Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.293
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(3): 692-711.e26, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262408

RESUMEN

Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.


Asunto(s)
Proteínas de Unión al ADN , Desarrollo Embrionario , Factores de Transcripción , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Mesodermo/metabolismo , Factores de Transcripción/metabolismo , Humanos , Animales , Ratones , Extremidades/crecimiento & desarrollo
2.
Cell ; 185(8): 1373-1388.e20, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35381199

RESUMEN

Systemic sclerosis (scleroderma, SSc) is an incurable autoimmune disease with high morbidity and mortality rates. Here, we conducted a population-scale single-cell genomic analysis of skin and blood samples of 56 healthy controls and 97 SSc patients at different stages of the disease. We found immune compartment dysfunction only in a specific subtype of diffuse SSc patients but global dysregulation of the stromal compartment, particularly in a previously undefined subset of LGR5+-scleroderma-associated fibroblasts (ScAFs). ScAFs are perturbed morphologically and molecularly in SSc patients. Single-cell multiome profiling of stromal cells revealed ScAF-specific markers, pathways, regulatory elements, and transcription factors underlining disease development. Systematic analysis of these molecular features with clinical metadata associates specific ScAF targets with disease pathogenesis and SSc clinical traits. Our high-resolution atlas of the sclerodermatous skin spectrum will enable a paradigm shift in the understanding of SSc disease and facilitate the development of biomarkers and therapeutic strategies.


Asunto(s)
Esclerodermia Sistémica , Células Cultivadas , Fibroblastos/metabolismo , Fibrosis , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/genética , Piel/metabolismo
3.
Cell ; 184(1): 243-256.e18, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33417861

RESUMEN

Craniosynostosis results from premature fusion of the cranial suture(s), which contain mesenchymal stem cells (MSCs) that are crucial for calvarial expansion in coordination with brain growth. Infants with craniosynostosis have skull dysmorphology, increased intracranial pressure, and complications such as neurocognitive impairment that compromise quality of life. Animal models recapitulating these phenotypes are lacking, hampering development of urgently needed innovative therapies. Here, we show that Twist1+/- mice with craniosynostosis have increased intracranial pressure and neurocognitive behavioral abnormalities, recapitulating features of human Saethre-Chotzen syndrome. Using a biodegradable material combined with MSCs, we successfully regenerated a functional cranial suture that corrects skull deformity, normalizes intracranial pressure, and rescues neurocognitive behavior deficits. The regenerated suture creates a niche into which endogenous MSCs migrated, sustaining calvarial bone homeostasis and repair. MSC-based cranial suture regeneration offers a paradigm shift in treatment to reverse skull and neurocognitive abnormalities in this devastating disease.


Asunto(s)
Cognición/fisiología , Suturas Craneales/fisiopatología , Craneosinostosis/fisiopatología , Regeneración/fisiología , Cráneo/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Cognición/efectos de los fármacos , Craneosinostosis/genética , Duramadre/patología , Duramadre/fisiopatología , Gelatina/farmacología , Perfilación de la Expresión Génica , Fuerza de la Mano , Presión Intracraneal/efectos de los fármacos , Presión Intracraneal/fisiología , Locomoción/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Metacrilatos/farmacología , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Regeneración/efectos de los fármacos , Cráneo/patología , Proteína 1 Relacionada con Twist/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
4.
Genes Dev ; 34(13-14): 965-972, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32467225

RESUMEN

Graded transcription factors are pivotal regulators of embryonic patterning, but whether their role changes over time is unclear. A light-regulated protein degradation system was used to assay temporal dependence of the transcription factor Dorsal in dorsal-ventral axis patterning of Drosophila embryos. Surprisingly, the high-threshold target gene snail only requires Dorsal input early but not late when Dorsal levels peak. Instead, late snail expression can be supported by action of the Twist transcription factor, specifically, through one enhancer, sna.distal This study demonstrates that continuous input is not required for some Dorsal targets and downstream responses, such as twist, function as molecular ratchets.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Tipificación del Cuerpo/efectos de la radiación , Proteínas de Drosophila/genética , Embrión no Mamífero , Luz , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteolisis/efectos de la radiación , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción/genética , Proteína 1 Relacionada con Twist/genética
5.
Development ; 150(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37590085

RESUMEN

Secondary lissencephaly evolved in mice due to effects on neurogenesis and the tangential distribution of neurons. Signaling pathways that help maintain lissencephaly are still poorly understood. We show that inactivating Twist1 in the primitive meninges causes cortical folding in mice. Cell proliferation in the meninges is reduced, causing loss of arachnoid fibroblasts that express Raldh2, an enzyme required for retinoic acid synthesis. Regionalized loss of Raldh2 in the dorsolateral meninges is first detected when folding begins. The ventricular zone expands and the forebrain lengthens at this time due to expansion of apical radial glia. As the cortex expands, regionalized differences in the levels of neurogenesis are coupled with changes to the tangential distribution of neurons. Consequentially, cortical growth at and adjacent to the midline accelerates with respect to more dorsolateral regions, resulting in cortical buckling and folding. Maternal retinoic acid supplementation suppresses cortical folding by normalizing forebrain length, neurogenesis and the tangential distribution of neurons. These results suggest that Twist1 and balanced retinoic acid signaling from the meninges are required to maintain normal levels of neurogenesis and lissencephaly in mice.


Asunto(s)
Lisencefalia , Tretinoina , Animales , Ratones , Corteza Cerebral/metabolismo , Lisencefalia/metabolismo , Meninges , Neurogénesis/genética , Neuronas/metabolismo , Tretinoina/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(49): e2305713120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015851

RESUMEN

The tumor suppressor protein p53 accumulates in response to cellular stress and consequently orchestrates the expression of multiple genes in a p53-level and time-dependent manner to overcome stress consequences, for which a molecular mechanism is currently unknown. Previously, we reported that DNA torsional flexibility distinguishes among p53 response elements (REs) and that transactivation at basal p53 levels is correlated with p53 REs flexibility. Here, we calculated the flexibility of ~200 p53 REs. By connecting functional outcomes of p53-target genes' activation to the calculated flexibility of their REs, we show that genes known to belong to pathways that are activated rapidly upon stress contain REs that are significantly more flexible relative to REs of genes known to be involved in pathways that are activated later in the response to stress. The global structural properties of several p53 REs belonging to different pathways were experimentally validated. Additionally, reporter-gene expression driven by flexible p53 REs occurred at lower p53 levels and with faster rates than expression from rigid REs. Furthermore, analysis of published endogenous mRNA levels of p53-target genes as a function of REs' flexibility showed that early versus late genes differ significantly in their flexibility properties of their REs and that highly flexible p53 REs enable high-activation level exclusively to early-response genes. Overall, we demonstrate that DNA flexibility of p53 REs contributes significantly to functional selectivity in the p53 system by facilitating the initial steps of p53-dependent target-genes expression, thereby contributing to survival versus death decisions in the p53 system.


Asunto(s)
Elementos de Respuesta , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Activación Transcripcional , ADN/genética
7.
EMBO J ; 40(18): e108647, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34459003

RESUMEN

The process of epithelial-mesenchymal transition (EMT) is fundamental for embryonic morphogenesis. Cells undergoing it lose epithelial characteristics and integrity, acquire mesenchymal features, and become motile. In cancer, this program is hijacked to confer essential changes in morphology and motility that fuel invasion. In addition, EMT is increasingly understood to orchestrate a large variety of complementary cancer features, such as tumor cell stemness, tumorigenicity, resistance to therapy and adaptation to changes in the microenvironment. In this review, we summarize recent findings related to these various classical and non-classical functions, and introduce EMT as a true tumorigenic multi-tool, involved in many aspects of cancer. We suggest that therapeutic targeting of the EMT process will-if acknowledging these complexities-be a possibility to concurrently interfere with tumor progression on many levels.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias/etiología , Neoplasias/patología , Microambiente Tumoral , Animales , Biomarcadores , Transformación Celular Neoplásica , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/metabolismo , Transducción de Señal , Microambiente Tumoral/genética
8.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34878091

RESUMEN

A major feature of Saethre-Chotzen syndrome is coronal craniosynostosis, the fusion of the frontal and parietal bones at the coronal suture. It is caused by heterozygous loss-of-function mutations in either of the bHLH transcription factors TWIST1 and TCF12. Although compound heterozygous Tcf12; Twist1 mice display severe coronal synostosis, the individual role of Tcf12 had remained unexplored. Here, we show that Tcf12 controls several key processes in calvarial development, including the rate of frontal and parietal bone growth, and the boundary between sutural and osteogenic cells. Genetic analysis supports an embryonic requirement for Tcf12 in suture formation, as combined deletion of Tcf12 in embryonic neural crest and mesoderm, but not in postnatal suture mesenchyme, disrupts the coronal suture. We also detected asymmetric distribution of mesenchymal cells on opposing sides of the wild-type frontal and parietal bones, which prefigures later bone overlap at the sutures. In Tcf12 mutants, reduced asymmetry is associated with bones meeting end-on-end, possibly contributing to synostosis. Our results support embryonic requirements of Tcf12 in proper formation of the overlapping coronal suture.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Craneosinostosis/metabolismo , Osteogénesis , Cráneo/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Craneosinostosis/embriología , Craneosinostosis/genética , Células Madre Mesenquimatosas/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Cresta Neural/metabolismo , Cráneo/metabolismo
9.
FASEB J ; 38(13): e23757, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38965999

RESUMEN

Hepatic stellate cells (HSCs) are responsible for liver fibrosis accompanied by its activation into myofibroblasts and the abundant production of extracellular matrix. However, the HSC contribution to progression of liver inflammation has been less known. We aimed to elucidate the mechanism in HSCs underlying the inflammatory response and the function of tumor necrosis factor α-related protein A20 (TNFAIP3). We established A20 conditional knockout (KO) mice crossing Twist2-Cre and A20 floxed mice. Using these mice, the effect of A20 was analyzed in mouse liver and HSCs. The human HSC line LX-2 was also used to examine the role and underlying molecular mechanism of A20. In this KO model, A20 was deficient in >80% of HSCs. Spontaneous inflammation with mild fibrosis was found in the liver of the mouse model without any exogenous agents, suggesting that A20 in HSCs suppresses chronic hepatitis. Comprehensive RNA sequence analysis revealed that A20-deficient HSCs exhibited an inflammatory phenotype and abnormally expressed chemokines. A20 suppressed JNK pathway activation in HSCs. Loss of A20 function in LX-2 cells also induced excessive chemokine expression, mimicking A20-deficient HSCs. A20 overexpression suppressed chemokine expression in LX-2. In addition, we identified DCLK1 in the genes regulated by A20. DCLK1 activated the JNK pathway and upregulates chemokine expression. DCLK1 inhibition significantly decreased chemokine induction by A20-silencing, suggesting that A20 controlled chemokine expression in HSCs via the DCLK1-JNK pathway. In conclusion, A20 suppresses chemokine induction dependent on the DCLK1-JNK signaling pathway. These findings demonstrate the therapeutic potential of A20 and the DCLK1-JNK pathway for the regulation of inflammation in chronic hepatitis.


Asunto(s)
Quimiocinas , Células Estrelladas Hepáticas , Sistema de Señalización de MAP Quinasas , Ratones Noqueados , Proteínas Serina-Treonina Quinasas , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Animales , Células Estrelladas Hepáticas/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Ratones , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Quimiocinas/metabolismo , Quimiocinas/genética , Hepatitis Crónica/metabolismo , Hepatitis Crónica/patología , Hepatitis Crónica/genética , Quinasas Similares a Doblecortina , Ratones Endogámicos C57BL , Línea Celular , Masculino
10.
EMBO Rep ; 24(11): e56902, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37680145

RESUMEN

TWIST1 induces epithelial-to-mesenchymal transition (EMT) to drive cancer metastasis. It is yet unclear what determines TWIST1 functions to activate or repress transcription. We found that the TWIST1 N-terminus antagonizes TWIST1-regulated gene expression, cancer growth and metastasis. TWIST1 interacts with both the NuRD complex and the NuA4/TIP60 complex (TIP60-Com) via its N-terminus. Non-acetylated TWIST1-K73/76 selectively interacts with and recruits NuRD to repress epithelial target gene transcription. Diacetylated TWIST1-acK73/76 binds BRD8, a component of TIP60-Com that also binds histone H4-acK5/8, to recruit TIP60-Com to activate mesenchymal target genes and MYC. Knockdown of BRD8 abolishes TWIST1 and TIP60-Com interaction and TIP60-Com recruitment to TWIST1-activated genes, resulting in decreasing TWIST1-activated target gene expression and cancer metastasis. Both TWIST1/NuRD and TWIST1/TIP60-Com complexes are required for TWIST1 to promote EMT, proliferation, and metastasis at full capacity. Therefore, the diacetylation status of TWIST1-K73/76 dictates whether TWIST1 interacts either with NuRD to repress epithelial genes, or with TIP60-Com to activate mesenchymal genes and MYC. Since BRD8 is essential for TWIST1-acK73/76 and TIP60-Com interaction, targeting BRD8 could be a means to inhibit TWIST1-activated gene expression.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Transición Epitelial-Mesenquimal/genética , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/genética
11.
Exp Cell Res ; 437(1): 114010, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508329

RESUMEN

Lung adenocarcinoma (LUAD) is a common and deadly form of lung cancer, with high rates of metastasis and unsatisfactory clinical outcomes. Herein, we examined the influence of TMEM158 on the LUAD progression. A combination of bioinformatic analyses was used to assess the TMEM158 expression pattern, prognostic implications, and potential function in LUAD. The levels of TMEM158 and TWIST1 were evaluated in clinical samples from LUAD patients using Western blot analysis and qRT-PCR. To discover the function and underlying molecular pathways of TMEM158 in LUAD, we employed a combination of experimental approaches in vitro, such as flow cytometry analysis and colony formation, Co-IP, CCK-8, Transwell, and wound-healing assays. Elevated expression of TMEM158 in LUAD is associated with increased cancer aggressiveness and a poor prognosis. In vitro experiments demonstrated that high levels of TMEM158 promote cell proliferation, progression through the cell cycle, migration, and invasion while suppressing apoptosis. Knockdown of TMEM158 produced opposite effects. The underlying mechanism involves TMEM158 and TWIST1 directly interacting, stimulating the PI3K/AKT signaling pathway in LUAD cells. This investigation emphasizes the molecular functions of TMEM158 in LUAD progression and proposes targeting it as a promising treatment approach for managing LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Oncogenes , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Proliferación Celular/genética , Movimiento Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/genética , Proteínas de la Membrana/genética , Proteínas Supresoras de Tumor
12.
Nano Lett ; 24(39): 12211-12217, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39315721

RESUMEN

Tuning the electronic structure of artificially stacked bilayer crystals using their twist angle has attracted a significant amount of interest. In this study, resonant tunneling spectroscopy was performed on trilayer WSe2/h-BN/twisted bilayer (tBL) WSe2 devices with a wide range of twist angles (θBL) of tBL WSe2, from 0° to 34°. We observed two resonant tunneling peaks, identified as the first and second lowest hole subbands at the valence band Γ point of tBL WSe2. The subband separation, which directly measured the interlayer coupling strength, was tuned by ∼0.1 eV as θBL increased toward 6° and remained nearly constant for larger θBL values. The θBL dependence was attributed to the emergence of a stable W/Se (Se/W) stacking domain in the small θBL region, owing to the atomic reconstruction of the moiré lattice in tBL WSe2. Our findings demonstrate that the twist-controlled subband energies in tBL WSe2 are predominantly determined by local atomic reconstruction.

13.
Nano Lett ; 24(9): 2789-2797, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407030

RESUMEN

Two-dimensional materials are expected to play an important role in next-generation electronics and optoelectronic devices. Recently, twisted bilayer graphene and transition metal dichalcogenides have attracted significant attention due to their unique physical properties and potential applications. In this study, we describe the use of optical microscopy to collect the color space of chemical vapor deposition (CVD) of molybdenum disulfide (MoS2) and the application of a semantic segmentation convolutional neural network (CNN) to accurately and rapidly identify thicknesses of MoS2 flakes. A second CNN model is trained to provide precise predictions on the twist angle of CVD-grown bilayer flakes. This model harnessed a data set comprising over 10,000 synthetic images, encompassing geometries spanning from hexagonal to triangular shapes. Subsequent validation of the deep learning predictions on twist angles was executed through the second harmonic generation and Raman spectroscopy. Our results introduce a scalable methodology for automated inspection of twisted atomically thin CVD-grown bilayers.

14.
Nano Lett ; 24(1): 74-81, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38148280

RESUMEN

The investigation of twist engineering in easy-axis magnetic systems has revealed remarkable potential for generating topological spin textures. Implementing twist engineering in easy-plane magnets, we introduce a novel approach to achieving fractional topological spin textures, such as merons. Through atomistic spin simulations on twisted bilayer magnets, we demonstrate the formation of a stable double Meron pair, which we refer to as the "Meron Quartet" (MQ). Unlike a single pair, the merons within the MQ exhibit exceptional stability against pair annihilation due to the protective localization mechanism induced by the twist that prevents collision of the Meron cores. Furthermore, we showcase that the stability of the MQ can be enhanced by adjusting the twist angle, resulting in an increased resistance to external perturbations such as external magnetic fields. Our findings highlight the twisted magnet as a promising platform for achieving merons as stable magnetic quasiparticles in van der Waals magnets.

15.
Nano Lett ; 24(6): 1851-1858, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315876

RESUMEN

Interlayer excitons, with prolonged lifetimes and tunability, hold potential for advanced optoelectronics. Previous research on the interlayer excitons has been dominated by two-dimensional heterostructures. Here, we construct WSe2/GaN composite heterostructures, in which the doping concentration of GaN and the twist angle of bilayer WSe2 are employed as two ingredients for the manipulation of exciton behaviors and polarizations. The exciton energies in monolayer WSe2/GaN can be regulated continuously by the doping levels of the GaN substrate, and a remarkable increase in the valley polarizations is achieved. Especially in a heterostructure with 4°-twisted bilayer WSe2, a maximum polarization of 38.9% with a long lifetime is achieved for the interlayer exciton. Theoretical calculations reveal that the large polarization and long lifetime are attributed to the high exciton binding energy and large spin flipping energy during depolarization in bilayer WSe2/GaN. This work introduces a distinctive member of the interlayer exciton with a high degree of polarization and a long lifetime.

16.
Dev Dyn ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254141

RESUMEN

Twist1 is required for embryonic development and expresses after birth in mesenchymal stem cells derived from mesoderm, where it governs mesenchymal cell development. As a well-known regulator of epithelial-mesenchymal transition or embryonic organogenesis, Twist1 is important in a variety of developmental systems, including mesoderm formation, neurogenesis, myogenesis, cranial neural crest cell migration, and differentiation. In this review, we first highlight the physiological significance of Twist1 in cell differentiation, including osteogenic, chondrogenic, and myogenic differentiation, and then detail its probable molecular processes and signaling pathways. On this premise, we summarize the significance of Twist1 in distinct developmental disorders and diseases to provide a reference for studies on cell differentiation/development-related diseases.

17.
Kidney Int ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181396

RESUMEN

The transcription factor Twist1 plays a vital role in normal development in many tissue systems and continues to be important throughout life. However, inappropriate Twist1 activity has been associated with kidney injury and fibrosis, though the underlying mechanisms involved remain incomplete. Here, we explored the role of Twist1 in regulating fibroblast behaviors and the development kidney fibrosis. Initially Twist1 protein and activity was found to be markedly increased within interstitial myofibroblasts in fibrotic kidneys in both humans and rodents. Treatment of rat kidney interstitial fibroblasts with transforming growth factor-ß1 (a profibrotic factor) also induced Twist1 expression in vitro. Gain- and loss-of-function experiments supported that Twist1 signaling was responsible for transforming growth factor-ß1-induced fibroblast activation and fetal bovine serum-induced fibroblast proliferation. Mechanistically, Twist1 protein promoted kidney fibroblast activation by driving the expression of downstream signaling proteins, Prrx1 and Tnc. Twist1 directly enhanced binding to the promoter of Prrx1 but not TNC, whereas the promoter of TNC was directly bound by Prrx1. Finally, mice with fibroblast-specific deletion of Twist1 exhibited less Prrx1 and TNC protein abundance, interstitial extracellular matrix deposition and kidney inflammation in both the unilateral ureteral obstruction and ischemic-reperfusion injury-induced-kidney fibrotic models. Inhibition of Twist1 signaling with Harmine, a ß-carboline alkaloid, improved extracellular matrix deposition in both injury models. Thus, our results suggest that Twist1 signaling promotes the activation and proliferation of kidney fibroblasts, contributing to the development of interstitial fibrosis, offering a potential therapeutic target for chronic kidney disease.

18.
J Cell Sci ; 135(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34881782

RESUMEN

Cyclophilin A (CypA, also known as PPIA) is an essential member of the immunophilin family. As an intracellular target of the immunosuppressive drug cyclosporin A (CsA) or a peptidyl-prolyl cis/trans isomerase (PPIase), it catalyzes the cis-trans isomerization of proline amidic peptide bonds, through which it regulates a variety of biological processes, such as intracellular signaling, transcription and apoptosis. In this study, we found that intracellular CypA enhanced Twist1 phosphorylation at Ser68 and inhibited apoptosis in A549 cells. Mechanistically, CypA could mediate the phosphorylation of Twist1 at Ser68 via p38 mitogen-activated protein kinase (also known as MAPK14), which inhibited its ubiquitylation-mediated degradation. In addition, CypA increased interaction between Twist1 and p65 (also known as RELA), as well as nuclear accumulation of the Twist1-p65 complex, which regulated Twist1-dependent expression of CDH1 and CDH2. Our findings collectively indicate the role of CypA in Twist1-mediated apoptosis of A549 cells through stabilizing Twist1 protein.


Asunto(s)
Ciclofilina A , Proteína 1 Relacionada con Twist , Células A549 , Apoptosis , Ciclofilina A/genética , Ciclosporina , Humanos , Isomerasa de Peptidilprolil , Proteína 1 Relacionada con Twist/genética
19.
Mol Carcinog ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150155

RESUMEN

Proliferation is a critical characteristic of the progression of gastric cancer (GC). Receptor tyrosine kinase-like orphan receptor 2 (ROR2), the orphan receptor tyrosine kinase-like receptor, exhibits effects on tumor growth due to its abnormal expression in cancer. The goal of our study was to assess the potential regulatory role exerted by the ROR2 on GC cells. Through previous bioinformatics analysis, we discovered an association between ROR2 and the G2/M phase of the GC cell cycle. However, little is known about the link between ROR2 and the G2/M phase cell cycle in GC. Here, the findings of our study indicate that ROR2, after transcribed expression by Twist1, activates the PI3K/AKT/mTOR/S6K signal transduction pathway, thus leading to the acceleration of the G2/M phase and subsequent promotion of cell proliferation in GC. Furthermore, the functional link among ROR2, Twist1, and G2/M phase of cell cycle was also confirmed in mouse xenograft tissues and human tissues. ROR2 expression was correlated with Twist expression and lower survival in vivo. Notably, our suggestion is that focusing on ROR2 as a potential therapeutic approach could show potential for the management of GC.

20.
Stem Cells ; 41(12): 1185-1200, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37665974

RESUMEN

Despite extensive clinical testing, mesenchymal stem/stromal cell (MSC)-based therapies continue to underperform with respect to efficacy, which reflects the paucity of biomarkers that predict potency prior to patient administration. Previously, we reported that TWIST1 predicts inter-donor differences in MSC quality attributes that confer potency. To define the full spectrum of TWIST1 activity in MSCs, the present work employed integrated omics-based profiling to identify a high-confidence set of TWIST1 targets, which mapped to cellular processes related to ECM structure/organization, skeletal and circulatory system development, interferon gamma signaling, and inflammation. These targets are implicated in contributing to both stem/progenitor and paracrine activities of MSCs indicating these processes are linked mechanistically in a TWIST1-dependent manner. Targets implicated in extracellular matrix dynamics further implicate TWIST1 in modulating cellular responses to niche remodeling. Novel TWIST1-regulated genes identified herein may be prioritized for future mechanistic and functional studies.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Biomarcadores/metabolismo , Matriz Extracelular/metabolismo , Unión Proteica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA