Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Eye Res ; 238: 109739, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042515

RESUMEN

Corneal alkali burns often occur in industrial production and daily life, combined with infection, and may cause severe eye disease. Oxidative stress and neovascularization (NV) are important factors leading to a poor prognosis. URP20 is an antimicrobial peptide that has been proven to treat bacterial keratitis in rats through antibacterial and anti-NV effects. Therefore, in this study, the protective effect and influence mechanism of URP20 were explored in a rat model of alkali burn together with pathogenic bacteria (Staphylococcus aureus and Escherichia coli) infection. In addition, human umbilical vein endothelial cells (HUVECs) and human corneal epithelial cells (HCECs) were selected to verify the effects of URP20 on vascularization and oxidative stress. The results showed that URP20 treatment could protect corneal tissue, reduce corneal turbidity, and reduce the NV pathological score. Furthermore, URP20 significantly inhibited the expression of the vascularization marker proteins VEGFR2 and CD31. URP20 also reduced the migration ability of HUVECs. In terms of oxidative stress, URP20 significantly upregulated SOD and GSH contents in corneal tissue and HCECs (treated with 200 µM H2O2) and promoted the expression of the antioxidant protein Nrf2/HO-1. At the same time, MDA and ROS levels were also inhibited. In conclusion, URP20 could improve corneal injury combined with bacterial infection in rats caused by alkali burns through antibacterial, anti-NV, and antioxidant activities.


Asunto(s)
Infecciones Bacterianas , Quemaduras Químicas , Lesiones de la Cornea , Neovascularización de la Córnea , Quemaduras Oculares , Ratas , Humanos , Animales , Quemaduras Químicas/complicaciones , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/metabolismo , Neovascularización de la Córnea/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Peróxido de Hidrógeno/farmacología , Neovascularización Patológica/metabolismo , Lesiones de la Cornea/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/tratamiento farmacológico , Quemaduras Oculares/patología , Modelos Animales de Enfermedad , Álcalis/toxicidad
2.
Exp Eye Res ; 244: 109948, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815790

RESUMEN

Severe corneal injury can lead to blindness even after prompt treatment. 14-3-3zeta, a member of an adaptor protein family, contributes to tissue repair by enhancing cellular viability and inhibiting fibrosis and inflammation in renal disease or arthritis. However, its role in corneal regeneration is less studied. In this study, filter disc of 2-mm diameter soaked in sodium hydroxide with a concentration of 0.5 N was placed at the center of the cornea for 30 s to establish a mouse model of corneal alkali injury. We found that 14-3-3zeta, which is mainly expressed in the epithelial layer, was upregulated following injury. Overexpression of 14-3-3zeta in ocular tissues via adeno-associated virus-mediated subconjunctival delivery promoted corneal wound healing, showing improved corneal structure and transparency. In vitro studies on human corneal epithelial cells showed that 14-3-3zeta was critical for cell proliferation and migration. mRNA-sequencing in conjunction with KEGG analysis and validation experiments revealed that 14-3-3zeta regulated the mRNA levels of ITGB1, PIK3R1, FGF5, PRKAA1 and the phosphorylation level of Akt, suggesting the involvement of the PI3K-Akt pathway in 14-3-3zeta-mediated tissue repair. 14-3-3zeta is a potential novel therapeutic candidate for treating severe corneal injury.


Asunto(s)
Proteínas 14-3-3 , Quemaduras Químicas , Lesiones de la Cornea , Cicatrización de Heridas , Animales , Humanos , Masculino , Ratones , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/biosíntesis , Western Blotting , Quemaduras Químicas/metabolismo , Quemaduras Químicas/patología , Quemaduras Químicas/tratamiento farmacológico , Movimiento Celular , Proliferación Celular , Células Cultivadas , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Lesiones de la Cornea/genética , Modelos Animales de Enfermedad , Epitelio Corneal/metabolismo , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/lesiones , Quemaduras Oculares/inducido químicamente , Regulación de la Expresión Génica , Homeostasis , Ratones Endogámicos C57BL , Hidróxido de Sodio , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/fisiología
3.
Mol Ther ; 31(8): 2454-2471, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37165618

RESUMEN

The cornea serves as an important barrier structure to the eyeball and is vulnerable to injuries, which may lead to scarring and blindness if not treated promptly. To explore an effective treatment that could achieve multi-dimensional repair of the injured cornea, the study herein innovatively combined modified mRNA (modRNA) technologies with adipose-derived mesenchymal stem cells (ADSCs) therapy, and applied IGF-1 modRNA (modIGF1)-engineered ADSCs (ADSCmodIGF1) to alkali-burned corneas in mice. The therapeutic results showed that ADSCmodIGF1 treatment could achieve the most extensive recovery of corneal morphology and function when compared not only with simple ADSCs but also IGF-1 protein eyedrops, which was reflected by the healing of corneal epithelium and limbus, the inhibition of corneal stromal fibrosis, angiogenesis and lymphangiogenesis, and also the repair of corneal nerves. In vitro experiments further proved that ADSCmodIGF1 could more significantly promote the activity of trigeminal ganglion cells and maintain the stemness of limbal stem cells than simple ADSCs, which were also essential for reconstructing corneal homeostasis. Through a combinatorial treatment regimen of cell-based therapy with mRNA technology, this study highlighted comprehensive repair in the damaged cornea and showed the outstanding application prospect in the treatment of corneal injury.


Asunto(s)
Enfermedades de la Córnea , Lesiones de la Cornea , Células Madre Mesenquimatosas , Ratones , Animales , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/farmacología , Tejido Adiposo , Córnea , Lesiones de la Cornea/genética , Lesiones de la Cornea/terapia , Lesiones de la Cornea/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cicatrización de Heridas/genética
4.
Exp Eye Res ; 231: 109466, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37059215

RESUMEN

Corneal alkali burn (AB) is a blindness-causing ocular trauma commonly seen in clinics. An excessive inflammatory reaction and stromal collagen degradation contribute to corneal pathological damage. Luteolin (LUT) has been studied for its anti-inflammatory effects. In this study, the effect of LUT on cornea stromal collagen degradation and inflammatory damage in rats with corneal alkali burn was investigated. After corneal alkali burn, rats were randomly assigned to the AB group and AB + LUT group and received an injection of saline and LUT (200 mg/kg) once daily. Subsequently, corneal opacity, epithelial defects, inflammation and neovascularization (NV) were observed and recorded on Days 1, 2, 3, 7 and 14 post-injury. The concentration of LUT in ocular surface tissues and anterior chamber, as well as the levels of collagen degradation, inflammatory cytokines, matrix metalloproteinases (MMPs) and their activity in the cornea were detected. Human corneal fibroblasts (HCFs) were co-cultured with interleukin (IL)-1ß and LUT. Cell proliferation and apoptosis were assessed by CCK-8 assay and flow cytometry respectively. Measurement of hydroxyproline (HYP) in culture supernatants was used to quantify the amount of collagen degradation. Plasmin activity was also assessed. ELISA or real-time PCR was used to detect the production of matrix metalloproteinases (MMPs), IL-8, IL-6 and monocyte chemotactic protein (MCP)-1. Furthermore, the immunoblot method was used to assess the phosphorylation of mitogen-activated protein kinases (MAPKs), transforming growth factor-ß-activated kinase (TAK)-1, activator protein-1 (AP-1) and inhibitory protein IκB-α. At last, immunofluorescence staining helped to develop nuclear factor (NF)-κB. LUT was detectable in ocular tissues and anterior chamber after intraperitoneal injection. An intraperitoneal injection of LUT ameliorated alkali burn-elicited corneal opacity, corneal epithelial defects, collagen degradation, NV, and the infiltration of inflammatory cells. The mRNA expressions of IL-1ß, IL-6, MCP-1, vascular endothelial growth factor (VEGF)-A, and MMPs in corneal tissue were downregulated by LUT intervention. And its administration reduced the protein levels of IL-1ß, collagenases, and MMP activity. Furthermore, in vitro study showed that LUT inhibited IL-1ß-induced type I collagen degradation and the release of inflammatory cytokines and chemokines by corneal stromal fibroblasts. LUT also inhibited the IL-1ß-induced activation of TAK-1, mitogen-activated protein kinase (MAPK), c-Jun, and NF-κB signaling pathways in these cells. Our results demonstrate that LUT inhibited alkali burn-stimulated collagen breakdown and corneal inflammation, most likely by attenuating the IL-1ß signaling pathway. LUT may therefore prove to be of clinical value for treating corneal alkali burns.


Asunto(s)
Quemaduras Químicas , Opacidad de la Córnea , Ratas , Humanos , Animales , Quemaduras Químicas/complicaciones , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Luteolina/farmacología , Luteolina/uso terapéutico , Álcalis/toxicidad , Interleucina-6/metabolismo , Córnea/metabolismo , Citocinas/metabolismo , Neovascularización Patológica/metabolismo , Colágeno Tipo I/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Opacidad de la Córnea/metabolismo , Inflamación/metabolismo , Metaloproteinasas de la Matriz/metabolismo
5.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614177

RESUMEN

FROUNT is an intracellular protein that promotes pseudopodia formation by binding to the chemokine receptors CCR2 and CCR5 on macrophages. Recently, disulfiram (DSF), a drug treatment for alcoholism, was found to have FROUNT inhibitory activity. In this study, we investigated the effect of DSF eye drops in a rat corneal alkali burn model. After alkali burn, 0.5% DSF eye drops (DSF group) and vehicle eye drops (Vehicle group) were administered twice daily. Immunohistochemical observations and real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed at 6 h and 1, 4, and 7 days after alkali burn. Results showed a significant decrease in macrophage accumulation in the cornea in the DSF group, but no difference in neutrophils. RT-PCR showed decreased expression of macrophage-associated cytokines in the DSF group. Corneal scarring and neovascularization were also suppressed in the DSF group. Low-vacuum scanning electron microscopy imaging showed that macrophage length was significantly shorter in the DSF group, reflecting the reduced extension of pseudopodia. These results suggest that DSF inhibited macrophage infiltration by suppressing macrophage pseudopodia formation.


Asunto(s)
Quemaduras Químicas , Lesiones de la Cornea , Neovascularización de la Córnea , Quemaduras Oculares , Ratas , Animales , Disulfiram/farmacología , Disulfiram/uso terapéutico , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/metabolismo , Soluciones Oftálmicas/farmacología , Álcalis/farmacología , Seudópodos/metabolismo , Córnea/metabolismo , Macrófagos/metabolismo , Lesiones de la Cornea/tratamiento farmacológico , Lesiones de la Cornea/metabolismo , Neovascularización de la Córnea/tratamiento farmacológico , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/tratamiento farmacológico , Quemaduras Oculares/metabolismo , Modelos Animales de Enfermedad
6.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37047225

RESUMEN

Zinn's zonule is a fragile and thin tissue, and little is known about its pathogenesis. The aim of this study was to develop an experimental setup for a comprehensive analysis of Zinn's zonule. Rats were divided into two groups: a control group (n = 4) and an alkali injury group (n = 4). Seven days after injury, the eyes were enucleated, the anterior eye was dissected and embedded in gelatin, and macroscopic observations were made. The gelatin specimens were then embedded in paraffin and observed in detail by low-vacuum scanning electron microscopy, immunofluorescence, and quantitative reverse transcription polymerase chain reaction (RT-qPCR). The results show qualitative changes in Zinn's zonules in both macroscopic and microscopic observations. In addition, macrophage infiltration and increased matrix metalloproteinase 2 (MMP2) expression were observed in the injured group, consistent with the RT-qPCR results. The experimental system in this study allowed us to capture the morphological and molecular biological changes of Zinn's zonule and to gain insight into its pathogenesis. In conclusion, this study presents a new experimental setup for the comprehensive analysis of the rat Zinn's zonule. The results suggest that this system can be used in the future to study and analyze a variety of paraffin-embedded tissues and specimens.


Asunto(s)
Extracción de Catarata , Metaloproteinasa 2 de la Matriz , Animales , Ratas , Metaloproteinasa 2 de la Matriz/genética , Gelatina , Ojo
7.
Int Wound J ; 20(2): 351-358, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35854477

RESUMEN

Water irrigation is an efficacious decontaminating method for dermis exposures to corrosive agents and hence has been widely applied to treat especially alkali burns. Nevertheless, once alkali has infiltrated the deep subcutaneous tissue, washing the tissue surface with water irrigation does not attenuate the damage progress. Therefore, significant efforts have been devoted to promising strategies aimed at removing the deeply infiltrated lye. According to a recent report, the negative pressure wound therapy (NPWT) reduces the pH value of the exudate from alkali-provoked burns thus accelerating wound healing. However, it remains to be ascertained whether or not NPWT coupled with water irrigation, that is, iNPWT, more effectively hinders the alkali injury deepening. In this study, we compared the effectiveness of an early application of water irrigation with or without NPWT in preventing the progressive deepening of the alkali burn in an animal model. Our histological examination results showed no appreciable difference in tissue injury depth, dermal retention, inflammatory cell infiltration, re-epithelization, and cellular function between iNPWT and water irrigation alone treatments. Thus, our results prove that the more expensive NPWT coupled with water irrigation does not more effectively hinder the alkali's injury deepening. Hence, iNPWT use should be more cautious in clinical practice.


Asunto(s)
Quemaduras Químicas , Terapia de Presión Negativa para Heridas , Animales , Terapia de Presión Negativa para Heridas/métodos , Álcalis , Quemaduras Químicas/patología , Cicatrización de Heridas , Agua
8.
Exp Eye Res ; 225: 109265, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36206861

RESUMEN

Corneal neovascularization can cause devastating consequences including vision impairment and even blindness. Corneal inflammation is a crucial factor for the induction of corneal neovascularization. Current anti-inflammatory approaches are of limited value with poor therapeutic effects. Therefore, there is an urgent need to develop new therapies that specifically modulate inflammatory pathways and inhibit neovascularization in the cornea. The interaction of chemokines and their receptors plays a key role in regulating leukocyte migration during inflammatory response. CXCR3 is essential for mediating the recruitment of activated T cells and microglia/macrophages, but the role of CXCR3 in the initiation and promotion of corneal neovascularization remains unclear. Here, we showed that the expression of CXCL10 and CXCR3 was significantly increased in the cornea after alkali burn. Compared with WT mice, CXCR3-/- mice exhibited significantly increased corneal hemangiogenesis and lymphangiogenesis after alkali burn. In addition, exaggerated leukocyte infiltration and leukostasis, and elevated expression of inflammatory cytokines and angiogenic factor were also found in the corneas of CXCR3-/- mice subjected to alkali burn. With bone marrow (BM) transplantation, we further demonstrated that the deletion of CXCR3 in BM-derived leukocytes plays a key role in the acceleration of alkali burn-induced corneal neovascularization. Taken together, our results suggest that upregulation of CXCR3 does not exhibit its conventional action as a proinflammatory cytokine but instead serves as a self-protective mechanism for the modulation of inflammation and maintenance of corneal avascularity after corneal alkali burn.


Asunto(s)
Quemaduras Químicas , Lesiones de la Cornea , Neovascularización de la Córnea , Quemaduras Oculares , Ratones , Animales , Neovascularización de la Córnea/tratamiento farmacológico , Quemaduras Químicas/tratamiento farmacológico , Álcalis/toxicidad , Quemaduras Oculares/tratamiento farmacológico , Lesiones de la Cornea/metabolismo , Córnea/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad
9.
Exp Eye Res ; 223: 109190, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35963307

RESUMEN

Endogenously produced peptide growth factors such as keratinocyte growth factor-2 (KGF-2) and nerve growth factor (NGF) play a key role in the natural corneal wound healing process. However, this self-healing ability of the corneal tissue is often impaired in cases of severe corneal damage, as in corneal alkali injuries. In the present study, we investigated the clinical and histopathological effects of topical recombinant human keratinocyte growth factor-2 and nerve growth factor treatments in a rabbit model of corneal alkali burn. After induction of an alkali burn, 24 rabbits were divided equally into three groups: control group, KGF-2 group, and NGF group. Clinical parameters including epithelial healing, opacification, neovascularization and central corneal thickness were evaluated on the first (D1), seventh (D7) and fourteenth (D14) days after injury. Corneal histology was performed using hematoxylin/eosin (H&E) and Masson's Trichrome stains. Immunohistochemical staining for matrix metalloproteinase-2 (MMP-2), MMP-9 and transforming growth factor-ß (TGF-ß) was performed. On D14, the percentage of epithelial defect and opacity were significantly less in the KGF-2 and NGF groups compared to the control group (p < 0.05). There was no significant difference between the groups in central corneal thickness. In the evaluation of neovascularization on D14, the NGF group was significantly less vascularized than the control group (p = 0.011). Histological examination showed a significant increase in stromal edema and inflammation in the control group compared to both treatment groups (p < 0.05). There was also a significant difference between the NGF and control groups in histological evaluation of epithelial repair and vascularization (p < 0.05). When immunoreactivity of MMP-2, MMP-9 and TGF-ß was examined, there was a significant increase in the control group compared to the NGF group (p < 0.05). Taken together, both NGF and KGF-2 treatments were effective for early re-epithelialization and decrease in inflammation, opacity and neovascularization after corneal alkali burn. The inhibitory effect of NGF treatment on chemical-induced neovascularization was found to be superior to KGF-2 treatment.


Asunto(s)
Quemaduras Químicas , Lesiones de la Cornea , Quemaduras Oculares , Álcalis/toxicidad , Animales , Quemaduras Químicas/metabolismo , Lesiones de la Cornea/patología , Modelos Animales de Enfermedad , Eosina Amarillenta-(YS)/efectos adversos , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/tratamiento farmacológico , Quemaduras Oculares/patología , Factor 10 de Crecimiento de Fibroblastos/farmacología , Hematoxilina/farmacología , Hematoxilina/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/uso terapéutico , Conejos , Factor de Crecimiento Transformador beta/metabolismo , Factores de Crecimiento Transformadores/efectos adversos , Cicatrización de Heridas
10.
Exp Eye Res ; 220: 109093, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35490838

RESUMEN

The purpose of this study was to evaluate the effect of bovine colostrum (BC) in the regeneration of corneal epithelial cells on an ocular alkali burn model. Twenty-four C57BL/6 mice were categorized into two gender/age-matched groups for treatment. Two days after inducing a corneal alkali burn in all left eyes with 4 µl of sodium hydroxide 0.15 mol/l, both eyes of group 1 were treated with BC 4 times per day, and both eyes of group 2 were treated with isotonic saline solution (SS). The epithelial defect was photographed and measured by fluorescein staining on days two, four, seven, and ten. Ocular burn damage was assessed with a pre-established classification in clock hours from the limbus. After 10 days both eyes were processed, half of the group's corneas were assessed histopathologically, and the other half was used for pro/anti-inflammatory cytokine quantification using ELISA. BC treated (Group 1) corneas revealed significantly improved fluorescein staining score for limbal involvement when compared to SS treated (Group 2) corneas at days 4 (p = 0.013), 7 (p < 0.001), and 10 (p < 0.001), respectively. No differences were noted in limbal involvement at day 2 between the two groups (p > 0.99). The overall change (difference in slope) in fluorescein staining for limbal involvement between days 2 and 10 was -0.1669 (p = 0.006). Histologic examinations and cytokine measurements of group 2 demonstrated a strong inflammatory component compared to group 1. Our data indicates that topical application of BC facilitates corneal re-epithelialization and wound healing by suppressing the inflammatory process in an ocular alkali burn model.


Asunto(s)
Quemaduras Químicas , Calostro , Lesiones de la Cornea , Quemaduras Oculares , Cicatrización de Heridas , Animales , Quemaduras Químicas/patología , Quemaduras Químicas/terapia , Bovinos , Córnea/patología , Lesiones de la Cornea/patología , Lesiones de la Cornea/terapia , Citocinas , Quemaduras Oculares/patología , Quemaduras Oculares/terapia , Femenino , Fluoresceínas , Ratones , Ratones Endogámicos C57BL , Embarazo
11.
Cell Commun Signal ; 20(1): 59, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524333

RESUMEN

BACKGROUND: Apoptosis signal-regulating kinase 1-interacting protein 1 (AIP1) participates in inflammatory neovascularization induction. NADPH oxidase 4 (NOX4) produces reactive oxygen species (ROS), leading to an imbalance in nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) and NLR family pyrin domain containing 6 (NLRP6) expression. The mechanisms of AIP1, NOX4, ROS and inflammasomes in corneal neovascularization were studied herein. METHODS: C57BL/6 and AIP1-knockout mice were used in this study. The alkali burn procedure was performed on the right eye. Adenovirus encoding AIP1 plus green fluorescence protein (GFP) (Ad-AIP1-GFP) or GFP alone was injected into the right anterior chamber, GLX351322 was applied as a NOX4 inhibitor, and then corneal neovascularization was scored. The expression of related genes was measured by quantitative real-time polymerase chain reaction, western blotting and immunofluorescence staining. 2',7'-Dichlorofluorescin diacetate staining was used to determine the ROS levels. RESULTS: The expression of AIP1 was decreased, while that of cleaved interleukin-1ß (clv-IL-1ß) and vascular endothelial growth factor A (VEGFa) was increased after alkali burn injury. NOX4 expression was increased, the imbalance in NLRP3/NLRP6 was exacerbated, and corneal neovascularization was increased significantly in AIP1-knockout mice compared with those in C57BL/6 mice after alkali burns. These effects were reversed by AIP1 overexpression. NLRP3/NLRP6 expression was imbalanced after alkali burns. GLX351322 reversed the imbalance in NLRP3/NLRP6 by reducing the ROS levels. This treatment also reduced the expression of clv-IL-1ß and VEGFa, suppressing neovascularization. CONCLUSIONS: AIP1 and NOX4 can regulate corneal inflammation and neovascularization after alkali burn injury. Based on the pathogenesis of corneal neovascularization, these findings are expected to provide new therapeutic strategies for patients. Corneal alkali burn injury is a common type of ocular injury that is difficult to treat in the clinic. The cornea is a clear and avascular tissue. Corneal neovascularization after alkali burn injury is a serious complication; it not only seriously affects the patient's vision but also is the main reason for failed corneal transplantation. Corneal neovascularization affects approximately 1.4 million patients a year. We show for the first time that AIP1 and NOX4 can regulate corneal inflammation and neovascularization after alkali burns. The expression of AIP1 was decreased, while that of clv-IL-1ß and VEGFa was increased after alkali burns. We tried to elucidate the specific molecular mechanisms by which AIP1 regulates corneal neovascularization. NOX4 activation was due to decreased AIP1 expression in murine corneas with alkali burns. NOX4 expression was increased, the imbalance in NLRP3/NLRP6 was exacerbated, and corneal neovascularization was increased significantly in AIP1-knockout mice compared with those in C57BL/6 mice after alkali burns. These effects were reversed by AIP1 overexpression. Additionally, NLRP3/NLRP6 expression was unbalanced, with NLRP3 activation and NLRP6 suppression in the corneal alkali burn murine model. Eye drops containing GLX351322, a NOX4 inhibitor, reversed the imbalance in NLRP3/NLRP6 by reducing ROS expression. This treatment also reduced the expression of clv-IL-1ß and VEGFa, reducing neovascularization. Therefore, we provide new gene therapeutic strategies for patients. With the development of neovascularization therapy, we believe that in addition to corneal transplantation, new drug or gene therapies can achieve better results. Video Abstract.


Asunto(s)
Quemaduras Químicas , Lesiones de la Cornea , Neovascularización de la Córnea , Quemaduras Oculares , Proteínas Activadoras de ras GTPasa , Álcalis/efectos adversos , Animales , Quemaduras Químicas/complicaciones , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/patología , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/tratamiento farmacológico , Lesiones de la Cornea/metabolismo , Neovascularización de la Córnea/inducido químicamente , Neovascularización de la Córnea/complicaciones , Neovascularización de la Córnea/tratamiento farmacológico , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/complicaciones , Quemaduras Oculares/tratamiento farmacológico , Humanos , Inflamación/patología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 4 , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neovascularización Patológica , Especies Reactivas de Oxígeno , Receptores de Superficie Celular , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
12.
Inflamm Res ; 71(5-6): 577-590, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35415762

RESUMEN

OBJECTIVE: Retinal ganglion cell (RGC) apoptosis is one of the most severe complications that causes permanent visual impairment following ocular alkali burn (OAB). Currently, very few treatment options exist for this condition. This study was conducted to determine the effect of 4-phenylbutyric acid (4-PBA) on endoplasmic reticulum (ER) stress after OAB using a well-established OAB mouse model. METHODS: Ocular alkali burn was induced in C57BL/6 mouse corneas using 1 M NaOH. 4-PBA (10 mg/kg; 250 µL per injection) or saline (250 µL per injection) was injected intraperitoneally once per day for 3 days before the establishment of the OAB model. The apoptosis of retinal ganglion cells (RGCs) was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and the histological damage was examined by hematoxylin and eosin and immunofluorescence assay on retinal flat mounts. The key inflammatory response and the expression of ER stress-related markers in the retinal tissues were assessed by real-time PCR, western blotting and histologic analyses. RESULTS: 4-PBA significantly alleviated the apoptosis of RGCs and prevented the structural damage of the retina, as determined by the evaluation of RGC density and retinal thickness. Inhibition of ER stress by 4-PBA decreased the expression of vital proinflammatory cytokines, tumor necrosis factor alpha, and interleukin-1 beta; and suppressed the activation of retinal microglial cells and nuclear factor-kappa B (NF-κB). 4-PBA reduced the expression of the ER stress molecules, glucose-regulated protein 78, activated transcription factor 6, inositol-requiring enzyme-1 (IRE1), X-box-binding protein 1 splicing, and CCAAT/enhancer-binding protein homologous protein, in the retinal tissues and RGCs of OAB mice. CONCLUSIONS: The present study demonstrated that the inhibition of ER stress by 4-PBA alleviates the inflammatory response via the IRE1/NF-κB signaling pathway and protects the retina and RGCs from injury in an OAB mouse model. Such findings further suggest that 4-PBA might have potential therapeutic implications for OAB treatment.


Asunto(s)
Quemaduras Químicas , Estrés del Retículo Endoplásmico , Animales , Apoptosis , Quemaduras Químicas/metabolismo , Quemaduras Químicas/patología , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fenilbutiratos , Proteínas Serina-Treonina Quinasas , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
13.
BMC Ophthalmol ; 22(1): 455, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443679

RESUMEN

BACKGROUND: Corneal neovascularization (CNV) is an important disease that causes blindness. Secretogranin III (Scg3) has emerged as a new influencing factor of neovascularization. This study analyzed the Scg3 antibody's inhibitory effect on CNV and and explored its preliminary mechanism. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with Scg3 and anti-Scg3. Cell proliferation, wound healing migration and tube formation assays were performed. Healthy adult New Zealand rabbits were randomly selected to be alkali burned and establish the corneal neovascularization (CNV) model. The rabbits were randomly divided into 3 groups (the high concentration group, low concentration group and control group). Different doses of anti-Scg3 and PBS were administered to the rabbits. Clinical examinations, immunostaining, quantitative real-time polymerase chain reaction (qPCR) and western blotting analyses were performed postoperatively. RESULTS: In the in vitro study, the Scg3 antibody mixture inhibited Scg3-induced endothelial cell proliferation and angiogenesis. In the in vivo study, significant CNV was observed in the control group. Confocal microscopy also revealed considerable active neovascularization in the control group. There was no obvious CNV growth in the high concentration group. Additionally, CD31, LYVE1 and CD45 expression was significantly inhibited after treatment with a high concentration of Scg3 antibody. The qPCR and western blotting analyses revealed that the levels of ERK in the low concentration group and high concentration group were higher than those in the control group at 7 days and 14 days. The levels of VEGF in the control group were significantly increased compared with those in the high concentration group. In all three groups, the levels of Akt were not significantly different at any time point. CONCLUSION: The expression of Scg3 could affect the growth of HUVECs in vitro. Treatment with a high concentration (0.5 µg/mL) of Scg3 antibody reduced the inflammatory response and inhibited the growth of corneal neovascularization after corneal alkali burn injury in rabbits. The MEK/ERK pathway might play an important role in the inhibitory effect of anti-Scg3.


Asunto(s)
Lesiones de la Cornea , Neovascularización de la Córnea , Quemaduras Oculares , Adulto , Conejos , Humanos , Animales , Neovascularización de la Córnea/tratamiento farmacológico , Células Endoteliales , Neovascularización Patológica , Quemaduras Oculares/inducido químicamente , Álcalis
14.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35806082

RESUMEN

Ocular alkali burn (OAB) is a sight-threatening disease with refractory ocular inflammation causing various blinding complications. Th17 lymphocytes account for the pathogeneses of the autoimmune disease and chronic inflammation, but their role in prolonged anterior intraocular inflammation after OAB is still unknown. A rat OAB model was established for this purpose. Anterior intraocular inflammation was observed in both the acute and late phases of OAB, and histological examination confirmed the presence of inflammatory cell infiltration and fibrin exudation in the anterior segment. Luminex xMAP technology and qPCR were used to evaluate the intraocular levels of cytokines. The levels of IL-1ß, IL-6, and TNF-α were significantly elevated during the acute phase. The expression of IL-17A gradually increased from day 7 onwards and remained at a relatively high level. Immunofluorescence was performed to identify Th17 cells. CD4 and IL-17A double positive cells were detected in the anterior chamber from days 7 to 28. Flow cytometry showed that the frequency of Th17 cells increased in both lymph nodes and spleen, while the frequency of Treg cells remained unchanged, resulting in an elevated Th17/Treg ratio. The present study suggests that Th17 activation and Th17/Treg imbalance account for prolonged anterior intraocular inflammation after OAB.


Asunto(s)
Quemaduras Químicas , Uveítis , Animales , Quemaduras Químicas/etiología , Quemaduras Químicas/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Ratas , Linfocitos T Reguladores , Células Th17 , Uveítis/metabolismo
15.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077171

RESUMEN

Many studies have demonstrated the therapeutic effects of hydrogen in pathological conditions such as inflammation; however, little is known about its prophylactic effects. The purpose of this study is to investigate the prophylactic effects of hydrogen-rich water instillation in a rat corneal alkali burn model. Hydrogen-rich water (hydrogen group) or physiological saline (vehicle group) was instilled continuously to the normal rat cornea for 5 min. At 6 h after instillation, the cornea was exposed to alkali. The area of corneal epithelial defect (CED) was measured every 6 h until 24 h after alkali exposure. In addition, at 6 and 24 h after injury, histological and immunohistochemical observations were made and real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to investigate superoxide dismutase enzyme (SOD)1, SOD2, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA expression. CED at 12 h and the number of inflammatory infiltrating cells at 6 h after injury were significantly smaller in the hydrogen group than the vehicle group. Furthermore, SOD1 expression was significantly higher in the hydrogen group than the vehicle group at both 6 and 24 h, and the number of PGC-1α-positive cells was significantly larger in the hydrogen group than the vehicle group at 6 h after injury. In this model, prophylactic instillation of hydrogen-rich water suppressed alkali burn-induced inflammation, likely by upregulating expression of antioxidants such as SOD1 and PGC-1α. Hydrogen has not only therapeutic potential but also prophylactic effects that may suppress corneal scarring following injury and promote wound healing.


Asunto(s)
Quemaduras Químicas , Lesiones de la Cornea , Quemaduras Oculares , Queratitis , Álcalis/farmacología , Animales , Antioxidantes/uso terapéutico , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/metabolismo , Lesiones de la Cornea/tratamiento farmacológico , Modelos Animales de Enfermedad , Quemaduras Oculares/tratamiento farmacológico , Hidrógeno/farmacología , Hidrógeno/uso terapéutico , Inflamación , Ratas , Superóxido Dismutasa/genética , Superóxido Dismutasa/farmacología , Superóxido Dismutasa-1/uso terapéutico , Agua/farmacología , Cicatrización de Heridas
16.
Am J Physiol Cell Physiol ; 321(3): C415-C428, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34260299

RESUMEN

Leucine-rich α-2-glycoprotein-1 (LRG1) is a novel profibrotic factor that modulates transforming growth factor-ß (TGF-ß) signaling. However, its role in the corneal fibrotic response remains unknown. In the present study, we found that the LRG1 level increased in alkali-burned mouse corneas. In the LRG1-treated alkali-burned corneas, there were higher fibrogenic protein expression and neutrophil infiltration. LRG1 promoted neutrophil chemotaxis and CXCL-1 secretion. Conversely, LRG1-specific siRNA reduced fibrogenic protein expression and neutrophil infiltration in the alkali-burned corneas. The clearance of neutrophils effectively attenuated the LRG1-enhanced corneal fibrotic response, whereas the presence of neutrophils enhanced the effect of LRG1 on the fibrotic response in cultured TKE2 cells. In addition, the topical application of LRG1 elevated interleukin-6 (IL-6) and p-Stat3 levels in the corneal epithelium and in isolated neutrophils. The clearance of neutrophils inhibited the expression of p-Stat3 and IL-6 promoted by LRG1 in alkali-burned corneas. Moreover, neutrophils significantly increased the production of IL-6 and p-Stat3 promoted by LRG1 in TKE2 cells. Furthermore, the inhibition of Stat3 signaling by S3I-201 decreased neutrophil infiltration and alleviated the LRG1-enhanced corneal fibrotic response in the alkali-burned corneas. S3I-201 also reduced LRG1 or neutrophil-induced fibrotic response in TKE2 cells. In conclusion, LRG1 promotes the corneal fibrotic response by stimulating neutrophil infiltration via the modulation of the IL-6/Stat3 signaling pathway. Therefore, LRG1 could be targeted as a promising therapeutic strategy for patients with corneal fibrosis.


Asunto(s)
Quemaduras Químicas/genética , Quimiotaxis/efectos de los fármacos , Quemaduras Oculares/genética , Glicoproteínas/genética , Factor de Transcripción STAT3/genética , Transducción de Señal/genética , Álcalis , Ácidos Aminosalicílicos/farmacología , Animales , Bencenosulfonatos/farmacología , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/metabolismo , Quemaduras Químicas/patología , Línea Celular , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Epitelio Corneal/patología , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/tratamiento farmacológico , Quemaduras Oculares/patología , Fibrosis/prevención & control , Regulación de la Expresión Génica , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
17.
Exp Eye Res ; 203: 108399, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33352197

RESUMEN

Alkali burn to the cornea is one of the most intractable injuries to the eye due to the opacity resulting from neovascularization (NV) and fibrosis. Numerous studies have focused on studying the effect of drugs on alkali-induced corneal injury in mouse, but fewer on the involvement of alkali-induced DNA methylation and the PI3K/AKT/mTOR signaling pathway in the mechanism of alkali-induced corneal injury. Thus, the aim of this study was to determine the involvement of DNA methyltransferase 3 B-madiated DNA methylation and PI3K/AKT/mTOR signaling modulation in the mechanism of alkali-induced corneal injury in a mouse model. To this end, we used bisulfite sequencing polymerase chain reaction and Western blot analysis, to study the effects of 5-aza-2'-deoxycytidine and 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, which inhibit methyltransferase and PI3K respectively, on DNA methylation and expression of downstream effectors of PI3K related to corneal NV, including TSC1 and mTOR genes. The results showed that, after an intraperitoneal injection of rapamycin (2 mg/kg/day) for seven days, the alkali-induced opacity and NV were remarkably decreased mainly by suppressing the infiltration of immune cells into injured corneas, angiogenesis, VEGF expression and myofibroblasts differentiation; as well as by promoting corneal cell proliferation and PI3K/AKT/mTOR signaling. More significantly, these findings showed that epigenetic regulatory mechanisms by DNA methylation played a key role in corneal NV, including in corneal alkali burn-induced methylation modification and rapamycin-induced DNA demethylation which involved the regulation of the PI3K/AKT/mTOR signaling pathway at the protein level. The precise findings of morphological improvement and regulatory mechanisms are helpful to guide the use of rapamycin in the treatment of corneal angiogenesis induced by alkaline-burn.


Asunto(s)
Quemaduras Químicas/prevención & control , Lesiones de la Cornea/prevención & control , Quemaduras Oculares/inducido químicamente , Inmunosupresores/uso terapéutico , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Actinas/genética , Animales , Western Blotting , Quemaduras Químicas/genética , Quemaduras Químicas/patología , Cromonas/farmacología , Lesiones de la Cornea/genética , Lesiones de la Cornea/patología , Metilación de ADN , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente Indirecta , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Hidróxido de Sodio/toxicidad , Factor A de Crecimiento Endotelial Vascular/genética
18.
Exp Eye Res ; 205: 108526, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33662355

RESUMEN

Limbal Stem Cell Deficiency (LSCD), caused due to corneal injury, primarily by chemical/alkali burns, leads to compromised vision. Recently, several animal models of corneal alkali burn injury have become available. The majority of the studies with these animal models start interventions soon after the injury. However, in the clinical setting, there is a considerable delay before the intervention is initiated. Detailed knowledge of the molecular, histopathological, and clinical parameters associated with the progression of the injury leading to LSCD is highly desirable. In this context, we set out to investigate clinical, histopathological parameters of ocular surface alkali burn over a long period of time, post-injury. Limbal stem cell-deficient animal models of rabbits were created by alkali burn using sodium hydroxide, which was then assessed for their progression towards LSCD by grading the alkali burn, corneal haze, and vascularization. Additionally, cells present on the corneal surface after the burn was investigated by histology and immunophenotyping. Grading of rabbit eyes post-alkali burn had shown complete conjunctivalization in 80% (n = 12/15) of the rabbits with the alkali burn grade score of 3.88 ± 0.29 in three months and remained stable at four months (4.12 ± 0.24). However, ocular surface showed self-healing in 20% (n = 3/15) of the rabbits with a score of 1.67 ± 0.34 in four months irrespective of similar alkali injury. These self-healing corneas exhibited decreased opacity score from 2.51 ± 0.39 to 0.66 ± 0.22 (p = 0.002) and regressed vascularity from 1.66 ± 0.41 to 0.66 ± 0.33 in one to nine months, respectively. Restoration of the corneal phenotype (CK3+) was observed in central and mid-peripheral regions of the self-healing corneas, and histology revealed the localization of inflammatory cells to the peripheral cornea when compared to conjunctivalized and scarred LSCD eyes. Our study shows the essentiality to consider the time required for surgical intervention after the corneal alkali injury in rabbit models as evident from their tendency to self-heal and restore corneal phenotype without therapy. Such information on the possibility of self-healing should be useful in further studies as well as determining interventional timings and strategy during clinical presentation of corneal alkali burns.


Asunto(s)
Quemaduras Químicas/fisiopatología , Lesiones de la Cornea/fisiopatología , Neovascularización de la Córnea/fisiopatología , Opacidad de la Córnea/fisiopatología , Quemaduras Oculares/inducido químicamente , Recuperación de la Función/fisiología , Hidróxido de Sodio/toxicidad , Animales , Cáusticos/toxicidad , Conjuntiva/fisiopatología , Córnea/fisiopatología , Modelos Animales de Enfermedad , Quemaduras Oculares/fisiopatología , Estudios de Seguimiento , Limbo de la Córnea/citología , Conejos , Trasplante de Células Madre , Cicatrización de Heridas/fisiología
19.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070266

RESUMEN

The purpose of this work is to describe the use of Fibrin-Plasma Rich in Growth Factors (PRGF) membranes for the treatment of a rabbit alkali-burn lesion. For this purpose, an alkali-burn lesion was induced in 15 rabbits. A week later, clinical events were evaluated and rabbits were divided into five treatment groups: rabbits treated with medical treatment, with a fibrin-PRGF membrane cultured with autologous or heterologous rabbit Limbal Epithelial Progenitor Cells (LEPCs), with a fibrin-PRGF membrane in a Simple Limbal Epithelial Transplantation and with a fibrin-PRGF membrane without cultured LEPCs. After 40 days of follow-up, corneas were subjected to histochemical examination and immunostaining against corneal or conjunctival markers. Seven days after alkali-burn lesion, it was observed that rabbits showed opaque cornea, new blood vessels across the limbus penetrating the cornea and epithelial defects. At the end of the follow-up period, an improvement of the clinical parameters analyzed was observed in transplanted rabbits. However, only rabbits transplanted with cultured LEPCs were positive for corneal markers. Otherwise, rabbits in the other three groups showed positive staining against conjunctival markers. In conclusion, fibrin-PRGF membrane improved the chemically induced lesions. Nonetheless, only fibrin-PRGF membranes cultured with rabbit LEPCs were able to restore the corneal surface.


Asunto(s)
Quemaduras Químicas , Células Epiteliales , Quemaduras Oculares , Fibrina/farmacología , Plasma , Trasplante de Células Madre , Células Madre , Animales , Autoinjertos , Quemaduras Químicas/metabolismo , Quemaduras Químicas/patología , Quemaduras Químicas/terapia , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/trasplante , Quemaduras Oculares/metabolismo , Quemaduras Oculares/patología , Quemaduras Oculares/terapia , Limbo de la Córnea/metabolismo , Limbo de la Córnea/patología , Conejos , Células Madre/metabolismo , Células Madre/patología
20.
Int J Mol Sci ; 21(15)2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32722564

RESUMEN

The effects of peroxisome proliferator-activated receptor (PPAR)ß/δ ophthalmic solution were investigated in a rat corneal alkali burn model. After alkali injury, GW501516 (PPARß/δ agonist) or vehicle ophthalmic solution was topically instilled onto the rat's cornea twice a day until day 7. Pathological findings were evaluated, and real-time reverse transcription polymerase chain reaction was performed. GW501516 strongly suppressed infiltration of neutrophils and pan-macrophages, and reduced the mRNA expression of interleukin-6, interleukin-1ß, tumor necrosis factor alpha, and nuclear factor-kappa B. On the other hand, GW501516 promoted infiltration of M2 macrophages, infiltration of vascular endothelial cells associated with neovascularization in the wounded area, and expression of vascular endothelial growth factor A mRNA. However, 7-day administration of GW501516 did not promote neovascularization in uninjured normal corneas. Thus, the PPARß/δ ligand suppressed inflammation and promoted neovascularization in the corneal wound healing process. These results will help to elucidate the role of PPARß/δ in the field of ophthalmology.


Asunto(s)
Lesiones de la Cornea/patología , Neovascularización Fisiológica/efectos de los fármacos , PPAR delta/agonistas , PPAR-beta/agonistas , Tiazoles/farmacología , Animales , Lesiones de la Cornea/tratamiento farmacológico , Lesiones de la Cornea/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Masculino , Ratas , Ratas Wistar , Factor A de Crecimiento Endotelial Vascular/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA