Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 18(Suppl 11): 384, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28984183

RESUMEN

BACKGROUND: RNA sequencing (RNA-seq) is a high throughput technology that profiles gene expression in a genome-wide manner. RNA-seq has been mainly used for testing differential expression (DE) of transcripts between two conditions and has recently been used for testing differential alternative polyadenylation (APA). In the past, many algorithms have been developed for detecting differentially expressed genes (DEGs) from RNA-seq experiments, including the one we developed, XBSeq, which paid special attention to the context-specific background noise that is ignored in conventional gene expression quantification and DE analysis of RNA-seq data. RESULTS: We present several major updates in XBSeq2, including alternative statistical testing and parameter estimation method for detecting DEGs, capacity to directly process alignment files and methods for testing differential APA usage. We evaluated the performance of XBSeq2 against several other methods by using simulated datasets in terms of area under the receiver operating characteristic (ROC) curve (AUC), number of false discoveries and statistical power. We also benchmarked different methods concerning execution time and computational memory consumed. Finally, we demonstrated the functionality of XBSeq2 by using a set of in-house generated clear cell renal carcinoma (ccRCC) samples. CONCLUSIONS: We present several major updates to XBSeq. By using simulated datasets, we demonstrated that, overall, XBSeq2 performs equally well as XBSeq in terms of several statistical metrics and both perform better than DESeq2 and edgeR. In addition, XBSeq2 is faster in speed and consumes much less computational memory compared to XBSeq, allowing users to evaluate differential expression and APA events in parallel. XBSeq2 is available from Bioconductor: http://bioconductor.org/packages/XBSeq/.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Poliadenilación/genética , Programas Informáticos , Algoritmos , Carcinoma de Células Renales/genética , Bases de Datos de Ácidos Nucleicos , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias Renales/genética , Curva ROC , Análisis de Secuencia de ARN , Estadística como Asunto
2.
BMC Genomics ; 17 Suppl 4: 432, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27556923

RESUMEN

BACKGROUND: Since its initial discovery in 1975, DNA methylation has been intensively studied and shown to be involved in various biological processes, such as development, aging and tumor progression. Many experimental techniques have been developed to measure the level of DNA methylation. Methyl-CpG binding domain-based capture followed by high-throughput sequencing (MBDCap-seq) is a widely used method for characterizing DNA methylation patterns in a genome-wide manner. However, current methods for processing MBDCap-seq datasets does not take into account of the region-specific genomic characteristics that might have an impact on the measurements of the amount of methylated DNA (signal) and background fluctuation (noise). Thus, specific software needs to be developed for MBDCap-seq experiments. RESULTS: A new differential methylation quantification algorithm for MBDCap-seq, MBDDiff, was implemented. To evaluate the performance of the MBDDiff algorithm, a set of simulated signal based on negative binomial and Poisson distribution with parameters estimated from real MBDCap-seq datasets accompanied with different background noises were generated, and then performed against a set of commonly used algorithms for MBDCap-seq data analysis in terms of area under the ROC curve (AUC), number of false discoveries and statistical power. In addition, we also demonstrated the effective of MBDDiff algorithm to a set of in-house prostate cancer samples, endometrial cancer samples published earlier, and a set of public-domain triple negative breast cancer samples to identify potential factors that contribute to cancer development and recurrence. CONCLUSIONS: In this paper we developed an algorithm, MBDDiff, designed specifically for datasets derived from MBDCap-seq. MBDDiff contains three modules: quality assessment of datasets and quantification of DNA methylation; determination of differential methylation of promoter regions; and visualization functionalities. Simulation results suggest that MBDDiff performs better compared to MEDIPS and DESeq in terms of AUC and the number of false discoveries at different levels of background noise. MBDDiff outperforms MEDIPS with increased backgrounds noise, but comparable performance when noise level is lower. By applying MBDDiff to several MBDCap-seq datasets, we were able to identify potential targets that contribute to the corresponding biological processes. Taken together, MBDDiff provides user an accurate differential methylation analysis for data generated by MBDCap-seq, especially under noisy conditions.


Asunto(s)
Biología Computacional/métodos , Metilación de ADN/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Islas de CpG/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Distribución de Poisson
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA