Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Alcohol Clin Exp Res ; 39(9): 1642-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26250465

RESUMEN

BACKGROUND: Neural activity within the prefrontal cortex (PFC) is altered by alcohol and alcohol-associated stimuli and is mediated by genetic susceptibility to alcoholism. However, very little is known about how genetic risk of excessive drinking might mediate neural firing in the PFC during alcohol consumption. METHODS: To determine how genetic risk influences alcohol seeking, intake, and neural activity, a Pavlovian alcohol consumption task was used-the 2-Way Cued Access Protocol (2CAP). Alcohol-preferring "P" rats and relatives of their (heterogeneous) founding Wistar population were used for these studies. After acquisition of 2CAP, extinction of responding for alcohol was evaluated by substituting water for alcohol. Following these experiments, in vivo electrophysiological recordings were obtained during 2CAP from the PFC in a separate cohort of Wistar and P rats implanted with moveable tetrode microdrives. RESULTS: P and Wistar rats increased daily alcohol seeking and intake with P rats consuming roughly twice as much alcohol as Wistar. Both rat populations decreased seeking behavior during extinction. However, P rats displayed persistent increases in seeking after controlling for intake versus Wistar. Higher firing rates (FRs) were observed in P rats prior to 2CAP and throughout alcohol and water consumption compared with Wistars that were matched for alcohol-drinking history. Differences in FR were driven, in part, by a larger percentage of neurons in P rats versus Wistars that increased FR compared with those that decreased, or did not change. CONCLUSIONS: These data provide additional evidence of increased alcohol consumption and persistent alcohol seeking in P versus Wistar rats. Differences in PFC neural firing observed in P rats prior to drinking could be heritable and/or related to an enhanced response to alcohol-associated contextual cues. FR differences observed during alcohol drinking might be related to an augmented sensitivity of PFC neurons to orally consumed alcohol.


Asunto(s)
Potenciales de Acción/fisiología , Consumo de Bebidas Alcohólicas/genética , Etanol/administración & dosificación , Neuronas/fisiología , Corteza Prefrontal/fisiología , Potenciales de Acción/efectos de los fármacos , Consumo de Bebidas Alcohólicas/fisiopatología , Animales , Masculino , Neuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Wistar
2.
Front Physiol ; 11: 592950, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488396

RESUMEN

Alcohol is one of the most commonly abused intoxicants with 1 in 6 adults at risk for alcohol use disorder (AUD) in the United States. As such, animal models have been extensively investigated with rodent AUD models being the most widely studied. However, inherent anatomical and physiological differences between rodents and humans pose a number of limitations in studying the complex nature of human AUD. For example, rodents differ from humans in that rodents metabolize alcohol rapidly and do not innately demonstrate voluntary alcohol consumption. Comparatively, pigs exhibit similar patterns observed in human AUD including voluntary alcohol consumption and intoxication behaviors, which are instrumental in establishing a more representative AUD model that could in turn delineate the risk factors involved in the development of this disorder. Pigs and humans also share anatomical similarities in the two major target organs of alcohol- the brain and liver. Pigs possess gyrencephalic brains with comparable cerebral white matter volumes to humans, thus enabling more representative evaluations of susceptibility and neural tissue damage in response to AUD. Furthermore, similarities in the liver result in a comparable rate of alcohol elimination as humans, thus enabling a more accurate extrapolation of dosage and intoxication level to humans. A porcine model of AUD possesses great translational potential that can significantly advance our current understanding of the complex development and continuance of AUD in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA