Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729842

RESUMEN

Decades of work in developmental genetics has given us a deep mechanistic understanding of the fundamental signaling pathways underlying animal development. However, little is known about how these pathways emerged and changed over evolutionary time. Here, we review our current understanding of the evolutionary emergence of the Hippo pathway, a conserved signaling pathway that regulates tissue size in animals. This pathway has deep evolutionary roots, emerging piece by piece in the unicellular ancestors of animals, with a complete core pathway predating the origin of animals. Recent functional studies in close unicellular relatives of animals and early-branching animals suggest an ancestral function Hippo pathway of cytoskeletal regulation, which was subsequently co-opted to regulate proliferation and animal tissue size.

2.
Annu Rev Genet ; 52: 65-87, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30183404

RESUMEN

Hippo signaling is an evolutionarily conserved network that has a central role in regulating cell proliferation and cell fate to control organ growth and regeneration. It promotes activation of the LATS kinases, which control gene expression by inhibiting the activity of the transcriptional coactivator proteins YAP and TAZ in mammals and Yorkie in Drosophila. Diverse upstream inputs, including both biochemical cues and biomechanical cues, regulate Hippo signaling and enable it to have a key role as a sensor of cells' physical environment and an integrator of growth control signals. Several components of this pathway localize to cell-cell junctions and contribute to regulation of Hippo signaling by cell polarity, cell contacts, and the cytoskeleton. Downregulation of Hippo signaling promotes uncontrolled cell proliferation, impairs differentiation, and is associated with cancer. We review the current understanding of Hippo signaling and highlight progress in the elucidation of its regulatory mechanisms and biological functions.


Asunto(s)
Comunicación Celular/genética , Movimiento Celular/genética , Regulación de la Expresión Génica/genética , Uniones Intercelulares/genética , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular , Polaridad Celular/genética , Proliferación Celular/genética , Citoesqueleto/genética , Drosophila/genética , Proteínas de Drosophila/genética , Vía de Señalización Hippo , Humanos , Ratones , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Transactivadores/genética , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
3.
Am J Hum Genet ; 108(6): 1138-1150, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33909992

RESUMEN

ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.


Asunto(s)
Anomalías Craneofaciales/etiología , Heterocigoto , Discapacidad Intelectual/etiología , Trastornos del Desarrollo del Lenguaje/etiología , Mutación con Pérdida de Función , Proteínas de Unión al ARN/genética , Adolescente , Adulto , Niño , Preescolar , Anomalías Craneofaciales/patología , Femenino , Haploinsuficiencia , Humanos , Lactante , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/patología , Masculino , Linaje , Fenotipo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Síndrome , Adulto Joven
4.
Development ; 148(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34313318

RESUMEN

Heterozygosity of ribosomal protein genes causes a variety of developmental abnormalities in humans, which are collectively known as ribosomopathies, yet the underlying mechanisms remain elusive. Here, we analyzed Drosophila Minute (M)/+ mutants, a group of mutants heterozygous for ribosomal protein genes that exhibit a characteristic thin-bristle phenotype. We found that, although M/+ flies develop essentially normal wings, simultaneous deletion of one copy of the Hippo pathway effector yki resulted in severe wing growth defects. These defects were caused by JNK-mediated cell death in the wing pouch via Eiger/TNF signaling. The JNK activation in M/+, yki/+ wing discs required the caspase Dronc, which is normally blocked by DIAP1. Notably, heterozygosity of yki reduced DIAP1 expression in the wing pouch, leading to elevation of Dronc activity. Dronc and JNK formed a positive-feedback loop that amplifies Dronc activation, leading to apoptosis. Our observations suggest a mechanism of robust tissue growth whereby tissues with reduced ribosomal protein prevent ectopic apoptosis via Yki activity.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Animales , Apoptosis , Muerte Celular , Regulación hacia Abajo , Drosophila/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas Nucleares/genética , Transducción de Señal , Transactivadores/genética , Alas de Animales/anatomía & histología , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34078667

RESUMEN

Tumors often secrete wasting factors associated with atrophy and the degeneration of host tissues. If tumors were to be affected by the wasting factors, mechanisms allowing tumors to evade the adverse effects of the wasting factors must exist, and impairing such mechanisms may attenuate tumors. We use Drosophila midgut tumor models to show that tumors up-regulate Wingless (Wg) to oppose the growth-impeding effects caused by the wasting factor, ImpL2 (insulin-like growth factor binding protein [IGFBP]-related protein). Growth of Yorkie (Yki)-induced tumors is dependent on Wg while either elimination of ImpL2 or elevation of insulin/insulin-like growth factor signaling in tumors revokes this dependency. Notably, Wg augmentation could be a general mechanism for supporting the growth of tumors with elevated ImpL2 and exploited to attenuate muscle degeneration during wasting. Our study elucidates the mechanism by which tumors negate the action of ImpL2 to uphold their growth during cachexia-like wasting and implies that targeting the Wnt/Wg pathway might be an efficient treatment strategy for cancers with elevated IGFBPs.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Vía de Señalización Wnt , Proteína Wnt1/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Proteína Wnt1/genética
6.
Development ; 147(8)2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341025

RESUMEN

The Hippo pathway is a highly conserved signalling pathway that regulates multiple biological processes, including organ size control and cell fate. Since its discovery, genetic and biochemical studies have elucidated several key signalling steps important for pathway activation and deactivation. In recent years, technical advances in microscopy and genome modification have allowed new insights into Hippo signalling to be revealed. These studies have highlighted that the nuclear-cytoplasmic shuttling behaviour of the Hippo pathway transcriptional co-activators Yorkie, YAP and TAZ is far more dynamic than previously appreciated, and YAP and TAZ are also regulated by liquid-liquid phase separation. Here, we review our current understanding of Yorkie, YAP and TAZ regulation, with a focus on recent microscopy-based studies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/química , Transducción de Señal/genética , Transactivadores/química
7.
Development ; 147(22)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33028612

RESUMEN

Cell extrusion is a crucial regulator of epithelial tissue development and homeostasis. Epithelial cells undergoing apoptosis, bearing pathological mutations or possessing developmental defects are actively extruded toward elimination. However, the molecular mechanisms of Drosophila epithelial cell extrusion are not fully understood. Here, we report that activation of the conserved Hippo (Hpo) signaling pathway induces both apical and basal cell extrusion in the Drosophila wing disc epithelia. We show that canonical Yorkie targets Diap1, Myc and Cyclin E are not required for either apical or basal cell extrusion induced by activation of this pathway. Another target gene, bantam, is only involved in basal cell extrusion, suggesting novel Hpo-regulated apical cell extrusion mechanisms. Using RNA-seq analysis, we found that JNK signaling is activated in the extruding cells. We provide genetic evidence that JNK signaling activation is both sufficient and necessary for Hpo-regulated cell extrusion. Furthermore, we demonstrate that the ETS-domain transcription factor Ets21c, an ortholog of proto-oncogenes FLI1 and ERG, acts downstream of JNK signaling to mediate apical cell extrusion. Our findings reveal a novel molecular link between Hpo signaling and cell extrusion.


Asunto(s)
Proteínas de Drosophila/metabolismo , Discos Imaginales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Transducción de Señal/fisiología , Alas de Animales/embriología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Discos Imaginales/citología , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-ets/genética , Transactivadores/genética , Transactivadores/metabolismo , Alas de Animales/citología , Proteínas Señalizadoras YAP
8.
Dev Biol ; 469: 37-45, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33022230

RESUMEN

How organisms control organ size is not fully understood. We found that Syd/JIP3 is required for proper wing size in Drosophila. JIP3 mutations are associated with organ size defects in mammals. The underlying mechanisms are not well understood. We discovered that Syd/JIP3 inhibition results in a downregulation of the inhibitor of apoptosis protein 1 (Diap1) in the Drosophila wing. Correspondingly, Syd/JIP3 deficient tissues exhibit ectopic cell death and yield smaller wings. Syd/JIP3 inhibition generated similar effects in mammalian cells, indicating a conserved mechanism. We found that Yorkie/YAP stimulates Syd/JIP3 in Drosophila and mammalian cells. Notably, Syd/JIP3 is required for the full effect of Yorkie-mediated tissue growth. Thus Syd/JIP3 regulation of Diap1 functions downstream of Yorkie/YAP to control growth. This study provides mechanistic insights into the recent and perplexing link between JIP3 mutations and organ size defects in mammals, including in humans where de novo JIP3 variants are associated with microcephaly.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas de la Membrana/fisiología , Alas de Animales/crecimiento & desarrollo , Animales , Proteínas Portadoras/genética , Drosophila/anatomía & histología , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Nucleares/metabolismo , Tamaño de los Órganos , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/metabolismo , Alas de Animales/anatomía & histología , Proteínas Señalizadoras YAP
9.
Development ; 146(15)2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31315896

RESUMEN

Tissue repair usually requires either polyploid cell growth or cell division, but the molecular mechanism promoting polyploidy and limiting cell division remains poorly understood. Here, we find that injury to the adult Drosophila epithelium causes cells to enter the endocycle through the activation of Yorkie-dependent genes (Myc and E2f1). Myc is even sufficient to induce the endocycle in the uninjured post-mitotic epithelium. As result, epithelial cells enter S phase but mitosis is blocked by inhibition of mitotic gene expression. The mitotic cell cycle program can be activated by simultaneously expressing the Cdc25-like phosphatase String (stg), while genetically depleting APC/C E3 ligase fizzy-related (fzr). However, forcing cells to undergo mitosis is detrimental to wound repair as the adult fly epithelium accumulates DNA damage, and mitotic errors ensue when cells are forced to proliferate. In conclusion, we find that wound-induced polyploidization enables tissue repair when cell division is not a viable option.


Asunto(s)
Daño del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Epitelio/lesiones , Mitosis/fisiología , Factores de Transcripción/genética , Cicatrización de Heridas/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/genética , Mitosis/genética , Poliploidía , Proteínas Tirosina Fosfatasas/metabolismo , Cicatrización de Heridas/genética
10.
Fish Shellfish Immunol ; 130: 61-71, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36041626

RESUMEN

Hippo signaling pathway is a serine threonine kinase cascade that is evolutionary conserved with well-established roles in organ size control, development, tumorigenesis and immunity. As its core molecule, Yorkie also plays an important role against pathogen. In this study, we cloned and characterized a Yorkie homolog from Litopenaeus vannamei, designed as LvYKI, which has a 1650 bp open reading frame. It has the characterized domains of Yokie family, and displayed to be close to the insects and crustacean. Quantitative Real-time PCR showed that LvYKI had different regulatory mechanisms in different tissues. The transcriptional level of Lvyki was down-regulated in gill, while up-regulated in hepatopancreas post white spot syndrome virus (WSSV) infection. Moreover, the expression and phosphorylation of LvYKI was reduced upon WSSV infection, which indicated that LvYKI was involved in WSSV infection. Furthermore, RNAi was performed to evaluate the role of LvYKI in shrimp immune responses. Knocking down of Lvyki resulted in inhibition of the transcription of WSSV gene ie1 and vp28, and delayed mortality of shrimp post WSSV infection. Meanwhile, the apoptosis of hemocyte was increased as well. All results suggested that shrimp can promote apoptosis to resist WSSV infection mediated by down-regulation of LvYKI. In addition, it was found that LvYKI could interact with Lvß-catenin, which cross-linked the Wnt and Hippo signaling pathway in innate immunity. Conclusively, our study provided clues that LvYKI plays an important role in the interaction between shrimp and virus. It will promote our understanding of the molecular mechanism in innate immunity.


Asunto(s)
Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos , Secuencia de Bases , Cateninas/genética , Cateninas/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata/genética , Proteínas Serina-Treonina Quinasas , Virus del Síndrome de la Mancha Blanca 1/fisiología
11.
Proc Natl Acad Sci U S A ; 116(52): 26591-26598, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843907

RESUMEN

Translationally controlled tumor protein (TCTP) is a highly conserved protein functioning in multiple cellular processes, ranging from growth to immune responses. To explore the role of TCTP in tissue maintenance and regeneration, we employed the adult Drosophila midgut, where multiple signaling pathways interact to precisely regulate stem cell division for tissue homeostasis. Tctp levels were significantly increased in stem cells and enteroblasts upon tissue damage or activation of the Hippo pathway that promotes regeneration of intestinal epithelium. Stem cells with reduced Tctp levels failed to proliferate during normal tissue homeostasis and regeneration. Mechanistically, Tctp forms a complex with multiple proteins involved in translation and genetically interacts with ribosomal subunits. In addition, Tctp increases both Akt1 protein abundance and phosphorylation in vivo. Altogether, Tctp regulates stem cell proliferation by interacting with key growth regulatory signaling pathways and the translation process in vivo.

12.
Dev Biol ; 464(1): 53-70, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32464117

RESUMEN

Hippo signaling is an important regulator of tissue size, but it also has a lesser-known role in tissue morphogenesis. Here we use the Drosophila pupal eye to explore the role of the Hippo effector Yki and its cofactor Mask in morphogenesis. We found that Mask is required for the correct distribution and accumulation of adherens junctions and appropriate organization of the cytoskeleton. Accordingly, disrupting mask expression led to severe mis-patterning and similar defects were observed when yki was reduced or in response to ectopic wts. Further, the patterning defects generated by reducing mask expression were modified by Hippo pathway activity. RNA-sequencing revealed a requirement for Mask for appropriate expression of numerous genes during eye morphogenesis. These included genes implicated in cell adhesion and cytoskeletal organization, a comprehensive set of genes that promote cell survival, and numerous signal transduction genes. To validate our transcriptome analyses, we then considered two loci that were modified by Mask activity: FER and Vinc, which have established roles in regulating adhesion. Modulating the expression of either locus modified mask mis-patterning and adhesion phenotypes. Further, expression of FER and Vinc was modified by Yki. It is well-established that the Hippo pathway is responsive to changes in cell adhesion and the cytoskeleton, but our data indicate that Hippo signaling also regulates these structures.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Organogénesis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Ojo/citología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Señalizadoras YAP
13.
Development ; 145(5)2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29440303

RESUMEN

Animal cells are thought to sense mechanical forces via the transcriptional co-activators YAP (or YAP1) and TAZ (or WWTR1), the sole Drosophila homolog of which is named Yorkie (Yki). In mammalian cells in culture, artificial mechanical forces induce nuclear translocation of YAP and TAZ. Here, we show that physiological mechanical strain can also drive nuclear localisation of Yki and activation of Yki target genes in the Drosophila follicular epithelium. Mechanical strain activates Yki by stretching the apical domain, reducing the concentration of apical Crumbs, Expanded, Kibra and Merlin, and reducing apical Hippo kinase dimerisation. Overexpressing Hippo kinase to induce ectopic activation in the cytoplasm is sufficient to prevent Yki nuclear localisation even in flattened follicle cells. Conversely, blocking Hippo signalling in warts clones causes Yki nuclear localisation even in columnar follicle cells. We find no evidence for involvement of other pathways, such as Src42A kinase, in regulation of Yki. Finally, our results in follicle cells appear generally applicable to other tissues, as nuclear translocation of Yki is also readily detectable in other flattened epithelial cells such as the peripodial epithelium of the wing imaginal disc, where it promotes cell flattening.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Mecánico , Alas de Animales/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Mecanotransducción Celular/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/genética , Transducción de Señal/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
14.
Development ; 145(20)2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30254143

RESUMEN

Tissue growth needs to be properly controlled for organs to reach their correct size and shape, but the mechanisms that control growth during normal development are not fully understood. We report here that the activity of the Hippo signaling transcriptional activator Yorkie gradually decreases in the central region of the developing Drosophila wing disc. Spatial and temporal changes in Yorkie activity can be explained by changes in cytoskeletal tension and biomechanical regulators of Hippo signaling. These changes in cellular biomechanics correlate with changes in cell density, and experimental manipulations of cell density are sufficient to alter biomechanical Hippo signaling and Yorkie activity. We also relate the pattern of Yorkie activity in older discs to patterns of cell proliferation. Our results establish that spatial and temporal patterns of Hippo signaling occur during wing development, that these patterns depend upon cell-density modulated tissue mechanics and that they contribute to the regulation of wing cell proliferation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Alas de Animales/embriología , Alas de Animales/metabolismo , Animales , Membrana Basal/citología , Membrana Basal/metabolismo , Fenómenos Biomecánicos , Recuento de Células , Proliferación Celular , Citoesqueleto/metabolismo , Drosophila melanogaster/citología , Discos Imaginales/citología , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Factores de Tiempo , Alas de Animales/citología
15.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668437

RESUMEN

Developmental growth and patterning are regulated by an interconnected signalling network of several pathways. In Drosophila, the Warts (Wts) kinase, a component of the Hippo signalling pathway, plays an essential role in regulating transcription and growth by phosphorylating its substrate Yorkie (Yki). The phosphorylation of Yki critically influences its localisation and activity as a transcriptional coactivator. In this study, we identified the homeodomain-interacting protein kinase (Hipk) as another kinase that phosphorylates Yki and mapped several sites of Yki phosphorylated by Hipk, using in vitro analysis: Ser168, Ser169/Ser172 and Ser255. These sites might provide auxiliary input for Yki regulation in vivo, as transgenic flies with mutations in these show prominent phenotypes; Hipk, therefore, represents an additional upstream regulator of Yki that works in concert with Wts.


Asunto(s)
Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Fosforilación/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Transactivadores/genética , Proteínas Señalizadoras YAP
16.
Dev Biol ; 455(1): 51-59, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31265830

RESUMEN

The Hippo tumor suppressor pathway plays many fundamental cell biological roles during animal development. Two central players in controlling Hippo-dependent gene expression are the TEAD transcription factor Scalloped (Sd) and its transcriptional co-activator Yorkie (Yki). Hippo signaling phosphorylates Yki, thereby blocking Yki-dependent transcriptional control. In post-mitotic Drosophila photoreceptors, a bistable negative feedback loop forms between the Hippo-dependent kinase Warts/Lats and Yki to lock in green vs blue-sensitive neuronal subtype choices, respectively. Previous experiments indicate that sd and yki mutants phenocopy each other's functions, both being required for promoting the expression of the blue photoreceptor fate determinant melted (melt) and the blue-sensitive opsin Rh5. Here, we demonstrate that Sd ensures the robustness of this neuronal fate decision via multiple antagonistic gene regulatory roles. In Hippo-positive (green) photoreceptors, Sd directly represses both melt and Rh5 gene expression through defined TEAD binding sites, a mechanism that is antagonized by Yki in Hippo-negative (blue) cells. Additionally, in blue photoreceptors, Sd is required to promote the translation of the Rh5 protein through a 3'UTR-dependent and microRNA-mediated process. Together, these studies reveal that Sd can drive context-dependent cell fate decisions through opposing transcriptional and post-transcriptional mechanisms.


Asunto(s)
Proteínas de Drosophila/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Procesamiento Postranscripcional del ARN , Transactivadores/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Diferenciación Celular/genética , Línea Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/citología , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Transducción de Señal/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
17.
BMC Dev Biol ; 20(1): 10, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32552730

RESUMEN

BACKGROUND: Scaffold proteins support a variety of key processes during animal development. Mutant mouse for the MAGUK protein Discs large 5 (Dlg5) presents a general growth impairment and moderate morphogenetic defects. RESULTS: Here, we generated null mutants for Drosophila Dlg5 and show that it owns similar functions in growth and epithelial architecture. Dlg5 is required for growth at a cell autonomous level in several tissues and at the organism level, affecting cell size and proliferation. Our results are consistent with Dlg5 modulating hippo pathway in the wing disc, including the impact on cell size, a defect that is reproduced by the loss of yorkie. However, other observations indicate that Dlg5 regulates growth by at least another way that may involve Myc protein but nor PI3K neither TOR pathways. Moreover, epithelia cells mutant for Dlg5 also show a reduction of apical domain determinants, though not sufficient to induce a complete loss of cell polarity. Dlg5 is also essential, in the same cells, for the presence at Adherens junctions of N-Cadherin, but not E-Cadherin. Genetic analyses indicate that junction and polarity defects are independent. CONCLUSIONS: Together our data show that Dlg5 own several conserved functions that are independent of each other in regulating growth, cell polarity and cell adhesion. Moreover, they reveal a differential regulation of E-cadherin and N-cadherin apical localization.


Asunto(s)
Proteínas de Drosophila/metabolismo , Guanilato-Quinasas/metabolismo , Animales , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular/genética , Adhesión Celular/fisiología , Polaridad Celular/genética , Polaridad Celular/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Guanilato-Quinasas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Señalizadoras YAP
18.
Development ; 144(14): 2584-2594, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619819

RESUMEN

Multiple signaling pathways guide the behavior and differentiation of both germline stem cells (GSCs) and somatic follicle stem cells (FSCs) in the Drosophila germarium, necessitating careful control of signal generation, range and responses. Signal integration involves escort cells (ECs), which promote differentiation of the GSC derivatives they envelop, provide niche signals for FSCs and derive directly from FSCs in adults. Hedgehog (Hh) signaling induces the Hippo pathway effector Yorkie (Yki) to promote proliferation and maintenance of FSCs, but Hh also signals to ECs, which are quiescent. Here, we show that in ECs both Hh and Yki limit production of BMP ligands to allow germline differentiation. Loss of Yki produced a more severe germarial phenotype than loss of Hh signaling and principally induced a different BMP ligand. Moreover, Yki activity reporters and epistasis tests showed that Yki does not mediate the key actions of Hh signaling in ECs. Thus, both the coupling and output of the Hh and Yki signaling pathways differ between FSCs and ECs despite their proximity and the fact that FSCs give rise directly to ECs.


Asunto(s)
Proteínas Morfogenéticas Óseas/biosíntesis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Nucleares/metabolismo , Ovario/citología , Ovario/metabolismo , Transactivadores/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Genes de Insecto , Proteínas Hedgehog/genética , Proteínas Nucleares/genética , Oogénesis/genética , Oogénesis/fisiología , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Transducción de Señal , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Nicho de Células Madre , Células Madre/citología , Células Madre/metabolismo , Transactivadores/genética , Factor de Crecimiento Transformador beta/deficiencia , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Señalizadoras YAP
19.
BMC Med ; 18(1): 8, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31959160

RESUMEN

BACKGROUND: Dystroglycanopathies are a group of inherited disorders characterized by vast clinical and genetic heterogeneity and caused by abnormal functioning of the ECM receptor dystroglycan (Dg). Remarkably, among many cases of diagnosed dystroglycanopathies, only a small fraction can be linked directly to mutations in Dg or its regulatory enzymes, implying the involvement of other, not-yet-characterized, Dg-regulating factors. To advance disease diagnostics and develop new treatment strategies, new approaches to find dystroglycanopathy-related factors should be considered. The Dg complex is highly evolutionarily conserved; therefore, model genetic organisms provide excellent systems to address this challenge. In particular, Drosophila is amenable to experiments not feasible in any other system, allowing original insights about the functional interactors of the Dg complex. METHODS: To identify new players contributing to dystroglycanopathies, we used Drosophila as a genetic muscular dystrophy model. Using mass spectrometry, we searched for muscle-specific Dg interactors. Next, in silico analyses allowed us to determine their association with diseases and pathological conditions in humans. Using immunohistochemical, biochemical, and genetic interaction approaches followed by the detailed analysis of the muscle tissue architecture, we verified Dg interaction with some of the discovered factors. Analyses of mouse muscles and myocytes were used to test if interactions are conserved in vertebrates. RESULTS: The muscle-specific Dg complexome revealed novel components that influence the efficiency of Dg function in the muscles. We identified the closest human homologs for Dg-interacting partners, determined their significant enrichment in disease-associations, and verified some of the newly identified Dg interactions. We found that Dg associates with two components of the mechanosignaling Hippo pathway: the WW domain-containing proteins Kibra and Yorkie. Importantly, this conserved interaction manages adult muscle size and integrity. CONCLUSIONS: The results presented in this study provide a new list of muscle-specific Dg interactors, further analysis of which could aid not only in the diagnosis of muscular dystrophies, but also in the development of new therapeutics. To regulate muscle fitness during aging and disease, Dg associates with Kibra and Yorkie and acts as a transmembrane Hippo signaling receptor that transmits extracellular information to intracellular signaling cascades, regulating muscle gene expression.


Asunto(s)
Proteínas de Drosophila/metabolismo , Distroglicanos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Atrofia Muscular/metabolismo , Distrofias Musculares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Envejecimiento/metabolismo , Animales , Modelos Animales de Enfermedad , Drosophila , Distroglicanos/genética , Femenino , Masculino , Espectrometría de Masas , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/patología , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación , Mapas de Interacción de Proteínas
20.
Adv Exp Med Biol ; 1167: 113-127, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31520352

RESUMEN

The resurgence of Drosophila as a recognized model for carcinogenesis has contributed greatly to our conceptual advance and mechanistic understanding of tumor growth in vivo. With its powerful genetics, Drosophila has emerged as a prime model organism to study cell biology and physiological functions of autophagy. This has enabled exploration of the contributions of autophagy in several tumor models. Here we review the literature of autophagy related to tumorigenesis in Drosophila. Functional analysis of core autophagy components does not provide proof for a classical tumor suppression role for autophagy alone. Autophagy both serve to suppress or support tumor growth. These effects are context-specific, depending on cell type and oncogenic or tumor suppressive lesion. Future delineation of how autophagy impinges on tumorigenesis will demand to untangle in detail, the regulation and flux of autophagy in the respective tumor models. The downstream tumor-regulative roles of autophagy through organelle homeostasis, metabolism, selective autophagy or alternative mechanisms remain largely unexplored.


Asunto(s)
Autofagia , Carcinogénesis , Drosophila , Animales , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA