Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38152979

RESUMEN

The identification and characterization of essential genes are central to our understanding of the core biological functions in eukaryotic organisms, and has important implications for the treatment of diseases caused by, for example, cancers and pathogens. Given the major constraints in testing the functions of genes of many organisms in the laboratory, due to the absence of in vitro cultures and/or gene perturbation assays for most metazoan species, there has been a need to develop in silico tools for the accurate prediction or inference of essential genes to underpin systems biological investigations. Major advances in machine learning approaches provide unprecedented opportunities to overcome these limitations and accelerate the discovery of essential genes on a genome-wide scale. Here, we developed and evaluated a large language model- and graph neural network (LLM-GNN)-based approach, called 'Bingo', to predict essential protein-coding genes in the metazoan model organisms Caenorhabditis elegans and Drosophila melanogaster as well as in Mus musculus and Homo sapiens (a HepG2 cell line) by integrating LLM and GNNs with adversarial training. Bingo predicts essential genes under two 'zero-shot' scenarios with transfer learning, showing promise to compensate for a lack of high-quality genomic and proteomic data for non-model organisms. In addition, the attention mechanisms and GNNExplainer were employed to manifest the functional sites and structural domain with most contribution to essentiality. In conclusion, Bingo provides the prospect of being able to accurately infer the essential genes of little- or under-studied organisms of interest, and provides a biological explanation for gene essentiality.


Asunto(s)
Proteínas de Drosophila , Genes Esenciales , Ratones , Animales , Proteómica , Drosophila melanogaster/genética , Flujo de Trabajo , Redes Neurales de la Computación , Proteínas/genética , Proteínas de Microfilamentos/genética , Proteínas de Drosophila/genética
2.
BMC Bioinformatics ; 25(1): 261, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118000

RESUMEN

BACKGROUND: Conducting traditional wet experiments to guide drug development is an expensive, time-consuming and risky process. Analyzing drug function and repositioning plays a key role in identifying new therapeutic potential of approved drugs and discovering therapeutic approaches for untreated diseases. Exploring drug-disease associations has far-reaching implications for identifying disease pathogenesis and treatment. However, reliable detection of drug-disease relationships via traditional methods is costly and slow. Therefore, investigations into computational methods for predicting drug-disease associations are currently needed. RESULTS: This paper presents a novel drug-disease association prediction method, RAFGAE. First, RAFGAE integrates known associations between diseases and drugs into a bipartite network. Second, RAFGAE designs the Re_GAT framework, which includes multilayer graph attention networks (GATs) and two residual networks. The multilayer GATs are utilized for learning the node embeddings, which is achieved by aggregating information from multihop neighbors. The two residual networks are used to alleviate the deep network oversmoothing problem, and an attention mechanism is introduced to combine the node embeddings from different attention layers. Third, two graph autoencoders (GAEs) with collaborative training are constructed to simulate label propagation to predict potential associations. On this basis, free multiscale adversarial training (FMAT) is introduced. FMAT enhances node feature quality through small gradient adversarial perturbation iterations, improving the prediction performance. Finally, tenfold cross-validations on two benchmark datasets show that RAFGAE outperforms current methods. In addition, case studies have confirmed that RAFGAE can detect novel drug-disease associations. CONCLUSIONS: The comprehensive experimental results validate the utility and accuracy of RAFGAE. We believe that this method may serve as an excellent predictor for identifying unobserved disease-drug associations.


Asunto(s)
Reposicionamiento de Medicamentos , Reposicionamiento de Medicamentos/métodos , Humanos , Biología Computacional/métodos , Algoritmos , Redes Neurales de la Computación
3.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35018408

RESUMEN

Single-cell RNA sequencing (scRNA-seq) techniques provide high-resolution data on cellular heterogeneity in diverse tissues, and a critical step for the data analysis is cell type identification. Traditional methods usually cluster the cells and manually identify cell clusters through marker genes, which is time-consuming and subjective. With the launch of several large-scale single-cell projects, millions of sequenced cells have been annotated and it is promising to transfer labels from the annotated datasets to newly generated datasets. One powerful way for the transferring is to learn cell relations through the graph neural network (GNN), but traditional GNNs are difficult to process millions of cells due to the expensive costs of the message-passing procedure at each training epoch. Here, we have developed a robust and scalable GNN-based method for accurate single-cell classification (GraphCS), where the graph is constructed to connect similar cells within and between labelled and unlabeled scRNA-seq datasets for propagation of shared information. To overcome the slow information propagation of GNN at each training epoch, the diffused information is pre-calculated via the approximate Generalized PageRank algorithm, enabling sublinear complexity over cell numbers. Compared with existing methods, GraphCS demonstrates better performance on simulated, cross-platform, cross-species and cross-omics scRNA-seq datasets. More importantly, our model provides a high speed and scalability on large datasets, and can achieve superior performance for 1 million cells within 50 min.


Asunto(s)
Redes Neurales de la Computación , Análisis de la Célula Individual , Algoritmos , Aprendizaje , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
4.
Magn Reson Med ; 92(1): 202-214, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38469985

RESUMEN

PURPOSE: To develop a novel deep learning-based method inheriting the advantages of data distribution prior and end-to-end training for accelerating MRI. METHODS: Langevin dynamics is used to formulate image reconstruction with data distribution before facilitate image reconstruction. The data distribution prior is learned implicitly through the end-to-end adversarial training to mitigate the hyper-parameter selection and shorten the testing time compared to traditional probabilistic reconstruction. By seamlessly integrating the deep equilibrium model, the iteration of Langevin dynamics culminates in convergence to a fix-point, ensuring the stability of the learned distribution. RESULTS: The feasibility of the proposed method is evaluated on the brain and knee datasets. Retrospective results with uniform and random masks show that the proposed method demonstrates superior performance both quantitatively and qualitatively than the state-of-the-art. CONCLUSION: The proposed method incorporating Langevin dynamics with end-to-end adversarial training facilitates efficient and robust reconstruction for MRI. Empirical evaluations conducted on brain and knee datasets compellingly demonstrate the superior performance of the proposed method in terms of artifact removing and detail preserving.


Asunto(s)
Algoritmos , Encéfalo , Procesamiento de Imagen Asistido por Computador , Rodilla , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Rodilla/diagnóstico por imagen , Aprendizaje Profundo , Estudios Retrospectivos , Artefactos
5.
Sensors (Basel) ; 24(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123921

RESUMEN

The vulnerability of modern neural networks to random noise and deliberate attacks has raised concerns about their robustness, particularly as they are increasingly utilized in safety- and security-critical applications. Although recent research efforts were made to enhance robustness through retraining with adversarial examples or employing data augmentation techniques, a comprehensive investigation into the effects of training data perturbations on model robustness remains lacking. This paper presents the first extensive empirical study investigating the influence of data perturbations during model retraining. The experimental analysis focuses on both random and adversarial robustness, following established practices in the field of robustness analysis. Various types of perturbations in different aspects of the dataset are explored, including input, label, and sampling distribution. Single-factor and multi-factor experiments are conducted to assess individual perturbations and their combinations. The findings provide insights into constructing high-quality training datasets for optimizing robustness and recommend the appropriate degree of training set perturbations that balance robustness and correctness, and contribute to understanding model robustness in deep learning and offer practical guidance for enhancing model performance through perturbed retraining, promoting the development of more reliable and trustworthy deep learning systems for safety-critical applications.

6.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000934

RESUMEN

SAR (synthetic aperture radar) ship detection is a hot topic due to the breadth of its application. However, limited by the volume of the SAR image, the generalization ability of the detector is low, which makes it difficult to adapt to new scenes. Although many data augmentation methods-for example, clipping, pasting, and mixing-are used, the accuracy is improved little. In order to solve this problem, the adversarial training is used for data generation in this paper. Perturbation is added to the SAR image to generate new samples for training, and it can make the detector learn more abundant features and promote the robustness of the detector. By separating batch normalization between clean samples and disturbed images, the performance degradation on clean samples is avoided. By simultaneously perturbing and selecting large losses of classification and location, it can keep the detector adaptable to more confrontational samples. The optimization efficiency and results are improved through K-step average perturbation and one-step gradient descent. The experiments on different detectors show that the proposed method achieves 8%, 10%, and 17% AP (Average Precision) improvement on the SSDD, SAR-Ship-Dataset, and AIR-SARShip, compared to the traditional data augmentation methods.

7.
Sensors (Basel) ; 24(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38894059

RESUMEN

Global Navigation Satellite Systems (GNSS) offer comprehensive position, navigation, and timing (PNT) estimates worldwide. Given the growing demand for reliable location awareness in both indoor and outdoor contexts, the advent of fifth-generation mobile communication technology (5G) has enabled expansive coverage and precise positioning services. However, the power received by the signal of interest (SOI) at terminals is notably low. This can lead to significant jamming, whether intentional or unintentional, which can adversely affect positioning receivers. The diagnosis of jamming types, such as classification, assists receivers in spectrum sensing and choosing effective mitigation strategies. Traditional jamming diagnosis methodologies predominantly depend on the expertise of classification experts, often demonstrating a lack of adaptability for diverse tasks. Recently, researchers have begun utilizing convolutional neural networks to re-conceptualize a jamming diagnosis as an image classification issue, thereby augmenting recognition performance. However, in real-world scenarios, the assumptions of independent and homogeneous distributions are frequently violated. This discrepancy between the source and target distributions frequently leads to subpar model performance on the test set or an inability to procure usable evaluation samples during training. In this paper, we introduce LJCD-Net, a deep adversarial migration-based cross-domain jamming generalization diagnostic network. LJCD-Net capitalizes on a fully labeled source domain and multiple unlabeled auxiliary domains to generate shared feature representations with generalization capabilities. Initially, our paper proposes an uncertainty-guided auxiliary domain labeling weighting strategy, which estimates the multi-domain sample uncertainty to re-weight the classification loss and specify the gradient optimization direction. Subsequently, from a probabilistic distribution standpoint, the spatial constraint imposed on the cross-domain global jamming time-frequency feature distribution facilitates the optimization of collaborative objectives. These objectives include minimizing both the source domain classification loss and auxiliary domain classification loss, as well as optimizing the inter-domain marginal probability and conditional probability distribution. Experimental results demonstrate that LJCD-Net enhances the recognition accuracy and confidence compared to five other diagnostic methods.

8.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34410338

RESUMEN

Artificial intelligence, such as deep generative methods, represents a promising solution to de novo design of molecules with the desired properties. However, generating new molecules with biological activities toward two specific targets remains an extremely difficult challenge. In this work, we conceive a novel computational framework, herein called dual-target ligand generative network (DLGN), for the de novo generation of bioactive molecules toward two given objectives. Via adversarial training and reinforcement learning, DLGN treats a sequence-based simplified molecular input line entry system (SMILES) generator as a stochastic policy for exploring chemical spaces. Two discriminators are then used to encourage the generation of molecules that belong to the intersection of two bioactive-compound distributions. In a case study, we employ our methods to design a library of dual-target ligands targeting dopamine receptor D2 and 5-hydroxytryptamine receptor 1A as new antipsychotics. Experimental results demonstrate that the proposed model can generate novel compounds with high similarity to both bioactive datasets in several structure-based metrics. Our model exhibits a performance comparable to that of various state-of-the-art multi-objective molecule generation models. We envision that this framework will become a generally applicable approach for designing dual-target drugs in silico.


Asunto(s)
Aprendizaje Profundo , Descubrimiento de Drogas/métodos , Ligandos , Algoritmos , Inteligencia Artificial , Biomarcadores , Fenómenos Químicos , Bases de Datos Farmacéuticas , Diseño de Fármacos , Proteínas , Relación Estructura-Actividad
9.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34308480

RESUMEN

In single cell analyses, cell types are conventionally identified based on expressions of known marker genes, whose identifications are time-consuming and irreproducible. To solve this issue, many supervised approaches have been developed to identify cell types based on the rapid accumulation of public datasets. However, these approaches are sensitive to batch effects or biological variations since the data distributions are different in cross-platforms or species predictions. In this study, we developed scAdapt, a virtual adversarial domain adaptation network, to transfer cell labels between datasets with batch effects. scAdapt used both the labeled source and unlabeled target data to train an enhanced classifier and aligned the labeled source centroids and pseudo-labeled target centroids to generate a joint embedding. The scAdapt was demonstrated to outperform existing methods for classification in simulated, cross-platforms, cross-species, spatial transcriptomic and COVID-19 immune datasets. Further quantitative evaluations and visualizations for the aligned embeddings confirm the superiority in cell mixing and the ability to preserve discriminative cluster structure present in the original datasets.


Asunto(s)
COVID-19/genética , SARS-CoV-2/genética , Análisis de la Célula Individual , Transcriptoma/genética , COVID-19/virología , Humanos , RNA-Seq , SARS-CoV-2/aislamiento & purificación , Especificidad de la Especie , Secuenciación del Exoma
10.
Proc Natl Acad Sci U S A ; 117(29): 16805-16815, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32631993

RESUMEN

Accurate and high-resolution data reflecting different climate scenarios are vital for policy makers when deciding on the development of future energy resources, electrical infrastructure, transportation networks, agriculture, and many other societally important systems. However, state-of-the-art long-term global climate simulations are unable to resolve the spatiotemporal characteristics necessary for resource assessment or operational planning. We introduce an adversarial deep learning approach to super resolve wind velocity and solar irradiance outputs from global climate models to scales sufficient for renewable energy resource assessment. Using adversarial training to improve the physical and perceptual performance of our networks, we demonstrate up to a [Formula: see text] resolution enhancement of wind and solar data. In validation studies, the inferred fields are robust to input noise, possess the correct small-scale properties of atmospheric turbulent flow and solar irradiance, and retain consistency at large scales with coarse data. An additional advantage of our fully convolutional architecture is that it allows for training on small domains and evaluation on arbitrarily-sized inputs, including global scale. We conclude with a super-resolution study of renewable energy resources based on climate scenario data from the Intergovernmental Panel on Climate Change's Fifth Assessment Report.

11.
Pattern Recognit ; 1392023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37089791

RESUMEN

Adversarial training, especially projected gradient descent (PGD), has proven to be a successful approach for improving robustness against adversarial attacks. After adversarial training, gradients of models with respect to their inputs have a preferential direction. However, the direction of alignment is not mathematically well established, making it difficult to evaluate quantitatively. We propose a novel definition of this direction as the direction of the vector pointing toward the closest point of the support of the closest inaccurate class in decision space. To evaluate the alignment with this direction after adversarial training, we apply a metric that uses generative adversarial networks to produce the smallest residual needed to change the class present in the image. We show that PGD-trained models have a higher alignment than the baseline according to our definition, that our metric presents higher alignment values than a competing metric formulation, and that enforcing this alignment increases the robustness of models.

12.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36991962

RESUMEN

Deep neural networks (DNNs) have been known to be vulnerable to adversarial attacks. Adversarial training (AT) is, so far, the only method that can guarantee the robustness of DNNs to adversarial attacks. However, the robustness generalization accuracy gain of AT is still far lower than the standard generalization accuracy of an undefended model, and there is known to be a trade-off between the standard generalization accuracy and the robustness generalization accuracy of an adversarially trained model. In order to improve the robustness generalization and the standard generalization performance trade-off of AT, we propose a novel defense algorithm called Between-Class Adversarial Training (BCAT) that combines Between-Class learning (BC-learning) with standard AT. Specifically, BCAT mixes two adversarial examples from different classes and uses the mixed between-class adversarial examples to train a model instead of original adversarial examples during AT. We further propose BCAT+ which adopts a more powerful mixing method. BCAT and BCAT+ impose effective regularization on the feature distribution of adversarial examples to enlarge between-class distance, thus improving the robustness generalization and the standard generalization performance of AT. The proposed algorithms do not introduce any hyperparameters into standard AT; therefore, the process of hyperparameters searching can be avoided. We evaluate the proposed algorithms under both white-box attacks and black-box attacks using a spectrum of perturbation values on CIFAR-10, CIFAR-100, and SVHN datasets. The research findings indicate that our algorithms achieve better global robustness generalization performance than the state-of-the-art adversarial defense methods.

13.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36904719

RESUMEN

In this paper, we propose a sequential variational autoencoder for video disentanglement, which is a representation learning method that can be used to separately extract static and dynamic features from videos. Building sequential variational autoencoders with a two-stream architecture induces inductive bias for video disentanglement. However, our preliminary experiment demonstrated that the two-stream architecture is insufficient for video disentanglement because static features frequently contain dynamic features. Additionally, we found that dynamic features are not discriminative in the latent space. To address these problems, we introduced an adversarial classifier using supervised learning into the two-stream architecture. The strong inductive bias through supervision separates dynamic features from static features and yields discriminative representations of the dynamic features. Through a comparison with other sequential variational autoencoders, we qualitatively and quantitatively demonstrate the effectiveness of the proposed method on the Sprites and MUG datasets.

14.
Sensors (Basel) ; 23(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36904900

RESUMEN

Deep learning has been successfully utilized in many applications, but it is vulnerable to adversarial samples. To address this vulnerability, a generative adversarial network (GAN) has been used to train a robust classifier. This paper presents a novel GAN model and its implementation to defend against L∞ and L2 constraint gradient-based adversarial attacks. The proposed model is inspired by some of the related work, but it includes multiple new designs such as a dual generator architecture, four new generator input formulations, and two unique implementations with L∞ and L2 norm constraint vector outputs. The new formulations and parameter settings of GAN are proposed and evaluated to address the limitations of adversarial training and defensive GAN training strategies, such as gradient masking and training complexity. Furthermore, the training epoch parameter has been evaluated to determine its effect on the overall training results. The experimental results indicate that the optimal formulation of GAN adversarial training must utilize more gradient information from the target classifier. The results also demonstrate that GANs can overcome gradient masking and produce effective perturbation to augment the data. The model can defend PGD L2 128/255 norm perturbation with over 60% accuracy and PGD L∞ 8/255 norm perturbation with around 45% accuracy. The results have also revealed that robustness can be transferred between the constraints of the proposed model. In addition, a robustness-accuracy tradeoff was discovered, along with overfitting and the generalization capabilities of the generator and classifier. These limitations and ideas for future work will be discussed.

15.
Sensors (Basel) ; 23(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37448021

RESUMEN

Adversarial attacks have become one of the most serious security issues in widely used deep neural networks. Even though real-world datasets usually have large intra-variations or multiple modes, most adversarial defense methods, such as adversarial training, which is currently one of the most effective defense methods, mainly focus on the single-mode setting and thus fail to capture the full data representation to defend against adversarial attacks. To confront this challenge, we propose a novel multi-prototype metric learning regularization for adversarial training which can effectively enhance the defense capability of adversarial training by preventing the latent representation of the adversarial example changing a lot from its clean one. With extensive experiments on CIFAR10, CIFAR100, MNIST, and Tiny ImageNet, the evaluation results show the proposed method improves the performance of different state-of-the-art adversarial training methods without additional computational cost. Furthermore, besides Tiny ImageNet, in the multi-prototype CIFAR10 and CIFAR100 where we reorganize the whole datasets of CIFAR10 and CIFAR100 into two and ten classes, respectively, the proposed method outperforms the state-of-the-art approach by 2.22% and 1.65%, respectively. Furthermore, the proposed multi-prototype method also outperforms its single-prototype version and other commonly used deep metric learning approaches as regularization for adversarial training and thus further demonstrates its effectiveness.


Asunto(s)
Aprendizaje , Redes Neurales de la Computación
16.
Neurocomputing (Amst) ; 5512023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37587916

RESUMEN

Adversarial training is the most popular and general strategy to improve Deep Neural Network (DNN) robustness against adversarial noises. Many adversarial training methods have been proposed in the past few years. However, most of these methods are highly susceptible to hyperparameters, especially the training noise upper bound. Tuning these hyperparameters is expensive and difficult for people not in the adversarial robustness research domain, which prevents adversarial training techniques from being used in many application fields. In this study, we propose a new adversarial training method, named Adaptive Margin Evolution (AME). Besides being hyperparameter-free for the user, our AME method places adversarial training samples into the optimal locations in the input space by gradually expanding the exploration range with self-adaptive and gradient-aware step sizes. We evaluate AME and the other seven well-known adversarial training methods on three common benchmark datasets (CIFAR10, SVHN, and Tiny ImageNet) under the most challenging adversarial attack: AutoAttack. The results show that: (1) On the three datasets, AME has the best overall performance; (2) On the Tiny ImageNet dataset, which is much more challenging, AME has the best performance at every noise level. Our work may pave the way for adopting adversarial training techniques in application domains where hyperparameter-free methods are preferred.

17.
J Digit Imaging ; 36(2): 725-738, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36474088

RESUMEN

Image denoising is an important preprocessing step in low-level vision problems involving biomedical images. Noise removal techniques can greatly benefit raw corrupted magnetic resonance images (MRI). It has been discovered that the MR data is corrupted by a mixture of Gaussian-impulse noise caused by detector flaws and transmission errors. This paper proposes a deep generative model (GenMRIDenoiser) for dealing with this mixed noise scenario. This work makes four contributions. To begin, Wasserstein generative adversarial network (WGAN) is used in model training to mitigate the problem of vanishing gradient, mode collapse, and convergence issues encountered while training a vanilla GAN. Second, a perceptually motivated loss function is used to guide the training process in order to preserve the low-level details in the form of high-frequency components in the image. Third, batch renormalization is used between the convolutional and activation layers to prevent performance degradation under the assumption of non-independent and identically distributed (non-iid) data. Fourth, global feature attention module (GFAM) is appended at the beginning and end of the parallel ensemble blocks to capture the long-range dependencies that are often lost due to the small receptive field of convolutional filters. The experimental results over synthetic data and MRI stack obtained from real MR scanners indicate the potential utility of the proposed technique across a wide range of degradation scenarios.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Relación Señal-Ruido
18.
World Wide Web ; 26(1): 55-70, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35308294

RESUMEN

Every epidemic affects the real lives of many people around the world and leads to terrible consequences. Recently, many tweets about the COVID-19 pandemic have been shared publicly on social media platforms. The analysis of these tweets is helpful for emergency response organizations to prioritize their tasks and make better decisions. However, most of these tweets are non-informative, which is a challenge for establishing an automated system to detect useful information in social media. Furthermore, existing methods ignore unlabeled data and topic background knowledge, which can provide additional semantic information. In this paper, we propose a novel Topic-Aware BERT (TABERT) model to solve the above challenges. TABERT first leverages a topic model to extract the latent topics of tweets. Secondly, a flexible framework is used to combine topic information with the output of BERT. Finally, we adopt adversarial training to achieve semi-supervised learning, and a large amount of unlabeled data can be used to improve inner representations of the model. Experimental results on the dataset of COVID-19 English tweets show that our model outperforms classic and state-of-the-art baselines.

19.
BMC Bioinformatics ; 23(1): 552, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536291

RESUMEN

BACKGROUND: Medication recommendation based on electronic medical record (EMR) is a research hot spot in smart healthcare. For developing computational medication recommendation methods based on EMR, an important challenge is the lack of a large number of longitudinal EMR data with time correlation. Faced with this challenge, this paper proposes a new EMR-based medication recommendation model called MR-KPA, which combines knowledge-enhanced pre-training with the deep adversarial network to improve medication recommendation from both feature representation and the fine-tuning process. Firstly, a knowledge-enhanced pre-training visit model is proposed to realize domain knowledge-based external feature fusion and pre-training-based internal feature mining for improving the feature representation. Secondly, a medication recommendation model based on the deep adversarial network is developed to optimize the fine-tuning process of pre-training visit model and alleviate over-fitting of model caused by the task gap between pre-training and recommendation. RESULT: The experimental results on EMRs from medical and health institutions in Hainan Province, China show that the proposed MR-KPA model can effectively improve the accuracy of medication recommendation on small-scale longitudinal EMR data compared with existing representative methods. CONCLUSION: The advantages of the proposed MR-KPA are mainly attributed to knowledge enhancement based on ontology embedding, the pre-training visit model and adversarial training. Each of these three optimizations is very effective for improving the capability of medication recommendation on small-scale longitudinal EMR data, and the pre-training visit model has the most significant improvement effect. These three optimizations are also complementary, and their integration makes the proposed MR-KPA model achieve the best recommendation effect.


Asunto(s)
Registros Electrónicos de Salud , Bases del Conocimiento , China
20.
J Biomed Inform ; 132: 104114, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35717011

RESUMEN

Deep transformer neural network models have improved the predictive accuracy of intelligent text processing systems in the biomedical domain. They have obtained state-of-the-art performance scores on a wide variety of biomedical and clinical Natural Language Processing (NLP) benchmarks. However, the robustness and reliability of these models has been less explored so far. Neural NLP models can be easily fooled by adversarial samples, i.e. minor changes to input that preserve the meaning and understandability of the text but force the NLP system to make erroneous decisions. This raises serious concerns about the security and trust-worthiness of biomedical NLP systems, especially when they are intended to be deployed in real-world use cases. We investigated the robustness of several transformer neural language models, i.e. BioBERT, SciBERT, BioMed-RoBERTa, and Bio-ClinicalBERT, on a wide range of biomedical and clinical text processing tasks. We implemented various adversarial attack methods to test the NLP systems in different attack scenarios. Experimental results showed that the biomedical NLP models are sensitive to adversarial samples; their performance dropped in average by 21 and 18.9 absolute percent on character-level and word-level adversarial noise, respectively, on Micro-F1, Pearson Correlation, and Accuracy measures. Conducting extensive adversarial training experiments, we fine-tuned the NLP models on a mixture of clean samples and adversarial inputs. Results showed that adversarial training is an effective defense mechanism against adversarial noise; the models' robustness improved in average by 11.3 absolute percent. In addition, the models' performance on clean data increased in average by 2.4 absolute percent, demonstrating that adversarial training can boost generalization abilities of biomedical NLP systems. This study takes an important step towards revealing vulnerabilities of deep neural language models in biomedical NLP applications. It also provides practical and effective strategies to develop secure, trust-worthy, and accurate intelligent text processing systems in the biomedical domain.


Asunto(s)
Lenguaje , Procesamiento de Lenguaje Natural , Redes Neurales de la Computación , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA