Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Comput Chem ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760972

RESUMEN

The regioselective radical CH trifluoromethylation of aromatic compounds have been shown to proceed in good yield and high regioselectivity when cyclodextrin (CD) is present. Yet, the reaction mechanism and the role of CD during the reaction have remained obscure. To this end, here we performed density functional theory (DFT) calculations to the conformations obtained by semiempirical quantum mechanical molecular dynamics calculations to reveal the reaction mechanism and the role of CD in controlling regioselectivity. The results show that metal salt increases the yield but do not affect the regioselectivity, which we further confirmed by an experiment. In contrast, multiple CD-substrate complex conformations and reaction pathways were obtained, and CD was shown to contribute to improving the regioselectivity by stabilizing the intermediate state via encapsulation. The present study indicates that CDs can increase the regioselectivity by stabilizing the intermediate and product states while only marginally affecting the transition state.

2.
Small ; : e2403821, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949043

RESUMEN

Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q-PHJ) exhibits a more stable morphology and superior charge transfer performance. To achieve both high efficiency and long-term stability, it is necessary to design new materials for Q-PHJ devices. In this study, QxIC-CF3 and QxIC-CH3 are designed and synthesized for the first time. The trifluoromethylation of the central core exerts a modulatory effect on the molecular stacking pattern, leveraging the strong electrostatic potential and intermolecular interactions. Compared with QxIC-CH3, the single crystal structure reveals that QxIC-CF3 exhibits a more compact 2D linear stacking behavior. These benefits, combined with the separated electron and hole transport channels in Q-PHJ device, lead to increased charge mobility and reduced energy loss. The devices based on D18/QxIC-CF3 exhibit an efficiency of 18.1%, which is the highest power conversion efficiency (PCE) for Q-PHJ to date. Additionally, the thermodynamic stability of the active layer morphology enhances the lifespan of the aforementioned devices under illumination conditions. Specifically, the T80 is 420 h, which is nearly twice that of the renowned Y6-based BHJ device (T80 = 220 h). By combining the advantages of the trifluoromethylation and Q-PHJ device, efficient and stable organic solar cell devices can be constructed.

3.
Chemistry ; 30(33): e202400995, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38600034

RESUMEN

Introduction of the trifluoromethyl (CF3) group into organic compounds has garnered substantial interest because of its significant role in pharmaceuticals and agrochemicals. Here, we report a hydroxylamine-mediated radical process for C(sp2)-H trifluoromethylation of terminal alkenes. The reaction shows good reactivity, impressive E/Z selectivity (up to >20 : 1), and broad functional group compatibility. Expansion of this approach to perfluoroalkylation and late-stage trifluoromethylation of bioactive molecules demonstrates its promising application potential. Mechanistic studies suggest that the reaction follows a radical addition and subsequent elimination pathway.

4.
Chemistry ; 30(6): e202303468, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37962392

RESUMEN

We herein describe a protocol to synthesize trifluoromethylated alkyl boronates from alkenes by the mutual activation of the Togni II and the bis(catecholato)diboron reagents in the absence of any catalyst and additives. This reaction enables synthesizing a series of trifluoromethylated alkyl boronates using unactivated alkenes, including natural products and drug derivatives, in a regioselective manner. Moreover, the synthetic utility of the boronic ester present in the product allows access to a range of trifluoromethyl containing compounds. The radical trapping and gas detection experiments reveal that the more Lewis acidic diboron reagent determines the rapid formation of trifluoromethyl and boron centered radicals.

5.
Chemistry ; 30(24): e202304056, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38379208

RESUMEN

3-Indole-3-one is a key intermediate in the synthesis of many drugs and plays an important role in synthetic chemistry and biochemistry. A new method for synthesizing trifluoromethylated 3-indoleketones by Pd(0)-catalyzed carbonylation was introduced. In the absence of additives, 1-chloro-3,3,3-trifluoropropyl (an inexpensive and environmentally friendly synthetic block of trifluoromethyl) reacts with indole and carbon monoxide to generate trifluoromethylindole ketones with good yields, regioselectivity, and chemical selectivity; furthermore, the products exhibit strong resistance to basic functional groups, such as alkynes, aldehydes, and esters. In addition to the conversion of indole compounds into corresponding products, pyrrole and heteroindole may be suitable for corresponding chemical transformations. This study provides a synthetic method for the further construction of trifluoromethylated 3-indole ketones.

6.
Chemistry ; 30(31): e202400237, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38556465

RESUMEN

Heterocyclic trifluoromethylation is efficiently initiated through a photochemical reaction utilizing an electron donor-acceptor (EDA) complex, proceeding smoothly without the use of photocatalysts, transition-metal catalysts, or additional oxidants. This method has been optimized through extensive experimentation, demonstrating its versatility and efficacy across various substrates, including quinoxalinones, coumarins, and indolones. Notably, this approach enables the practical synthesis of trifluoromethylated quinoxalinones on a gram scale. Mechanistic investigations that incorporate radical trapping and ultraviolet/visible spectroscopy, confirmed the formation of the an EDA complex and elucidated the reaction pathways. This study highlights the crucial role of EDA photoactivation in trifluoromethylation, significantly expanding the application scope of EDA complexes in chemical synthesis.

7.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930971

RESUMEN

The direct 1,6-nucleophilic difluoromethylation, trifluoromethylation, and difluoroalkylation of para-quinone methides (p-QMs) with Me3SiRf (Rf = CF2H, CF3, CF2CF3, CF2COOEt, and CF2SPh) under mild conditions are described. Although Me3SiCF2H shows lower reactivity than Me3SiCF3, it can react with p-QMs promoted by CsF/18-Crown-6 to give structurally diverse difluoromethyl products in good yields. The products can then be further converted into fluoroalkylated para-quinone methides and α-fluoroalkylated diarylmethanes.

8.
Angew Chem Int Ed Engl ; 63(22): e202403494, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38551580

RESUMEN

Chemical modification is a powerful strategy for tuning the electronic properties of 2D semiconductors. Here we report the electrophilic trifluoromethylation of 2D WSe2 and MoS2 under mild conditions using the reagent trifluoromethyl thianthrenium triflate (TTT). Chemical characterization and density functional theory calculations reveal that the trifluoromethyl groups bind covalently to surface chalcogen atoms as well as oxygen substitution sites. Trifluoromethylation induces p-type doping in the underlying 2D material, enabling the modulation of charge transport and optical emission properties in WSe2. This work introduces a versatile and efficient method for tailoring the optical and electronic properties of 2D transition metal dichalcogenides.

9.
Angew Chem Int Ed Engl ; 63(5): e202311984, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38088503

RESUMEN

Trifluoroacetates are the most abundant and accessible sources of trifluoromethyl groups, which are key components in pharmaceuticals and agrochemicals. The generation of trifluoromethyl reactive radicals from trifluoroacetates requires their decarboxylation, which is hampered by their high oxidation potential. This constitutes a major challenge for redox-based methods, because of the need to pair the redox potentials with trifluoroacetate. Here we report a strategy based on iron photocatalysis to promote the direct photodecarboxylation of trifluoroacetates that displays reactivity features that escape from redox limitations. Our synthetic design has enabled the use of trifluoroacetates for the trifluoromethylation of more easily oxidizable organic substrates, offering new opportunities for late-stage derivatization campaigns using chemical feedstocks, Earth-abundant catalysts, and visible-light.

10.
Angew Chem Int Ed Engl ; : e202409566, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865105

RESUMEN

ß-Chiral carboxylic acids and their derivatives are highly valuable structural motifs in the fields of asymmetric synthesis and medicinal chemistry. However, the introduction of a sterically demanding sidechain to the ß-carbon, such as an all-carbon quaternary center, remains a significant challenge in classical polar processes. Recently, N-heterocyclic carbene (NHC) mediated coupling reactions involving persistent ketyl radicals have emerged as a promising strategy to assemble highly crowded carbon-carbon bonds. Nevertheless, achieving enantioselectivity in these reactions remains highly challenging. In this work, we report our recent progress in controlling enantioselectivity for relay coupling of perfluoroalkyl and persistent vinylogous ketyl radicals. We developed a chiral bifunctional NHC-squaramide catalyst that achieves high facial selectivity in a critical bond-forming event involving the coupling of a congested tertiary carbon radical and vinylogous ketyl radical. Chiral carboxylates bearing an all-carbon quaternary center at the ß-position can be prepared in good yield and excellent enantiomeric excess. Results from density functional theory (DFT) calculations and nuclear Overhauser effect (NOE) experiments indicate that the N,N'-diaryl squaramide motif adopts an unusual syn-syn conformation, enabling hydrogen bonding interactions with the enolate oxygen, thereby rigidifying the overall conformation of the transition state.

11.
Angew Chem Int Ed Engl ; 63(27): e202404278, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656696

RESUMEN

Positron emission tomography (PET) is becoming increasingly important in nuclear medicine and drug discovery. To date, the development of many potential PET tracers is hampered by the lack of suitable synthetic pathways for their preparation. This is particularly true for the highly desired radiolabeling of compounds bearing [18F]CF3-groups. For instance, S(O)nCF3-groups (n=0, 1, 2) serve as structural motif in a range of biologically active compounds, but their radiosynthesis remains largely unprecedented (for n=1, 2). Herein, we describe general methods for the radiosynthesis of 18F-labeled aryl trifluoromethyl sulfones, -sulfoxides, and -sulfides. All three methods are operationally straightforward, start from widely available precursors, i.e., sulfonyl fluorides and thiophenols, and make use of the recently established [18F]Ruppert-Prakash reagent. Further, the syntheses display good functional group tolerance as demonstrated by the 18F-labeling of more than 40 compounds. The applicability of the new method is demonstrated by the radiolabeling of three bioactive molecules, optionally to be used as PET tracers. In a broader context, this work presents a substantial expansion of the chemical space of radiofluorinated structural motifs to be used for the development of new PET tracers.

12.
Angew Chem Int Ed Engl ; 63(16): e202400449, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38483081

RESUMEN

Here we report the challenging O-trifluoromethylation of carboxylic acids via the formation and activation of acyloxy(phenyl)trifluoromethyl-λ3-iodanes. The method provides an easy access to various potentially valuable and hitherto elusive trifluoromethyl carboxylic esters. A remarkably wide range of substrates with commonly encountered functional groups are compatible with this reaction, including aromatic and aliphatic carboxylic acids, as well as Food and Drug Administration (FDA) approved drugs and pharmaceutically relevant molecules. The reaction mechanism and the origins of the enhanced reactivity by zinc chloride (ZnCl2) were discussed from experimental evidence and density functional theory (DFT) calculation.

13.
Angew Chem Int Ed Engl ; 63(11): e202319412, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38147576

RESUMEN

Copper(III) fluorides are catalytically competent, yet elusive, intermediates in cross-coupling. The synthesis of [PPh4 ][CuIII (CF3 )3 F] (2), the first stable (isolable) CuIII -F, was accomplished via chloride addition to [CuIII (CF3 )3 (py)] (1) yielding [PPh4 ][CuIII (CF3 )3 Cl(py)] (1⋅Cl), followed by treatment with AgF. The CuIII halides 1⋅Cl and 2 were fully characterized using nuclear magnetic resonance (NMR) spectroscopy, single crystal X-ray diffraction (Sc-XRD) and elemental analysis (EA). Complex 2 proved capable of forging C-CF3 bonds from silyl-capped alkynes. In-depth mechanistic studies combining probes, theoretical calculations, trapping of intermediate 4a ([PPh4 ][CuIII (CF3 )3 (C≡CPh)]) and radical tests unveil the key role of the CuIII acetylides that undergo facile 2e- reductive elimination furnishing the trifluoromethylated alkynes (RC≡CCF3 ), which are industrially relevant synthons in drug discovery, pharma and agrochemistry.

14.
Angew Chem Int Ed Engl ; 63(8): e202319030, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38179851

RESUMEN

The introduction of trifluoromethyl groups into organic molecules is of paramount importance in modern synthetic chemistry and medicinal chemistry. While methods for constructing C(sp2 )-CF3 bonds have been well established, the advancement of practical and comprehensive approaches for forming C(sp3 )-CF3 bonds remains considerably restricted. In this work, we describe an efficient and site-specific deaminative trifluoromethylation reaction of aliphatic primary amines to afford the corresponding alkyl trifluoromethyl compounds. The reaction proceeds at room temperature with readily accessible N-anomeric amide (Levin's reagent) and bench-stable bpyCu(CF3 )3 (Grushin's reagent, bpy=2,2'-bipyridine) under blue light. The protocol features mild reaction conditions, good functional group tolerance, and moderate to good yields. Remarkably, the method can be applied to the direct, late-stage trifluoromethylation of natural products and bioactive molecules. Experimental mechanistic studies were conducted, and a radical mechanism is proposed, wherein the dual roles of Grushin's reagent have been elucidated.

15.
Beilstein J Org Chem ; 20: 118-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38264451

RESUMEN

A visible-light-promoted research protocol for constructing dihydropyrido[1,2-a]indolone skeletons is herein described proceeding through a cascade cyclization mediated by trifluoromethyl radicals. This method allows the efficient synthesis of various indole derivatives without the need of photocatalysts or transition-metal catalysts. Mechanism experiments indicate that the process involves a radical chain process initiated by the homolysis of Umemoto's reagent. This straightforward method enables a rapid access to heterocycles containing a trifluoromethyl group.

16.
Chemistry ; 29(19): e202203499, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36495039

RESUMEN

Organofluorine chemistry has become an expanding area of research in organic chemistry and drug design. The synthesis of fluorine-containing molecules has received high significance in synthetic chemistry. Trifluoromethylative difunctionalizations of carbon-carbon multiple bonds with the simultaneous introduction of a CF3 group and another function have considerable relevance. Because of the high importance of carbon-carbon bond-forming reactions in organic synthesis, carbotrifluoromethylations are considered to be a field of synthetic chemistry of increasing importance. Our current goal in this review is to summarize recent developments of various trifluoromethylation reactions (excluding aryl- and alkynyl-trifluoromethylations) taking into consideration several main approaches, such as alkenyltrifluoromethylation, alkyltrifluoromethylation, carbonyltrifluoromethylation, and cyanotrifluoromethylation reactions.

17.
Chemistry ; 29(41): e202300725, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37139922

RESUMEN

The cuprate complexes [Cu(R)(CF3 )3 ]- (R=organyl) offer an efficient synthetic access to valuable trifluoromethylation products RCF3 . Here, electrospray-ionization mass spectrometry is used to analyze the formation of these intermediates in solution and probe their fragmentation pathways in the gas phase. Furthermore, the potential energy surfaces of these systems are explored by quantum chemical calculations. Upon collisional activation, the [Cu(R)(CF3 )3 ]- complexes (R=Me, Et, Bu, s Bu, allyl) afford the product ions [Cu(CF3 )3 ]⋅- and [Cu(CF3 )2 ]- . The former obviously results from an R⋅ loss, whereas the latter originates either from the stepwise release of R⋅ and CF3 ⋅ radicals or a concerted reductive elimination of RCF3 . The gas-phase fragmentation experiments as well as the quantum chemical calculations indicate that the preference for the stepwise reaction toward [Cu(CF3 )2 ]- increases with the stability of the formed organyl radical R⋅. This finding suggests that the recombination of R⋅ and CF3 ⋅ radicals may possibly contribute to the formation of RCF3 from [Cu(R)(CF3 )3 ]- in synthetic applications. In contrast, the [Cu(R)(CF3 )3 ]- complexes (R=aryl) only yield [Cu(CF3 )2 ]- when subjected to collision-induced dissociation. These species exclusively undergo a concerted reductive elimination because the competing stepwise pathway is disfavored by the low stability of aryl radicals.

18.
Chem Rec ; 23(9): e202300117, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37309300

RESUMEN

The trifluoromethyl group is a powerful structural motif in drugs and polymers; thus, developing trifluoromethylation reactions is an important area of research in organic chemistry. Over the past few decades, significant progress has been made in developing new methods for the trifluoromethylation of organic molecules, ranging from nucleophilic and electrophilic approaches to transition-metal catalysis, photocatalysis, and electrolytic reactions. While these reactions were initially developed in batch systems, more recent microflow versions are highly attractive for industrial applications owing to their scalability, safety, and time efficiency. In this review, we discuss the current state of microflow trifluoromethylation. Approaches for microflow trifluoromethylation based on different trifluoromethylation reagents are described, including continuous flow, flow photochemical, microfluidic electrochemical reactions, and large-scale microflow reactions.

19.
Chem Rec ; 23(9): e202300036, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36942971

RESUMEN

Fluoroalkylation is a crucial synthetic process that enables the modification of molecules with fluoroalkyl groups, which can enhance the properties of compounds and have potential applications in medicine and materials science. The utilization of visible light-induced, metal-free methods is of particular importance as it provides an environmentally friendly alternative to traditional methods and eliminates the potential risks associated with metal-catalyst toxicity. This Account describes our studies on visible light-induced, metal-free fluoroalkylation processes, which include the use of organic photocatalysts or EDA complexes. We have utilized organophotocatalysts such as Nile red, tri(9-anthryl)borane, and an indole-based tetracyclic complex, as well as catalyst-free EDA chemistry through photoactive halogen bond formation or an unconventional transient ternary complex formation with nucleophilic fluoroalkyl source. A variety of π-systems including arenes/heteroarenes, alkenes, and alkynes have been successfully fluoroalkylated under the developed reaction conditions.

20.
Chem Rec ; 23(9): e202300037, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37058111

RESUMEN

Fluorinated organic compounds have attracted significant attention over the past few decades owing to their unique properties and versatility. An established method for the synthesis of fluorinated organic compounds involves radical perfluoroalkylation reactions towards double bonds. In this radical pathway, electrophilic perfluoroalkyl radicals exhibit excellent reactivity towards electron-rich olefins. Therefore, several splendid perfluoroalkylation reactions of electron-rich olefins have been reported. However, there are only a few examples of reaction involving electron-deficient olefins because of their poor electronic compatibility with perfluoroalkyl radicals. This review focuses on the reports that challenge this long-standing issue. Radical perfluoroalkylation/bifunctionalization reactions of electron-deficient olefins are described according to the radical generation methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA