Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.740
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 41: 153-179, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36696570

RESUMEN

Modulation of the immune system is an important therapeutic strategy in a wide range of diseases, and is fundamental to the development of vaccines. However, optimally safe and effective immunotherapy requires precision in the delivery of stimulatory cues to the right cells at the right place and time, to avoid toxic overstimulation in healthy tissues or incorrect programming of the immune response. To this end, biomaterials are being developed to control the location, dose, and timing of vaccines and immunotherapies. Here we discuss fundamental concepts of how biomaterials are used to enhance immune modulation, and evidence from preclinical and clinical studies of how biomaterials-mediated immune engineering can impact the development of new therapeutics. We focus on immunological mechanisms of action and in vivo modulation of the immune system, and we also discuss challenges to be overcome to speed translation of these technologies to the clinic.


Asunto(s)
Neoplasias , Vacunas , Humanos , Animales , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Inmunoterapia , Sistema Inmunológico , Inmunidad
2.
Immunity ; 57(5): 1160-1176.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697118

RESUMEN

Multimodal single-cell profiling methods can capture immune cell variations unfolding over time at the molecular, cellular, and population levels. Transforming these data into biological insights remains challenging. Here, we introduce a framework to integrate variations at the human population and single-cell levels in vaccination responses. Comparing responses following AS03-adjuvanted versus unadjuvanted influenza vaccines with CITE-seq revealed AS03-specific early (day 1) response phenotypes, including a B cell signature of elevated germinal center competition. A correlated network of cell-type-specific transcriptional states defined the baseline immune status associated with high antibody responders to the unadjuvanted vaccine. Certain innate subsets in the network appeared "naturally adjuvanted," with transcriptional states resembling those induced uniquely by AS03-adjuvanted vaccination. Consistently, CD14+ monocytes from high responders at baseline had elevated phospho-signaling responses to lipopolysaccharide stimulation. Our findings link baseline immune setpoints to early vaccine responses, with positive implications for adjuvant development and immune response engineering.


Asunto(s)
Linfocitos B , Vacunas contra la Influenza , Análisis de la Célula Individual , Humanos , Vacunas contra la Influenza/inmunología , Linfocitos B/inmunología , Centro Germinal/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Vacunación , Anticuerpos Antivirales/inmunología , Adyuvantes Inmunológicos , Adyuvantes de Vacunas , Monocitos/inmunología , Polisorbatos , Escualeno/inmunología , Inmunidad Innata/inmunología
3.
Immunity ; 55(11): 2118-2134.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36137543

RESUMEN

While blood antibodies mediate protective immunity in most organs, whether they protect nasal surfaces in the upper airway is unclear. Using multiple viral infection models in mice, we found that blood-borne antibodies could not defend the olfactory epithelium. Despite high serum antibody titers, pathogens infected nasal turbinates, and neurotropic microbes invaded the brain. Using passive antibody transfers and parabiosis, we identified a restrictive blood-endothelial barrier that excluded circulating antibodies from the olfactory mucosa. Plasma cell depletions demonstrated that plasma cells must reside within olfactory tissue to achieve sterilizing immunity. Antibody blockade and genetically deficient models revealed that this local immunity required CD4+ T cells and CXCR3. Many vaccine adjuvants failed to generate olfactory plasma cells, but mucosal immunizations established humoral protection of the olfactory surface. Our identification of a blood-olfactory barrier and the requirement for tissue-derived antibody has implications for vaccinology, respiratory and CNS pathogen transmission, and B cell fate decisions.


Asunto(s)
Linfocitos B , Células Plasmáticas , Animales , Ratones , Linfocitos T , Inmunoglobulinas , Encéfalo , Inmunidad Mucosa , Anticuerpos Antivirales
4.
Trends Immunol ; 44(10): 845-857, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37684173

RESUMEN

Adjuvants are essential components of modern vaccines. One general mechanism underlying their immunostimulatory functions is the activation of pattern recognition receptors (PRRs) of innate immune cells. Carbohydrates - as essential signaling molecules on microbial surfaces - are potent PRR agonists and candidate materials for adjuvant design. Here, we summarize the latest trends in developing carbohydrate-containing adjuvants, with fresh opinions on how the physicochemical characteristics of the glycans (e.g., molecular size, assembly status, monosaccharide components, and functional group patterns) affect their adjuvant activities in aiding antigen transport, regulating antigen processing, and enhancing adaptive immune responses. From a translational perspective, we also discuss potential technologies for solving long-lasting challenges in carbohydrate adjuvant design.


Asunto(s)
Inmunidad Adaptativa , Vacunas , Humanos , Receptores de Reconocimiento de Patrones , Adyuvantes Inmunológicos , Desarrollo de Vacunas , Carbohidratos , Inmunidad Innata
5.
Eur J Immunol ; 54(4): e2350582, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279592

RESUMEN

Neutrophil extracellular traps (NETs) have been identified as triggers for a self-limited inflammatory reaction upon contact with nanoparticles within our bodies. This typically results in entrapping potentially harmful nano- or micro-objects following an immune burst. The demand for potent adjuvants has led to research on particulate-based adjuvants, particularly those that act via NET formation. Various particles, including hydrophobic nanoparticles, needle-like microparticles, and other natural and artificial crystals, have been shown to induce NET formation, eliciting a robust humoral and cellular immune response toward co-injected antigens. The NET formation was found to be the basis of the efficient use of alum as a vaccine adjuvant. Thus, nanoparticles with specific surface properties serve as NET-stimulating adjuvants. In this mini-review, we aim to summarize the current knowledge about the surface properties of particulate objects and the molecular pathways involved in inducing NET formation by neutrophils. Additionally, we discuss the potential use of nanoparticles for activating neutrophils in the tissues and the exploitation of such activation for enhancing vaccine adjuvants.


Asunto(s)
Trampas Extracelulares , Nanopartículas , Neutrófilos , Antígenos , Adyuvantes Inmunológicos
6.
Eur J Immunol ; 54(2): e2350512, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994660

RESUMEN

Vaccination is considered one of the major milestones in modern medicine, facilitating the control and eradication of life-threatening infectious diseases. Vaccine adjuvants are a key component of many vaccines, serving to steer antigen-specific immune responses and increase their magnitude. Despite major advances in the field of adjuvant research over recent decades, our understanding of their mechanism of action remains incomplete. This hinders our capacity to further improve these adjuvant technologies, so addressing how adjuvants induce and control the induction of innate and adaptive immunity is a priority. Investigating how adjuvant physicochemical properties, such as size and charge, exert immunomodulatory effects can provide valuable insights and serve as the foundation for the rational design of vaccine adjuvants. Most clinically applied adjuvants are particulate in nature and polymeric particulate adjuvants present advantages due to stability, biocompatibility profiles, and flexibility in terms of formulation. These properties can impact on antigen release kinetics and biodistribution, cellular uptake and targeting, and drainage to the lymphatics, consequently dictating the induction of innate, cellular, and humoral adaptive immunity. A current focus is to apply rational design principles to the development of adjuvants capable of eliciting robust cellular immune responses including CD8+ cytotoxic T-cell and Th1-biased CD4+ T-cell responses, which are required for vaccines against intracellular pathogens and cancer. This review highlights recent advances in our understanding of how particulate adjuvants, especially polymer-based particulates, modulate immune responses and how this can be used as a guide for improved adjuvant design.


Asunto(s)
Adyuvantes de Vacunas , Vacunas , Distribución Tisular , Vacunación , Inmunidad Adaptativa , Adyuvantes Inmunológicos/farmacología , Antígenos
7.
Annu Rev Biomed Eng ; 26(1): 273-306, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959389

RESUMEN

Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.


Asunto(s)
COVID-19 , Nanoestructuras , SARS-CoV-2 , Desarrollo de Vacunas , Humanos , Nanoestructuras/química , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/química , Animales , Adyuvantes Inmunológicos/química , Neoplasias/inmunología , Neoplasias/prevención & control , Nanopartículas/química , Vacunas , Pandemias/prevención & control
8.
Semin Immunol ; 56: 101544, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34895823

RESUMEN

Purified vaccine antigens offer important safety and reactogenicity advantages compared with live attenuated or whole killed virus and bacterial vaccines. However, they require the addition of adjuvants to induce the magnitude, duration and quality of immune response required to achieve protective immunity. Aluminium salts have been used as adjuvants in vaccines for almost a century. In the literature, they are often referred to as aluminium-based adjuvants (ABAs), or aluminium salt-containing adjuvants or more simply "alum". All these terms are used to group aluminium suspensions that are very different in terms of atomic composition, size, and shape. They differ also in stability, antigen-adsorption, and antigen-release kinetics. Critically, these parameters also have a profound effect on the character and magnitude of the immune response elicited. Recent findings suggest that, by reducing the size of aluminium from micro to nanometers, a more effective adjuvant is obtained, together with the ability to sterile filter the vaccine product. However, the behaviour of aluminium nanoparticles in vaccine formulations is different from microparticles, requiring specific formulation strategies, as well as a more detailed understanding of how formulation influences the immune response generated. Here we review the current state of art of aluminium nanoparticles as adjuvants, with a focus on their immunobiology, preparation methods, formulation optimisation and stabilisation.


Asunto(s)
Nanopartículas , Vacunas , Adyuvantes Inmunológicos/farmacología , Aluminio , Humanos
9.
Clin Microbiol Rev ; 36(3): e0016422, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37306571

RESUMEN

Bordetella pertussis and Bordetella bronchiseptica belong to the genus Bordetella, which comprises 14 other species. B. pertussis is responsible for whooping cough in humans, a severe infection in children and less severe or chronic in adults. These infections are restricted to humans and currently increasing worldwide. B. bronchiseptica is involved in diverse respiratory infections in a wide range of mammals. For instance, the canine infectious respiratory disease complex (CIRDC), characterized by a chronic cough in dogs. At the same time, it is increasingly implicated in human infections, while remaining an important pathogen in the veterinary field. Both Bordetella can evade and modulate host immune responses to support their persistence, although it is more pronounced in B. bronchiseptica infection. The protective immune responses elicited by both pathogens are comparable, while there are important characteristics in the mechanisms that differ. However, B. pertussis pathogenesis is more difficult to decipher in animal models than those of B. bronchiseptica because of its restriction to humans. Nevertheless, the licensed vaccines for each Bordetella are different in terms of formulation, route of administration and immune responses induced, with no known cross-reaction between them. Moreover, the target of the mucosal tissues and the induction of long-lasting cellular and humoral responses are required to control and eliminate Bordetella. In addition, the interaction between both veterinary and human fields are essential for the control of this genus, by preventing the infections in animals and the subsequent zoonotic transmission to humans.


Asunto(s)
Infecciones por Bordetella , Bordetella bronchiseptica , Infecciones del Sistema Respiratorio , Vacunas , Tos Ferina , Niño , Animales , Perros , Humanos , Bordetella pertussis/fisiología , Bordetella bronchiseptica/fisiología , Tos Ferina/prevención & control , Infecciones por Bordetella/prevención & control , Mamíferos
10.
Antimicrob Agents Chemother ; 68(4): e0007524, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445869

RESUMEN

Hydrogen sulfide (H2S) has been proposed to protect bacteria from antibiotics, pointing to H2S-producing enzymes as possible targets for the development of antibiotic adjuvants. Here, MIC assays performed with Pseudomonas aeruginosa mutants producing altered H2S levels demonstrate that H2S does not affect antibiotic resistance in this bacterium. Moreover, correlation analyses in a large collection of P. aeruginosa cystic fibrosis isolates argue against the protective role of H2S from antibiotic activity during chronic lung infection.


Asunto(s)
Sulfuro de Hidrógeno , Infecciones por Pseudomonas , Humanos , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Farmacorresistencia Microbiana , Sulfuros
11.
Small ; 20(10): e2306892, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37867244

RESUMEN

Poly(I:C) is a synthetic analogue of dsRNA capable of activating both TLR3 and RLRs, such as MDA-5 and RIG-I, as pathogen recognition receptors. While poly(I:C) is known to provoke a robust type I IFN, type III IFN, and Th1 cytokine response, its therapeutic use as a vaccine adjuvant is limited due to its vulnerability to nucleases and poor uptake by immune cells. is encapsulated poly(I:C) into lipid nanoparticles (LNPs) containing an ionizable cationic lipid that can electrostatically interact with poly(I:C). LNP-formulated poly(I:C) triggered both lysosomal TLR3 and cytoplasmic RLRs, in vitro and in vivo, whereas poly(I:C) in an unformulated soluble form only triggered endosomal-localized TLR3. Administration of LNP-formulated poly(I:C) in mouse models led to efficient translocation to lymphoid tissue and concurrent innate immune activation following intramuscular (IM) administration, resulting in a significant increase in innate immune activation compared to unformulated soluble poly(I:C). When used as an adjuvant for recombinant full-length SARS-CoV-2 spike protein, LNP-formulated poly(I:C) elicited potent anti-spike antibody titers, surpassing those of unformulated soluble poly(I:C) by orders of magnitude and offered complete protection against a SARS-CoV-2 viral challenge in vivo, and serum from these mice are capable of significantly reducing viral infection in vitro.


Asunto(s)
Liposomas , Nanopartículas , Poli I-C , Glicoproteína de la Espiga del Coronavirus , Receptor Toll-Like 3 , Animales , Ratones , Humanos , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , Adyuvantes Inmunológicos/farmacología
12.
J Med Virol ; 96(9): e29927, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39318203

RESUMEN

EuCorVac-19 (ECV-19) is a recombinant receptor binding domain (RBD) COVID-19 vaccine that displays the RBD (derived from the SARS-CoV-2 Wuhan strain) on immunogenic liposomes. This study compares the safety and immunogenicity of ECV-19 to the COVISHIELDTM (CS) adenoviral-vectored vaccine. Interim analysis is presented of a randomized, observer-blind, immunobridging Phase 3 trial in the Philippines in 2600 subjects, with treatment and biospecimen collection between October 2022 and January 2023. Healthy male and female adults who received investigational vaccines were 18 years and older, and randomly assigned to ECV-19 (n = 2004) or CS (n = 596) groups. Immunization followed a two-injection, intramuscular regimen with 4 weeks between prime and boost vaccination. Safety endpoints were assessed in all participants and immunogenicity analysis was carried out in a subset (n = 585 in ECV-19 and n = 290 in CS groups). The primary immunological endpoints were superiority of neutralizing antibody response, as well as noninferiority in seroresponse rate (defined as a 4-fold increase in RBD antibody titers from baseline). After prime vaccination, ECV-19 had a lower incidence of local solicited adverse events (AEs) (12.0% vs. 15.8%, p < 0.01), and solicited systemic AEs (13.1 vs. 17.4%, p < 0.01) relative to CS. After the second injection, both ECV-19 and CS had lower overall solicited AEs (7.8% vs. 7.6%). For immunological assessment, 98% of participants had prior COVID-19 exposure (based on the presence of anti-nucleocapsid antibodies) at the time of the initial immunization, without differing baseline antibody levels or microneutralization (MN) titers against the Wuhan strain in the two groups. After prime vaccination, ECV-19 induced higher anti-RBD IgG relative to CS (1,464 vs. 355 BAU/mL, p < 0.001) and higher neutralizing antibody response (1,303 vs. 494 MN titer, p < 0.001). After boost vaccination, ECV-19 and CS maintained those levels of anti-RBD IgG (1367 vs. 344 BAU/mL, p < 0.001) and neutralizing antibodies (1128 vs. 469 MN titer, p < 0.001). ECV-19 also elicited antibodies that better neutralized the Omicron variant, compared to CS (763 vs. 373 MN titer, p < 0.001). Women displayed higher responses to both vaccines than men. The ECV-19 group had a greater seroresponse rate compared to CS (83% vs. 30%, p < 0.001). In summary, both ECV-19 and CS had favorable safety profiles, with ECV-19 showing diminished local and systemic solicited AE after prime immunization. ECV-19 had significantly greater immunogenicity in terms of anti-RBD IgG, neutralizing antibodies, and seroresponse rate. These data establish a relatively favorable safety and immunogenicity profile for ECV-19. The trial is registered on ClinicalTrials.gov (NCT05572879).


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunogenicidad Vacunal , SARS-CoV-2 , Humanos , Femenino , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/administración & dosificación , Masculino , Filipinas , Adulto , COVID-19/prevención & control , COVID-19/inmunología , Anticuerpos Antivirales/sangre , Persona de Mediana Edad , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/sangre , Adulto Joven , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Inyecciones Intramusculares , Método Simple Ciego , Adolescente , Inmunización Secundaria
13.
Ann Surg Oncol ; 31(9): 6282-6290, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38743283

RESUMEN

BACKGROUND AND OBJECTIVES: Curettage is the removal of a tumor from the bone while preserving the surrounding healthy cortical bone, and is associated with higher rates of local recurrence. To lower these rates, curettage should be combined with local adjuvants, although their use is associated with damage to nearby healthy bone. OBJECTIVE: The purpose of this analysis is to determine the effect of local adjuvants on cortical porcine bone by using micro-computed tomography (micro-CT) along with histological and mechanical examination. METHODS: Local adjuvants were applied to porcine specimens under defined conditions. To assess changes in bone mineral density (BMD), a micro-CT scan was used. The pixel gray values of the volume of interest (VOI) were evaluated per specimen and converted to BMD values. The Vickers hardness test was employed to assess bone hardness (HV). The depth of necrosis was measured histologically using hematoxylin and eosin-stained tissue sections. RESULTS: A noticeable change in BMD was observed on the argon beam coagulation (ABC) sample. Comparable hardness values were measured on samples following electrocautery and ABC, and lowering of bone hardness was obtained in the case of liquid nitrogen. Extensive induced depth of necrosis was registered in the specimen treated with liquid nitrogen. CONCLUSION: This study determined the effect of local adjuvants on cortical bone by using micro-CT along with histological and mechanical examination. Phenolization and liquid nitrogen application caused a decrease in bone hardness. The bone density was affected in the range of single-digit percentage values. Liquid nitrogen induced extensive depth of necrosis with a wide variance of values.


Asunto(s)
Densidad Ósea , Neoplasias Óseas , Hueso Cortical , Legrado , Microtomografía por Rayos X , Animales , Porcinos , Neoplasias Óseas/cirugía , Neoplasias Óseas/patología , Legrado/métodos , Hueso Cortical/patología , Hueso Cortical/diagnóstico por imagen , Hueso Cortical/cirugía , Hueso Cortical/efectos de los fármacos , Densidad Ósea/efectos de los fármacos
14.
Int Arch Allergy Immunol ; 185(7): 652-658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38513626

RESUMEN

INTRODUCTION: IgE-mediated peanut allergy is an important public health problem of increasing prevalence leading to anaphylactic reactions both in children and adults. Allergen-specific oral immunotherapy (OIT) is the single treatment with the potential capacity to modify the course of the disease, but it still faces some drawbacks in terms of efficacy, safety, patients' adherence, and cost. Alternative strategies, including the use of novel adjuvants, to overcome such limitations are highly demanded. The main aim of this study was to search for potential novel adjuvants for peanut OIT by assessing the capacity of free purified mannan and different toll-like receptor ligands (TLR-Ls) to immunomodulate the responses of human monocyte-derived dendritic cells (hmoDCs) to peanut allergens. METHODS: Monocytes were isolated from PBMCs of healthy donors and differentiated into hmoDCs. Flow cytometry, ELISA, coculture, and suppression assay were performed to assess the effects of TLR-Ls, mannan, and crude peanut extract (CPE) in hmoDCs. RESULTS: Purified free mannan increased the expression levels of HLA-DR, CD86, CD83, and PD-L1 and induced a higher IL-10/IL-6 cytokine ratio in hmoDCs compared to the stimulation with different TLR-Ls. Mannan significantly increased the expression of HLA-DR, the maturation marker CD83, the tolerogenic marker PD-L1, as well as the production of IL-10, IL-6, and TNF-α in CPE-stimulated hmoDCs. Supporting these tolerogenic properties, mannan also significantly increased the frequency of FOXP3+ regulatory T cells generated by CPE-treated hmoDCs with functional suppressive capacity. CONCLUSIONS: We uncover that purified free mannan induces tolerogenic responses in human DCs stimulated with peanut allergens, suggesting mannan as a suitable potential novel adjuvant to be exploited in the context of OIT for peanut allergy.


Asunto(s)
Alérgenos , Arachis , Células Dendríticas , Tolerancia Inmunológica , Mananos , Hipersensibilidad al Cacahuete , Humanos , Células Dendríticas/inmunología , Mananos/inmunología , Mananos/farmacología , Arachis/inmunología , Hipersensibilidad al Cacahuete/inmunología , Alérgenos/inmunología , Citocinas/metabolismo , Desensibilización Inmunológica/métodos , Células Cultivadas , Receptores Toll-Like/metabolismo , Receptores Toll-Like/inmunología , Adyuvantes Inmunológicos
15.
Biotechnol Bioeng ; 121(5): 1626-1641, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372650

RESUMEN

Suspensions of protein antigens adsorbed to aluminum-salt adjuvants are used in many vaccines and require mixing during vial filling operations to prevent sedimentation. However, the mixing of vaccine formulations may generate undesirable particles that are difficult to detect against the background of suspended adjuvant particles. We simulated the mixing of a suspension containing a protein antigen adsorbed to an aluminum-salt adjuvant using a recirculating peristaltic pump and used flow imaging microscopy to record images of particles within the pumped suspensions. Supervised convolutional neural networks (CNNs) were used to analyze the images and create "fingerprints" of particle morphology distributions, allowing detection of new particles generated during pumping. These results were compared to those obtained from an unsupervised machine learning algorithm relying on variational autoencoders (VAEs) that were also used to detect new particles generated during pumping. Analyses of images conducted by applying both supervised CNNs and VAEs found that rates of generation of new particles were higher in aluminum-salt adjuvant suspensions containing protein antigen than placebo suspensions containing only adjuvant. Finally, front-face fluorescence measurements of the vaccine suspensions indicated changes in solvent exposure of tryptophan residues in the protein that occurred concomitantly with new particle generation during pumping.


Asunto(s)
Aluminio , Vacunas , Aprendizaje Automático no Supervisado , Adyuvantes Inmunológicos/química , Vacunas/química , Antígenos/química
16.
Arch Microbiol ; 206(5): 207, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581477

RESUMEN

Multidrug microbial resistance is risking an annual loss of more than 10 million people' lives by 2050. Solutions include the rational use of antibiotics and the use of drugs that reduce resistance or completely obliterate them. Here endophytes come to play due to their high-yield production and inherent nature to produce antimicrobial molecules. Around 40%, 45% and 17% of antibacterial agents were obtained from fungi, actinomycetes, and bacteria, respectively, whose secondary metabolites revealed effectiveness against resistant microbes such as MRSA, MRSE, and Shigella flexneri. Endophyte's role was not confined to bactericidal effect but extended to other mechanisms against MDR microbes, among which was the adjuvant role or the "magic bullets". Scarce focus was given to antibiotic adjuvants, and many laboratories today just screen for the antimicrobial activity without considering combinations with traditional antibiotics, which means real loss of promising resistance combating molecules. While some examples of synthetic adjuvants were introduced in the last decade, the number is still far from covering the disused antibiotics and restoring them back to clinical use. The data compiled in this article demonstrated the significance of quorum sensing as a foreseen mechanism for adjuvants from endophytes secondary metabolites, which call for urgent in-depth studies of their molecular mechanisms. This review, comprehensively and for the first time, sheds light on the significance of endophytes secondary metabolites in solving AMR problem as AB adjuvants.


Asunto(s)
Antibacterianos , Antiinfecciosos , Humanos , Antibacterianos/farmacología , Endófitos , Antiinfecciosos/farmacología , Adyuvantes Inmunológicos/farmacología , Bacterias
17.
World J Urol ; 42(1): 418, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023778

RESUMEN

PURPOSE: To compare disease-free survival (DFS), overall survival (OS), and adverse events (AEs) among muscle-invasive urothelial carcinoma (MIUC) patients receiving adjuvant immune checkpoint inhibitors (ICIs) versus placebo/observation following radical surgery. METHODS: This was a systematic review/meta-analysis of all published phase 3 randomized controlled trials. MEDLINE, EMBASE, and Cochrane were searched from inception until April 4, 2024. Pooled hazard ratios (HR) and relative risks (RR), plus confidence intervals (CI), were generated using frequentist random-effects modeling. RESULTS: Three trials were identified: IMvigor010, CheckMate 274, and AMBASSADOR. In the overall cohort, adjuvant ICIs significantly improved DFS by 23% (HR = 0.77, 95% CI = 0.65-0.90). No DFS benefit was observed in patients with upper tract disease (HR = 1.19, 95% CI = 0.86-1.64). The highest magnitude of DFS benefit was observed among patients who had received prior neoadjuvant chemotherapy (HR = 0.69) and pathologic node-positive disease (HR = 0.75). A similar DFS benefit was observed irrespective of tumor PD-L1 status. Pooled OS demonstrated a 13% non-significant benefit (HR = 0.87, 95% CI = 0.75-1.01). Grade ≥ 3 immune-mediated AEs occurred in 8.6% and 2.1% of ICI and placebo/observation patients, respectively (RR = 4.35, 95% CI = 1.02-18.5). AEs leading to treatment discontinuation occurred in 14.3% and 0.9% of patients, respectively. CONCLUSION: Adjuvant ICIs confer a DFS benefit following radical surgery for MIUC, particularly among node-positive patients and those who received prior neoadjuvant chemotherapy. The lack of benefit for upper tract disease suggests that alternate adjuvant approaches, including chemotherapy, should be considered for these patients. Tumor PD-L1 status is not a predictive biomarker, highlighting the need for biomarkers in this setting.


Asunto(s)
Carcinoma de Células Transicionales , Inhibidores de Puntos de Control Inmunológico , Neoplasias de la Vejiga Urinaria , Humanos , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/patología , Carcinoma de Células Transicionales/cirugía , Quimioterapia Adyuvante , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Tasa de Supervivencia , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/cirugía
18.
Pediatr Allergy Immunol ; 35(9): e14236, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39244712

RESUMEN

Hypersensitivity reactions represent one of the most common causes of hesitancy for adherence to national vaccination programs. The majority of hypersensitivity reactions after vaccination are mild, and anaphylaxis is reported to be rare, although it remains challenging to estimate the frequency attributed to each single vaccine, either because of the lower number of administered doses of less common vaccines, or the administration of simultaneous vaccine in most of the vaccination programs. Although literature remains scattered, international consensus guides clinicians in identifying patients who might need the administration of vaccines in protected environments due to demonstrated hypersensitivity to vaccine components or adjuvants. Here we provide the current guidance on hypersensitivity reactions to vaccines and on vaccination of children with allergy disorders.


Asunto(s)
Hipersensibilidad , Vacunación , Vacunas , Humanos , Vacunas/efectos adversos , Vacunas/administración & dosificación , Vacunación/efectos adversos , Niño , Anafilaxia/prevención & control , Guías de Práctica Clínica como Asunto
19.
Fish Shellfish Immunol ; 147: 109464, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412902

RESUMEN

Disease outbreaks are a major impediment to aquaculture production, and vaccines are integral for disease management. Vaccines can be expensive, vary in effectiveness, and come with adjuvant-induced adverse effects, causing fish welfare issues and negative economic impacts. Three-dimensional biopolymer hydrogels are an appealing new technology for vaccine delivery in aquaculture, with the potential for controlled release of multiple immunomodulators and antigens simultaneously, action as local depots, and tunable surface properties. This research examined the intraperitoneal implantation of a cross-linked TEMPO cellulose nanofiber (TOCNF) hydrogel formulated with a Vibrio anguillarum bacterin in Atlantic salmon with macroscopic and microscopic monitoring to 600-degree days post-implantation. Results demonstrated a modified passive integrated transponder tagging (PITT) device allowed for implantation of the hydrogel. However, the Atlantic salmon implanted with TOCNF hydrogels exhibited a significant foreign body response (FBR) compared to sham-injected negative controls. The FBR was characterized by gross and microscopic external and visceral proliferative lesions, granulomas, adhesions, and fibrosis surrounding the hydrogel using Speilberg scoring of the peritoneum and histopathology of the body wall and coelom. Acutely, gross monitoring displayed rapid coagulation of blood in response to the implantation wound with development of fibrinous adhesions surrounding the hydrogel by 72 h post-implantation consistent with early stage FBR. While these results were undesirable for aquaculture vaccines, this work informs on the innate immune response to an implanted biopolymer hydrogel in Atlantic salmon and directs future research using cellulose nanomaterial formulations in Atlantic salmon for a new generation of aquaculture vaccine technology.


Asunto(s)
Celulosa Oxidada , Enfermedades de los Peces , Nanofibras , Salmo salar , Animales , Hidrogeles , Antígenos , Adyuvantes Inmunológicos , Vacunas Bacterianas , Celulosa , Acuicultura
20.
Bioorg Med Chem ; 97: 117541, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096681

RESUMEN

Infections caused by antibiotic-resistant bacteria are a major threat to health, increasing mortality rates and straining health systems worldwide. Adjuvants targeted to beta-lactamase function are able to resensitize bacteria to beta-lactam antibiotics, but there is comparatively little research into the use of adjuvants against other resistance phenotypes. In this study, we performed a high-throughput screen of 74 natural products to identify adjuvants that synergized with antibiotics to eradicate resistant Gram-negative bacteria. From this, we identified six adjuvant hits which restored growth inhibition when combined with the relevant antibiotic, and pursued a lead candidate, perforone, which possessed selective adjuvant activity in combination with polymyxin B against polymyxin-resistant Escherichia coli cells. These results suggest that pairing adjuvants with antibiotics could be a useful general intervention against resistant bacteria, helping to mitigate the effects of antimicrobial resistance.


Asunto(s)
Antibacterianos , Polimixina B , Polimixina B/farmacología , Antibacterianos/farmacología , Polimixinas/farmacología , Bacterias , Bacterias Gramnegativas , Escherichia coli , Adyuvantes Farmacéuticos/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA