r = -0.272 p = 0.0001), insulin (r = -0.261 p = 0.0001), and HOMA-IR levels (r = -0.250 p = 0.0001). A positive correlation was observed between the TRB3 values and TG (r = 0.248 p = 0.0001), and LDL-C values (r = 0.235 p = 0.0001). Conclusion: According to the findings in this study, low sestrin 2 and high TRB3 levels may be related to impaired metabolic status in the obese PCOS group. Thus, it may be promising for the development of treatment of PCOS and associated metabolic disorder in the future.


Asunto(s)
Biomarcadores , Obesidad , Síndrome del Ovario Poliquístico , Proteínas Serina-Treonina Quinasas , Humanos , Femenino , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/complicaciones , Obesidad/sangre , Obesidad/complicaciones , Adulto , Estudios de Casos y Controles , Estudios Transversales , Proteínas Serina-Treonina Quinasas/sangre , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Biomarcadores/sangre , Resistencia a la Insulina/fisiología , Proteínas Nucleares/sangre , Adulto Joven , Glucemia/metabolismo , Glucemia/análisis , Sestrinas , Proteínas Represoras , Proteínas de Ciclo Celular
7.
Proteins ; 90(4): 993-1004, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34881468

RESUMEN

Tribbles pseudokinases, Tribbles homolog 1 (TRIB1), Tribbles homolog 2 (TRIB2), and Tribbles homolog 3 (TRIB3), bind to constitutive photomorphogenesis protein 1 (COP1) E3 ligase to mediate the regulation of ß-catenin expression. The interaction mechanism between COP1 E3 ligase and ß-catenin has not been addressed to date. Based on the functional presence of TRIBs in wingless-related integration site (WNT) signaling, we analyzed their interaction patterns with ß-catenin and COP1. Here, through in silico approaches, we ascribe the COP1 binding pattern against TRIBs and ß-catenin. TRIB1 (355-DQIVPEY-361), TRIB2 (326-DQLVPDV-332), and TRIB3 (333-AQVVPDG-339) peptides revealed a shallow binding pocket at the COP1 interface to accommodate the V-P sequence motif. Reinvigoration of the comparative binding pattern and subtle structural analysis via docking, molecular dynamics simulations, molecular mechanics Poisson-Boltzmann surface area, topological, and tunnel analysis revealed that both ß-catenin phosphodegron (DSGXXS) and TRIB (D/E/AQXVPD/E) motifs occupied a common COP1 binding site. Current study suggests a structural paradigm of TRIB homologs bearing a conserved motif that may compete with ß-catenin phosphodegron signature for binding to WD40 domain of COP1. Thorough understanding of the structural basis for TRIB-mediated regulation of WNT/ß-catenin signaling may help in devising more promising therapeutic strategy for liver and colorectal cancers.


Asunto(s)
Ubiquitina-Proteína Ligasas , beta Catenina , Sitios de Unión , Simulación de Dinámica Molecular , Transducción de Señal , Ubiquitina-Proteína Ligasas/química , beta Catenina/genética , beta Catenina/metabolismo
8.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36142452

RESUMEN

Aberrant expression or activity of proteins are amongst the best understood mechanisms that can drive cancer initiation and progression, as well as therapy resistance. TRIB3, a member of the Tribbles family of pseudokinases, is often dysregulated in cancer and has been associated with breast cancer initiation and metastasis formation. However, the underlying mechanisms by which TRIB3 contributes to these events are unclear. In this study, we demonstrate that TRIB3 regulates the expression of PPARγ, a transcription factor that has gained attention as a potential drug target in breast cancer for its antiproliferative actions. Proteomics and phosphoproteomics analyses together with classical biochemical assays indicate that TRIB3 interferes with the MLL complex and reduces MLL-mediated H3K4 trimethylation of the PPARG locus, thereby reducing PPARγ mRNA expression. Consequently, the overexpression of TRIB3 blunts the antiproliferative effect of PPARγ ligands in breast cancer cells, while reduced TRIB3 expression gives the opposite effect. In conclusion, our data implicate TRIB3 in epigenetic gene regulation and suggest that expression levels of this pseudokinase may serve as a predictor of successful experimental treatments with PPARγ ligands in breast cancer.


Asunto(s)
Neoplasias de la Mama , Proteínas de Ciclo Celular , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/metabolismo , Femenino , Humanos , Ligandos , PPAR gamma/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , Proteínas Represoras/genética , Factores de Transcripción
9.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163410

RESUMEN

Diabetic retinopathy (DR) is an ocular complication of diabetes mellitus (DM), a metabolic disorder characterized by elevation in blood glucose level. The pathogenesis of DR includes vascular, neuronal, and inflammatory components leading to activation of complex cellular molecular signaling. If untreated, the disease can culminate in vision loss that eventually leads to blindness. Animal models mimicking different aspects of DM complications have been developed to study the development and progression of DR. Despite the significant contribution of the developed DR models to discovering the mechanisms of DR and the recent achievements in the research field, the sequence of cellular events in diabetic retinas is still under investigation. Partially, this is due to the complexity of molecular mechanisms, although the lack of availability of models that adequately mimic all the neurovascular pathobiological features observed in patients has also contributed to the delay in determining a precise molecular trigger. In this review, we provide an update on the status of animal models of DR to help investigators choose an appropriate system to validate their hypothesis. We also discuss the key cellular and physiological events of DR in these models.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Retina/metabolismo , Transducción de Señal , Animales , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/terapia , Retinopatía Diabética/patología , Retinopatía Diabética/terapia , Humanos
10.
Reprod Biol Endocrinol ; 19(1): 139, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503515

RESUMEN

BACKGROUND: Granulosa cells (GCs) in cumulus oophorus highly express follicle stimulating hormone receptor (FSHR), which is the most important mediator of both estradiol synthesis and oocyte maturation. Obese women have elevated free fatty acids (FFAs) levels in their follicular fluids and decreased FSHR expression in GCs, which is related to an altered protein kinase B/glycogen synthase kinase 3ß (Akt/GSK3ß) signaling pathway. Such FFA increases accompany 3-fold rises in pseudokinase 3 (TRIB3) expression and reduce the Akt phosphorylation status in both the human liver and in insulinoma cell lines. Therefore, in a high FFA environment, we determined if TRIB3 mediates regulation of FSHR via the Akt/GSK3ß signaling pathway in human GCs. METHODS: GCs from women undergoing in vitro fertilization were collected and designated as high and low FFAs cohorts based on their follicular fluid FFA content. GCs with low FFA levels and a human granulosa-like tumor (KGN) cell line were exposed to palmitic acid (PA), which is a dominate FFA follicular fluid constituent. The effects were assessed of this substitution on the Akt/GSK3ß signaling pathway activity as well as the expressions of TRIB3 and FSHR at both the gene and protein levels by qPCR, Western blot and immunofluorescence staining analyses. Meanwhile, the individual effects of TRIB3 knockdown in KGN cells and p-AKT inhibitors were compared to determine the mechanisms of FFA-induced FSHR downregulation. RESULTS: The average FSH dose consuming per oocyte (FSH dose/oocyte) was elevated and Top embryo quality ratio was decreased in women with high levels of FFAs in their follicular fluid. In these women, the GC TRIB3 and ATF4 protein expression levels were upregulated which was accompanied by FSHR downregulation. Such upregulation was confirmed based on corresponding increases in their gene expression levels. On the other hand, the levels of p-Akt decreased while p-GSK3ß increased in the GCs. Moreover, TRIB3 knockdown reversed declines in FSHR expression and estradiol (E2) production in KGN cells treated with PA, which also resulted in increased p-Akt levels and declines in the p-GSK3ß level. In contrast, treatment of TRIB3-knockdown cells with an inhibitor of p-Akt (Ser473) resulted in rises in the levels of both p-GSK3ß as well as FSHR expression whereas E2 synthesis fell. CONCLUSIONS: During exposure to a high FFA content, TRIB3 can reduce FSHR expression through stimulation of the Akt/GSK3ß pathway in human GCs. This response may contribute to inducing oocyte maturation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ácidos Grasos no Esterificados/metabolismo , Regulación de la Expresión Génica , Células de la Granulosa/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Receptores de HFE/genética , Proteínas Represoras/genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Adulto , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Células Cultivadas , Estradiol/metabolismo , Femenino , Fertilización In Vitro/métodos , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Infertilidad Femenina/terapia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Receptores de HFE/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/genética
11.
Cell Commun Signal ; 19(1): 41, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794905

RESUMEN

The family of Tribbles proteins play many critical nonenzymatic roles and regulate a wide range of key signaling pathways. Tribbles homolog 2 (Trib2) is a pseudo serine/threonine kinase that functions as a scaffold or adaptor in various physiological and pathological processes. Trib2 can interact with E3 ubiquitin ligases and control protein stability of downstream effectors. This protein is induced by mitogens and enhances the propagation of several cancer cells, including myeloid leukemia, liver, lung, skin, bone, brain, and pancreatic. Thus, Trib2 can be a predictive and valuable biomarker for the diagnosis and treatment of cancer. Recent studies have illustrated that Trib2 plays a major role in cell fate determination of stem cells. Stem cells have the capacity to self-renew and differentiate into specific cell types. Stem cells are important sources for cell-based regenerative medicine and drug screening. Trib2 has been found to increase the self-renewal ability of embryonic stem cells, the reprogramming efficiency of somatic cells, and chondrogenesis. In this review, we will focus on the recent advances of Trib2 function in tumorigenesis and stem cell fate decisions. Video abstract.


Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/patología , Linaje de la Célula , Proteínas Serina-Treonina Quinasas/metabolismo , Células Madre/citología , Humanos , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/química
12.
Zhonghua Gan Zang Bing Za Zhi ; 29(5): 439-445, 2021 May 20.
Artículo en Zh | MEDLINE | ID: mdl-34107581

RESUMEN

Objective: To explore the regulatory role and mechanism of tribbles pseudokinase 3 (TRB3) on hepatocarcinoma (HCC) cells proliferation, apoptosis and migration. Methods: Immunohistochemistry and Western blot were used to detect TRB3 expression in cancerous and adjacent cancerous liver tissues of HCC patients. TRB3 expression was detected in vitro in HepG2 and Huh7 hepatocarcinoma cell lines. Simultaneously, CCK8 and EdU were used to detect cell proliferation after TRB3 targeted inhibition with small interfering RNA. CCK8 and EdU were used to detect cell proliferation. Flow cytometry assay was used to detect apoptosis. Transwell assay was used to evaluate migration ability. Simultaneously, Western blot was used to detect changes in apoptosis, migration-related proteins and AKT phosphorylation activity. The mean comparison between the two groups was performed by t-test, and the comparison between multiple groups was performed by one-way analysis of variance. Results: Western blot showed that the expression of TRB3 was significantly up-regulated in HCC tissues. Compared with normal liver tissues adjacent to cancer, the relative expression levels were 0.78 ± 0.12 and 0.29 ± 0.09, respectively, P < 0.01, and the difference was statistically significant. After interfering siRNA inhibited TRB3, CCK8 and EdU tests showed that the proliferation activity of HepG2 and Huh7 cells were significantly weakened (P < 0.05). Flow cytometry results showed that the apoptotic proportions of HepG2 and Huh7 cells was significantly increased (P < 0.01). Western blot also showed that the expression of apoptosis regulatory proteins BAX and BIM were significantly increased (P < 0.01). Transwell assay results showed that the migration ability of HepG2 and Huh7 cells was decreased (P < 0.05), and the expression of migration regulatory proteins MMP4 and MMP9 was also significantly down-regulated. Western blot results showed that the AKT phosphorylation level was significantly increased. Conclusion: TRB3 regulates hepatocarcinoma cells proliferation, apoptosis and migration by inhibiting the AKT phosphorylation activity. Therefore, TRB3 may be a potential target site for the liver cancer treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptosis , Carcinoma Hepatocelular/genética , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética
13.
J Cell Biochem ; 120(11): 18883-18893, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31219211

RESUMEN

Aerobic training induces adaptive responses in skeletal muscles and white adipose tissues, thus facilitating lipid utilization as energy substrates during a physical exercise session. However, the effects of training on cytokines levels and on transcription factors involved in lipid metabolism in muscle and different white adipose depots are still unclear; therefore, these were the aims of the present study. Nineteen adult male Wistar rats were randomly assigned to a trained group or a control, non-trained group. The 10-week training protocol consisted of running on a treadmill, during 1 hour per day, 5 days per week, at 75% of maximum aerobic speed. As expected, trained rats improved their aerobic performance and had augmented citrate synthase activity in the soleus, while the control rats did not. Although body weight was not different between groups, the adiposity index and white adipose depots (ie, epididymal and retroperitoneal) were reduced in trained rats. Training reduced serum concentration of insulin, but failed to change serum concentrations of glucose, triacylglycerol, total cholesterol, and nonesterified fatty acids. Training increased sterol regulatory element-binding protein-1c expression in the gastrocnemius and epididymal adipose tissue, and reduced peroxisome proliferator-activated receptor γ (PPARγ) expression in most of the tissues analyzed. The expression of PPARα and carnitine palmitoyltransferase 1 increased in the gastrocnemius and mesenteric adipose tissue but reduced in epididymal adipose tissue. Triacylglycerol content and tribbles 3 expression reduced in the gastrocnemius of trained rats. Tumor necrosis factor-α and interleukin-6 were increased in all adipose depots evaluated. Collectively, our data indicate that the 10-week aerobic training changed gene expression to improve muscle oxidative metabolism and facilitate lipid degradation in adipose tissues. Our data also highlight the existence of adaptive responses that are distinct between the skeletal muscle and white adipose tissue and between different adipose depots.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Regulación de la Expresión Génica/fisiología , Metabolismo de los Lípidos/fisiología , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Tejido Adiposo Blanco/citología , Animales , Masculino , Músculo Esquelético/citología , Ratas , Ratas Wistar
14.
Cell Physiol Biochem ; 48(4): 1543-1555, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30071535

RESUMEN

BACKGROUND/AIMS: Obesity is a serious health risk factor strongly associated with insulin resistance and type 2 diabetes; however, the underlying mechanisms associating obesity with insulin resistance remain unknown. In this study, we explored the physiological role of Trib3 in regulating glucose metabolism in skeletal muscle tissues in a Trib3 transgenic mice model. METHODS: Glucose metabolism in transgenic mice overexpressing Trib3 specifically in the skeletal muscle was examined by glucose/insulin tolerance test, metabolic cage studies, and glucose uptake assay. The effect of Trib3 overexpression on AKT phosphorylation and AKT protein turnover were assessed by RT-PCR and immunoblot analysis. Subcellular distribution of Trib3 and AKT1/2 was determined by microscopic analysis, co-immunoprecipitation experiments, and limited-detergent extraction of subcellular organelles. Ubiquitin assay was performed and ATG7 deficient cell line was employed to address the mechanisms of Trib3-dependent AKT protein homeostasis. RESULTS: We found that Trib3 expression in skeletal muscle is elevated in obese conditions, and transgenic mice that overexpressed Trib3, specifically in skeletal muscle tissues, displayed impaired glucose homeostasis by suppressing insulin-stimulated glucose uptake. Disruption of insulin signaling in skeletal muscle Trib3 transgenic mice may occur due to the specific downregulation of AKT2 but not AKT1. Autophagy regulated AKT2 protein turnover, and Trib3 overexpression stimulated autophagic degradation of AKT2 by promoting AKT2 ubiquitination. CONCLUSION: Because diet-induced obesity upregulates Trib3 and downregulates AKT2 in skeletal muscle tissues, Trib3 may play a key role in establishing an association between obesity and insulin resistance by regulating AKT2 protein homeostasis.


Asunto(s)
Autofagia , Proteínas de Ciclo Celular/metabolismo , Músculo Esquelético/metabolismo , Obesidad/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Dieta Alta en Grasa , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Células HeLa , Humanos , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/metabolismo , Obesidad/veterinaria , Fosforilación , Transducción de Señal
15.
Biochim Biophys Acta ; 1862(2): 223-32, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26657055

RESUMEN

Genome-wide association studies for plasma triglycerides and hepatic steatosis identified a risk locus on chromosome 8q24 close to the TRIB1 gene, encoding Tribbles Pseudokinase 1 (TRIB1). In previous studies conducted in murine models, hepatic over-expression of Trib1 was shown to increase fatty acid oxidation and decrease triglyceride synthesis whereas Trib1 knockdown mice exhibited hypertriglyceridemia. Here we have examined the impact of TRIB1 suppression in human and mouse hepatocytes. Examination of a panel of lipid regulator transcripts revealed species-specific effects, prompting us to focus on human models for the remainder of the study. Acute knockdown of TRIB1 in human primary hepatocytes resulted in decreased expression of MTTP and APOB, required for very low density lipoprotein (VLDL) assembly although particle secretion was not significantly affected. A parallel analysis performed in HepG2 revealed reduced MTTP, but not APOB, protein as a result of TRIB1 suppression. Global gene expression changes of human primary hepatocytes upon TRIB1 suppression were analyzed by clustering algorithms and found to be consistent with dysregulation of several pathways fundamental to liver function, including altered CEBPA and B transcript levels and impaired glucose handling. Indeed, TRIB1 expression in HepG2 cells was found to be inversely proportional to glucose concentration. Lastly TRIB1 downregulation in primary hepatocytes was associated with suppression of the HNF4A axis. In HepG2 cells, TRIB1 suppression resulted in reduced HNF4A protein levels while HNF4A suppression increased TRIB1 expression. Taken together these studies reveal an important role for TRIB1 in human hepatocyte biology.


Asunto(s)
Hepatocitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Hígado Graso/genética , Hígado Graso/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
16.
Neurobiol Learn Mem ; 144: 68-76, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28669782

RESUMEN

The tribbles (trbl) pseudokinases play important roles in signaling and physiology in multiple contexts, ranging from innate immunity to cancer, suggesting fundamental cellular functions for the trbls' gene products. Despite expression of the trbl pseudokinases in the nervous systems of invertebrate and vertebrate animals, and evidence that they have a function within mouse and human dopamine neurons, there is no clear case for a function of a Trbl protein that influences behavior. Indeed, the first and only evidence for this type of function comes from Drosophila melanogaster, where a mutation of the single trbl gene was identified in a genetic screen for short-term memory mutant flies. The current study tested flies containing multiple trbl mutant alleles and potential transgenic rescue in both operant place memory and classical olfactory memory paradigms. Genetic complementation tests and transgenic rescue of memory phenotypes in both paradigms show that the D. melanogaster trbl pseudokinase is essential for proper memory formation. Expression analysis with a polyclonal antiserum against Trbl shows that the protein is expressed widely in the fly brain, with higher expression in the cellular rind than the neuropil. Rescue of the behavioral phenotype with transgenic expression indicates the trbl function can be localized to a subset of the nervous system. Thus, we provide the first compelling case for the function of a trbl pseudokinase in the regulation of behavior.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Drosophila/fisiología , Memoria/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Alelos , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Condicionamiento Operante , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
17.
BMC Biol ; 14(1): 104, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27927209

RESUMEN

BACKGROUND: Tribbles proteins are conserved pseudokinases that function to control kinase signalling and transcription in diverse biological processes. Abnormal function in human Tribbles has been implicated in a number of diseases including leukaemia, metabolic syndromes and cardiovascular diseases. Caenorhabditis elegans Tribbles NIPI-3 was previously shown to activate host defense upon infection by promoting the conserved PMK-1/p38 mitogen-activated protein kinase (MAPK) signalling pathway. Despite the prominent role of Tribbles proteins in many species, our knowledge of their mechanism of action is fragmented, and the in vivo functional relevance of their interactions with other proteins remains largely unknown. RESULTS: Here, by characterizing nipi-3 null mutants, we show that nipi-3 is essential for larval development and viability. Through analyses of genetic suppressors of nipi-3 null mutant lethality, we show that NIPI-3 negatively controls PMK-1/p38 signalling via transcriptional repression of the C/EBP transcription factor CEBP-1. We identified CEBP-1's transcriptional targets by ChIP-seq analyses and found them to be enriched in genes involved in development and stress responses. Unlike its cell-autonomous role in innate immunity, NIPI-3 is required in multiple tissues to control organismal development. CONCLUSIONS: Together, our data uncover an unprecedented crosstalk involving multiple tissues, in which NIPI-3 acts as a master regulator to inhibit CEBP-1 and the PMK-1/p38 MAPK pathway. In doing so, it keeps innate immunity in check and ensures proper organismal development.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas Quinasas/genética , Alelos , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Caenorhabditis elegans/genética , Supervivencia Celular , Mapeo Cromosómico , Clonación Molecular , Represión Epigenética , Regulación de la Expresión Génica , Inmunidad Innata , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
BMC Biol ; 14(1): 105, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27927200

RESUMEN

BACKGROUND: Many pathogens secrete toxins that target key host processes resulting in the activation of immune pathways. The secreted Pseudomonas aeruginosa toxin Exotoxin A (ToxA) disrupts intestinal protein synthesis, which triggers the induction of a subset of P. aeruginosa-response genes in the nematode Caenorhabditis elegans. RESULTS: We show here that one ToxA-induced C. elegans gene, the Tribbles pseudokinase ortholog nipi-3, is essential for host survival following exposure to P. aeruginosa or ToxA. We find that NIPI-3 mediates the post-developmental expression of intestinal immune genes and proteins and primarily functions in parallel to known immune pathways, including p38 MAPK signaling. Through mutagenesis screening, we identify mutants of the bZIP C/EBP transcription factor cebp-1 that suppress the hypersusceptibility defects of nipi-3 mutants. CONCLUSIONS: NIPI-3 is a negative regulator of CEBP-1, which in turn negatively regulates protective immune mechanisms. This pathway represents a previously unknown innate immune signaling pathway in intestinal epithelial cells that is involved in the surveillance of cellular homeostasis. Because NIPI-3 and CEBP-1 are also essential for C. elegans development, NIPI-3 is analogous to other key innate immune signaling molecules such as the Toll receptors in Drosophila that have an independent role during development.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Inmunidad Innata , Proteínas Quinasas/metabolismo , ADP Ribosa Transferasas/metabolismo , Animales , Toxinas Bacterianas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/genética , Exotoxinas/metabolismo , Microbioma Gastrointestinal , Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Biosíntesis de Proteínas , Proteínas Quinasas/genética , Pseudomonas aeruginosa , Transducción de Señal , Factores de Virulencia/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Exotoxina A de Pseudomonas aeruginosa
19.
Biochim Biophys Acta ; 1853(10 Pt A): 2492-505, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26094770

RESUMEN

Glucose deprivation occurs in several human diseases, including infarctions and solid tumors, and leads to cell death. In this article, we investigate the role of the pseudokinase Tribbles homolog 3 (TRIB3) in the cellular stress response to glucose starvation using cell lines derived from HEK293, which is highly glycolytic under standard conditions. Our results show that TRIB3 mRNA and protein levels are strongly upregulated in glucose-deprived cells via the induction of activating transcription factor 4 (ATF4) by the endoplasmic reticulum (ER) stress sensor kinase PERK. Cell survival in glucose-deficient conditions is enhanced by TRIB3 overexpression and reduced by TRIB3 knockdown. Genome-wide gene expression profiling uncovered approximately 40 glucose deprivation-responsive genes that are affected by TRIB3, including several genes involved in signaling processes and metabolism. Based on transcription factor motif analysis, the majority of TRIB3-downregulated genes are target genes of ATF4, which TRIB3 is known to inhibit. The gene most substantially upregulated by TRIB3 is insulin-like growth factor binding protein 2 (IGFBP2). IGFBP2 mRNA and protein levels are downregulated in cells subjected to glucose deprivation, and reduced IGFBP2 expression aggravates cell death during glucose deficiency, while overexpression of IGFBP2 prolongs cell survival. Moreover, IGFBP2 silencing abrogates the pro-survival effect of TRIB3. Since TRIB3 augments IGFBP2 expression in glucose-starved cells, the data indicate that IGFBP2 contributes to the attenuation of cell death by TRIB3. These results implicate TRIB3 and IGFBP2, both of which are known to be overexpressed in several types of cancers, as pro-survival modulators of cell viability in nutrient-deficient microenvironments.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/biosíntesis , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Regulación hacia Arriba , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Proteínas de Ciclo Celular/genética , Supervivencia Celular/genética , Silenciador del Gen , Glucosa/genética , Células HEK293 , Humanos , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Represoras/genética , Microambiente Tumoral/genética , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
20.
J Lipid Res ; 56(6): 1145-52, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25921304

RESUMEN

Mammalian tribbles homolog 1 (TRIB1) is a human locus that has been shown to significantly impact plasma lipid levels across several ethnic groups. In addition, the gene has been associated with the occurrence of nonalcoholic fatty liver disease. In the present study, a yeast-two-hybrid system was used to screen for novel molecular targets of TRIB1 binding. Loci corresponding to clones that were positive for TRIB1 binding subsequently were assessed for roles in lipid metabolism in mice using adenoviral constructs to induce knockdown or overexpression. Sin3A-associated protein, 18 kDa (SAP18) was identified as a novel binding partner of TRIB1. Knockdown of the Sap18 in mouse liver decreased plasma lipid levels and increased hepatic lipid levels; SAP18 overexpression showed the opposite effects. Transcriptome analysis of the mouse liver revealed that Sap18 knockdown decreased and SAP18 overexpression increased microsomal TG transfer protein (MTTP) expression levels. Chromatin immunoprecipitation analysis showed that halo-tagged SAP18, halo-tagged TRIB1, and anti-mSin3A antibody enriched precipitates for regulatory sequences of the MTTP gene. Enforced expression of SAP18 enhanced and SAP18 knockdown conversely attenuated the enrichment of MTTP regulatory sequences seen with anti-mSin3A antibody. These studies indicated that SAP18 expression enhanced the recruitment of mSin3A in coordination with TRIB1 to MTTP regulatory elements and increased MTTP expression.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Animales , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/genética , Lípidos/sangre , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Unión Proteica , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Complejo Correpresor Histona Desacetilasa y Sin3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA