Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO J ; 42(9): e112717, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36912152

RESUMEN

Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks.


Asunto(s)
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo
2.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36052670

RESUMEN

In common with other actomyosin contractile cellular machineries, actin turnover is required for normal function of the cytokinetic contractile ring. Cofilin is an actin-binding protein contributing to turnover by severing actin filaments, required for cytokinesis by many organisms. In fission yeast cofilin mutants, contractile rings suffer bridging instabilities in which segments of the ring peel away from the plasma membrane, forming straight bridges whose ends remain attached to the membrane. The origin of bridging instability is unclear. Here, we used molecularly explicit simulations of contractile rings to examine the role of cofilin. Simulations reproduced the experimentally observed cycles of bridging and reassembly during constriction, and the occurrence of bridging in ring segments with low density of the myosin II protein Myo2. The lack of cofilin severing produced ∼2-fold longer filaments and, consequently, ∼2-fold higher ring tensions. Simulations identified bridging as originating in the boosted ring tension, which increased centripetal forces that detached actin from Myo2, which was anchoring actin to the membrane. Thus, cofilin serves a critical role in cytokinesis by providing protection from bridging, the principal structural threat to contractile rings.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Citocinesis , Proteínas de Microfilamentos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
Plant J ; 110(4): 1068-1081, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35233873

RESUMEN

ADF/cofilin is a central regulator of actin dynamics. We previously demonstrated that two closely related Arabidopsis class IIa ADF isovariants, ADF7 and ADF10, are involved in the enhancement of actin turnover in pollen, but whether they have distinct functions remains unknown. Here, we further demonstrate that they exhibit distinct functions in regulating actin turnover both in vitro and in vivo. We found that ADF7 binds to ADP-G-actin with lower affinity, and severs and depolymerizes actin filaments less efficiently in vitro than ADF10. Accordingly, in pollen grains, ADF7 more extensively decorates actin filaments and is less freely distributed in the cytoplasm compared to ADF10. We further demonstrate that ADF7 and ADF10 show distinct intracellular localizations during pollen germination, and they have non-equivalent functions in promoting actin turnover in pollen. We thus propose that cooperation and labor division of ADF7 and ADF10 enable pollen cells to achieve exquisite control of the turnover of different actin structures to meet different cellular needs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Polen/metabolismo , Tubo Polínico/metabolismo
4.
Cell Mol Life Sci ; 79(11): 558, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36264429

RESUMEN

The vast majority of excitatory synapses are formed on small dendritic protrusions termed dendritic spines. Dendritic spines vary in size and density that are crucial determinants of excitatory synaptic transmission. Aberrations in spine morphogenesis can compromise brain function and have been associated with neuropsychiatric disorders. Actin filaments (F-actin) are the major structural component of dendritic spines, and therefore, actin-binding proteins (ABP) that control F-actin dis-/assembly moved into the focus as critical regulators of brain function. Studies of the past decade identified the ABP cofilin1 as a key regulator of spine morphology, synaptic transmission, and behavior, and they emphasized the necessity for a tight control of cofilin1 to ensure proper brain function. Here, we report spine enrichment of cyclase-associated protein 1 (CAP1), a conserved multidomain protein with largely unknown physiological functions. Super-resolution microscopy and live cell imaging of CAP1-deficient hippocampal neurons revealed impaired synaptic F-actin organization and dynamics associated with alterations in spine morphology. Mechanistically, we found that CAP1 cooperates with cofilin1 in spines and that its helical folded domain is relevant for this interaction. Moreover, our data proved functional interdependence of CAP1 and cofilin1 in control of spine morphology. In summary, we identified CAP1 as a novel regulator of the postsynaptic actin cytoskeleton that is essential for synaptic cofilin1 activity.


Asunto(s)
Actinas , Espinas Dendríticas , Actinas/metabolismo , Espinas Dendríticas/fisiología , Citoesqueleto de Actina/metabolismo , Sinapsis/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Sinapsinas/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(44): 27400-27411, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087579

RESUMEN

Individual cell migration requires front-to-back polarity manifested by lamellipodial extension. At present, it remains debated whether and how membrane motility mediates this cell morphological change. To gain insights into these processes, we perform live imaging and molecular perturbation of migrating chick neural crest cells in vivo. Our results reveal an endocytic loop formed by circular membrane flow and anterograde movement of lipid vesicles, resulting in cell polarization and locomotion. Rather than clathrin-mediated endocytosis, macropinosomes encapsulate F-actin in the cell body, forming vesicles that translocate via microtubules to deliver actin to the anterior. In addition to previously proposed local conversion of actin monomers to polymers, we demonstrate a surprising role for shuttling of F-actin across cells for lamellipodial expansion. Thus, the membrane and cytoskeleton act in concert in distinct subcellular compartments to drive forward cell migration.


Asunto(s)
Actinas/metabolismo , Movimiento Celular , Cresta Neural/fisiología , Pinocitosis , Seudópodos/metabolismo , Animales , Membrana Celular/metabolismo , Embrión de Pollo , Microscopía Intravital , Cresta Neural/citología , Imagen de Lapso de Tiempo
6.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952119

RESUMEN

Sarcomere assembly and maintenance are essential physiological processes required for cardiac and skeletal muscle function and organism mobility. Over decades of research, components of the sarcomere and factors involved in the formation and maintenance of this contractile unit have been identified. Although we have a general understanding of sarcomere assembly and maintenance, much less is known about the development of the thin filaments and associated factors within the sarcomere. In the last decade, advancements in medical intervention and genome sequencing have uncovered patients with novel mutations in sarcomere thin filaments. Pairing this sequencing with reverse genetics and the ability to generate patient avatars in model organisms has begun to deepen our understanding of sarcomere thin filament development. In this review, we provide a summary of recent findings regarding sarcomere assembly, maintenance, and disease with respect to thin filaments, building on the previous knowledge in the field. We highlight debated and unknown areas within these processes to clearly define open research questions.


Asunto(s)
Citoesqueleto de Actina/genética , Contracción Muscular/genética , Enfermedades Musculares/genética , Sarcómeros/genética , Citoesqueleto de Actina/metabolismo , Animales , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Enfermedades Musculares/metabolismo , Mutación , Sarcómeros/metabolismo , Secuenciación Completa del Genoma/métodos
7.
FASEB J ; 31(11): 5019-5035, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28768720

RESUMEN

Within the kidney, angiotensin II (AngII) targets different cell types in the vasculature, tubuli, and glomeruli. An important part of the renal filtration barrier is composed of podocytes with their actin-rich foot processes. In this study, we used stable isotope labeling with amino acids in cell culture coupled to mass spectrometry to characterize relative changes in the phosphoproteome of human podocytes in response to short-term treatment with AngII. In 4 replicates, we identified a total of 17,956 peptides that were traceable to 2081 distinct proteins. Bioinformatic analyses revealed that among the increasingly phosphorylated peptides are predominantly peptides that are related to actin filaments, cytoskeleton, lamellipodia, mammalian target of rapamycin, and MAPK signaling. Among others, this screening approach highlighted the increased phosphorylation of actin-bundling protein, l-plastin (LCP1). AngII-dependent phosphorylation of LCP1 in cultured podocytes was mediated by the kinases ERK, p90 ribosomal S6 kinase, PKA, or PKC. LCP1 phosphorylation increased filopodia formation. In addition, treatment with AngII led to LCP1 redistribution to the cell margins, membrane ruffling, and formation of lamellipodia. Our data highlight the importance of AngII-triggered actin cytoskeleton-associated signal transduction in podocytes.-Schenk, L. K., Möller-Kerutt, A., Klosowski, R., Wolters, D., Schaffner-Reckinger, E., Weide, T., Pavenstädt, H., Vollenbröker, B. Angiotensin II regulates phosphorylation of actin-associated proteins in human podocytes.


Asunto(s)
Angiotensina II/farmacología , Sistema de Señalización de MAP Quinasas , Proteínas de Microfilamentos/metabolismo , Podocitos/metabolismo , Angiotensina II/genética , Angiotensina II/metabolismo , Línea Celular Transformada , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
8.
J Biol Chem ; 291(10): 5146-56, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26747606

RESUMEN

Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Microfilamentos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Caenorhabditis elegans/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas/metabolismo , Conejos
9.
Handb Exp Pharmacol ; 235: 153-178, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27757765

RESUMEN

The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.


Asunto(s)
Actinas/química , Transducción de Señal/fisiología , Citoesqueleto de Actina/química , Animales , Autofagia/fisiología , Endocitosis/fisiología , Humanos , Proteínas de Unión al GTP rho/fisiología
10.
Plant J ; 83(3): 515-27, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26096143

RESUMEN

Actin is an ancient conserved protein that is encoded by multiple isovariants in multicellular organisms. There are eight functional actin genes in the Arabidopsis genome, and the precise function and mechanism of action of each isovariant remain poorly understood. Here, we report the characterization of ACT11, a reproductive actin isovariant. Our studies reveal that loss of function of ACT11 causes a delay in pollen germination, but enhances pollen tube growth. Cytological analysis revealed that the amount of filamentous actin decreased, and the rate of actin turnover increased in act11 pollen. Convergence of actin filaments upon the germination aperture was impaired in act11 pollen, consistent with the observed delay of germination. Reduction of actin dynamics with jasplakinolide suppressed the germination and tube growth phenotypes in act11 pollen, suggesting that the underlying mechanisms involve an increase in actin dynamics. Thus, we demonstrate that ACT11 is required to maintain the rate of actin turnover in order to promote pollen germination and maintain the normal rate of pollen tube growth.


Asunto(s)
Actinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Actinas/genética
11.
J Cell Sci ; 127(Pt 9): 2040-52, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24610943

RESUMEN

Cdc42 is a key regulator of dynamic actin organization. However, little is known about how Cdc42-dependent actin regulation influences steady-state actin structures in differentiated epithelia. We employed inner ear hair-cell-specific conditional knockout to analyze the role of Cdc42 in hair cells possessing highly elaborate stable actin protrusions (stereocilia). Hair cells of Atoh1-Cre;Cdc42(flox/flox) mice developed normally but progressively degenerated after maturation, resulting in progressive hearing loss particularly at high frequencies. Cochlear hair cell degeneration was more robust in inner hair cells than in outer hair cells, and began as stereocilia fusion and depletion, accompanied by a thinning and waving circumferential actin belt at apical junctional complexes (AJCs). Adenovirus-encoded GFP-Cdc42 expression in hair cells and fluorescence resonance energy transfer (FRET) imaging of hair cells from transgenic mice expressing a Cdc42-FRET biosensor indicated Cdc42 presence and activation at stereociliary membranes and AJCs in cochlear hair cells. Cdc42-knockdown in MDCK cells produced phenotypes similar to those of Cdc42-deleted hair cells, including abnormal microvilli and disrupted AJCs, and downregulated actin turnover represented by enhanced levels of phosphorylated cofilin. Thus, Cdc42 influenced the maintenance of stable actin structures through elaborate tuning of actin turnover, and maintained function and viability of cochlear hair cells.


Asunto(s)
Células Ciliadas Auditivas/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Actinas/metabolismo , Animales , Técnicas Biosensibles , Cóclea/citología , Cóclea/metabolismo , Perros , Transferencia Resonante de Energía de Fluorescencia , Humanos , Inmunohistoquímica , Hibridación in Situ , Células de Riñón Canino Madin Darby , Ratones , Microscopía Electroquímica de Rastreo , Microscopía Electrónica de Transmisión , Técnicas de Cultivo de Órganos/métodos , Proteína de Unión al GTP cdc42/genética
12.
Am J Physiol Gastrointest Liver Physiol ; 308(9): G745-56, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25792565

RESUMEN

Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis.


Asunto(s)
Uniones Adherentes/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Microfilamentos/metabolismo , Uniones Estrechas/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Actomiosina/metabolismo , Uniones Adherentes/patología , Animales , Células CACO-2 , Polaridad Celular , Quistes/metabolismo , Quistes/patología , Células Epiteliales/patología , Regulación de la Expresión Génica , Humanos , Mucosa Intestinal/patología , Ratones , Proteínas de Microfilamentos/genética , Morfogénesis , Permeabilidad , Interferencia de ARN , Transducción de Señal , Uniones Estrechas/patología , Transfección
13.
J Cell Sci ; 126(Pt 15): 3249-58, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23908377

RESUMEN

Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in actin filament dynamics. CAP enhances the recharging of actin monomers with ATP antagonistically to ADF/cofilin, and also promotes the severing of actin filaments in cooperation with ADF/cofilin. Self-oligomerization and binding to other proteins regulate activities and localization of CAP. CAP has crucial roles in cell signaling, development, vesicle trafficking, cell migration and muscle sarcomere assembly. This Commentary discusses the recent advances in our understanding of the functions of CAP and its implications as an important regulator of actin cytoskeletal dynamics, which are involved in various cellular activities.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adenilil Ciclasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Animales , Humanos
14.
Curr Opin Physiol ; 19: 10-16, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32728653

RESUMEN

Disruption of epithelial barriers is a key pathogenic event of mucosal inflammation: It ignites the exaggerated immune response and accelerates tissue damage. Loss of barrier function is attributed to the abnormal structure and permeability of epithelial adherens junctions and tight junctions, driven by inflammatory stimuli through a variety of cellular mechanisms. This review focuses on roles of the actin cytoskeleton in mediating disruption of epithelial junctions and creation of leaky barriers in inflamed tissues. We summarize recent advances in understanding the role of cytoskeletal remodeling driven by actin filament turnover and myosin II-dependent contractility in the homeostatic regulation of epithelial barriers and barrier disruption during mucosal inflammation. We also discuss how the altered biochemical and physical environment of the inflamed tissues could affect the dynamics of the junction-associated actomyosin cytoskeleton, leading to the disruption of epithelial barriers.

15.
Front Cell Dev Biol ; 9: 634708, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33598464

RESUMEN

The Arp2/3 complex generates branched actin filament networks operating in cell edge protrusion and vesicle trafficking. Here we employ a conditional knockout mouse model permitting tissue- or cell-type specific deletion of the murine Actr3 gene (encoding Arp3). A functional Actr3 gene appeared essential for fibroblast viability and growth. Thus, we developed cell lines for exploring the consequences of acute, tamoxifen-induced Actr3 deletion causing near-complete loss of functional Arp2/3 complex expression as well as abolished lamellipodia formation and membrane ruffling, as expected. Interestingly, Arp3-depleted cells displayed enhanced rather than reduced cell spreading, employing numerous filopodia, and showed little defects in the rates of random cell migration. However, both exploration of new space by individual cells and collective migration were clearly compromised by the incapability to efficiently maintain directionality of migration, while the principal ability to chemotax was only moderately affected. Examination of actin remodeling at the cell periphery revealed reduced actin turnover rates in Arp2/3-deficient cells, clearly deviating from previous sequestration approaches. Most surprisingly, induced removal of Arp2/3 complexes reproducibly increased FMNL formin expression, which correlated with the explosive induction of filopodia formation. Our results thus highlight both direct and indirect effects of acute Arp2/3 complex removal on actin cytoskeleton regulation.

16.
Cell Rep ; 34(5): 108708, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33535030

RESUMEN

Fast-dissociating, specific antibodies are single-molecule imaging probes that transiently interact with their targets and are used in biological applications including image reconstruction by integrating exchangeable single-molecule localization (IRIS), a multiplexable super-resolution microscopy technique. Here, we introduce a semi-automated screen based on single-molecule total internal reflection fluorescence (TIRF) microscopy of antibody-antigen binding, which allows for identification of fast-dissociating monoclonal antibodies directly from thousands of hybridoma cultures. We develop monoclonal antibodies against three epitope tags (FLAG-tag, S-tag, and V5-tag) and two F-actin crosslinking proteins (plastin and espin). Specific antibodies show fast dissociation with half-lives ranging from 0.98 to 2.2 s. Unexpectedly, fast-dissociating yet specific antibodies are not so rare. A combination of fluorescently labeled Fab probes synthesized from these antibodies and light-sheet microscopy, such as dual-view inverted selective plane illumination microscopy (diSPIM), reveal rapid turnover of espin within long-lived F-actin cores of inner-ear sensory hair cell stereocilia, demonstrating that fast-dissociating specific antibodies can identify novel biological phenomena.


Asunto(s)
Anticuerpos/metabolismo , Hibridomas/metabolismo , Microscopía/métodos , Imagen Individual de Molécula/métodos , Animales , Técnicas de Cultivo de Célula , Humanos , Ratones
17.
Sci China Life Sci ; 63(2): 239-250, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31240522

RESUMEN

Apical actin filaments are highly dynamic structures that are crucial for rapid pollen tube growth, but the mechanisms regulating their dynamics and spatial organization remain incompletely understood. We here identify that AtAIP1-1 is important for regulating the turnover and organization of apical actin filaments in pollen tubes. AtAIP1-1 is distributed uniformly in the pollen tube and loss of function of AtAIP1-1 affects the organization of the actin cytoskeleton in the pollen tube. Specifically, actin filaments became disorganized within the apical region of aip1-1 pollen tubes. Consistent with the role of apical actin filaments in spatially restricting vesicles in pollen tubes, the apical region occupied by vesicles becomes enlarged in aip1-1 pollen tubes compared to WT. Using ADF1 as a representative actin-depolymerizing factor, we demonstrate that AtAIP1-1 enhances ADF1-mediated actin depolymerization and filament severing in vitro, although AtAIP1-1 alone does not have an obvious effect on actin assembly and disassembly. The dynamics of apical actin filaments are reduced in aip1-1 pollen tubes compared to WT. Our study suggests that AtAIP1-1 works together with ADF to act as a module in regulating the dynamics of apical actin filaments to facilitate the construction of the unique "apical actin structure" in the pollen tube.


Asunto(s)
Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Tubo Polínico/metabolismo , Proteínas Recombinantes/metabolismo , Factores Despolimerizantes de la Actina/genética , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Proteínas de Arabidopsis/genética , Citoesqueleto/metabolismo , Regulación de la Expresión Génica de las Plantas , Multimerización de Proteína
18.
Cytoskeleton (Hoboken) ; 76(11-12): 517-531, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31758841

RESUMEN

During intracellular transport, cellular cargos, such as organelles, vesicles, and proteins, are transported within cells. Intracellular transport plays an important role in diverse cellular functions. Molecular motors walking on the cytoskeleton facilitate active intracellular transport, which is more efficient than diffusion-based passive transport. Active transport driven by kinesin and dynein walking on microtubules has been studied well during recent decades. However, mechanisms of active transport occurring in disorganized actin networks via myosin motors remain elusive. To provide physiologically relevant insights, we probed motions of myosin motors in actin networks under various conditions using our well-established computational model that rigorously accounts for the mechanical and dynamical behaviors of the actin cytoskeleton. We demonstrated that myosin motions can be confined due to three different reasons in the absence of F-actin turnover. We verified mechanisms of motor stalling using in vitro reconstituted actomyosin networks. We also found that with F-actin turnover, motors consistently move for a long time without significant confinement. Our study sheds light on the importance of F-actin turnover for effective active transport in the actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Miosinas/metabolismo , Animales , Transporte Biológico , Humanos
19.
Curr Biol ; 27(19): 2963-2973.e14, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28966086

RESUMEN

Actin turnover is the central driving force underlying lamellipodial motility. The molecular components involved are largely known, and their properties have been studied extensively in vitro. However, a comprehensive picture of actin turnover in vivo is still missing. We focus on fragments from fish epithelial keratocytes, which are essentially stand-alone motile lamellipodia. The geometric simplicity of the fragments and the absence of additional actin structures allow us to characterize the spatiotemporal lamellipodial actin organization with unprecedented detail. We use fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and extraction experiments to show that about two-thirds of the lamellipodial actin diffuses in the cytoplasm with nearly uniform density, whereas the rest forms the treadmilling polymer network. Roughly a quarter of the diffusible actin pool is in filamentous form as diffusing oligomers, indicating that severing and debranching are important steps in the disassembly process generating oligomers as intermediates. The remaining diffusible actin concentration is orders of magnitude higher than the in vitro actin monomer concentration required to support the observed polymerization rates, implying that the majority of monomers are transiently kept in a non-polymerizable "reserve" pool. The actin network disassembles and reassembles throughout the lamellipodium within seconds, so the lamellipodial network turnover is local. The diffusible actin transport, on the other hand, is global: actin subunits typically diffuse across the entire lamellipodium before reassembling into the network. This combination of local network turnover and global transport of dissociated subunits through the cytoplasm makes actin transport robust yet rapidly adaptable and amenable to regulation.


Asunto(s)
Actinas/química , Cíclidos/fisiología , Proteínas de Peces/química , Seudópodos/química , Animales , Polimerizacion
20.
Microscopy (Oxf) ; 66(4): 272-282, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28531263

RESUMEN

Together with lamellipodia and stress fibers, a dynamic network of actin filaments in the cell cortex plays a major role in the maintenance of cell morphology and motility. In contrast to lamellipodia, which have been well studied in various motile cells, the dynamics of actin filaments in the cell cortex have not yet been clarified due to a lack of proper imaging techniques. Here, we utilized high-speed atomic force microscopy for live-cell imaging and analyzed cortical actin dynamics in living cells. We successfully measured the polymerization rate and the frequency of filament synthesis in living COS-7 cells, and examined the associated effects of various inhibitors and actin-binding proteins. Actin filaments are synthesized beneath the plasma membrane and eventually descend into the cytoplasm. The inhibitors, cytochalasin B inhibited the polymerization, while jasplakinolide, inhibited the turnover of actin filaments as well as descension of the newly synthesized filaments, suggesting that actin polymerization near the membrane drives turnover of the cortical actin meshwork. We also determined how actin turnover is maintained and regulated by the free G-actin pool and G-actin binding proteins such as profilin and thymosin ß4, and found that only a small amount of free G-actin was present in the cortex. Finally, we analyzed several different cell types, and found that the mesh size and the orientation of actin filaments were highly divergent, indicating the involvement of various actin-binding proteins in the maintenance and regulation of cortical actin architecture in each cell type.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Microscopía de Fuerza Atómica/métodos , Seudópodos/metabolismo , Animales , Células COS , Línea Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Citocalasina B/farmacología , Profilinas/metabolismo , Timosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA