Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.313
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Rev ; 101(1): 259-301, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32584191

RESUMEN

Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.


Asunto(s)
Sistema Nervioso Central/fisiopatología , Neuralgia/fisiopatología , Neuralgia/terapia , Animales , Humanos , Fibras Nerviosas , Nervios Periféricos/fisiopatología , Sistema Nervioso Periférico/fisiopatología
2.
Artículo en Inglés | MEDLINE | ID: mdl-36378366

RESUMEN

Transient receptor potential vanilloid type 4 (TRPV4) channels are Ca2+-permeable non-selective cation channels which mediate a wide range of physiological functions and are activated and modulated by a diverse array of stimuli. One of this ion channel's least discussed functions is in relation to the generation and maintenance of certain pain sensations. However, in the two decades which have elapsed since the identification of this ion channel, considerable data has emerged concerning its function in mediating pain sensations. TRPV4 is a mediator of mechanical hyperalgesia in the various contexts in which a mechanical stimulus, comprising trauma (at the macro-level) or discrete extracellular pressure or stress (at the micro-level), results in pain. TRPV4 is also recognised as constituting an essential component in mediating inflammatory pain. It also plays a role in relation to many forms of neuropathic-type pain, where it functions in mediating mechanical allodynia and hyperalgesia.Here, we review the role of TRPV4 in mediating pain sensations.


Asunto(s)
Antineoplásicos , Neuralgia , Humanos , Canales Catiónicos TRPV/uso terapéutico , Hiperalgesia/tratamiento farmacológico
3.
Brain ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554393

RESUMEN

Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical allodynia. The role of skin mechanoreceptors in the development of mechanical allodynia is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aß axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin-keratinocyte specific BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.

4.
Proc Natl Acad Sci U S A ; 119(46): e2204515119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343228

RESUMEN

Peripheral nerve injury sensitizes a complex network of spinal cord dorsal horn (DH) neurons to produce allodynia and neuropathic pain. The identification of a druggable target within this network has remained elusive, but a promising candidate is the neuropeptide Y (NPY) Y1 receptor-expressing interneuron (Y1-IN) population. We report that spared nerve injury (SNI) enhanced the excitability of Y1-INs and elicited allodynia (mechanical and cold hypersensitivity) and affective pain. Similarly, chemogenetic or optogenetic activation of Y1-INs in uninjured mice elicited behavioral signs of spontaneous, allodynic, and affective pain. SNI-induced allodynia was reduced by chemogenetic inhibition of Y1-INs, or intrathecal administration of a Y1-selective agonist. Conditional deletion of Npy1r in DH neurons, but not peripheral afferent neurons prevented the anti-hyperalgesic effects of the intrathecal Y1 agonist. We conclude that spinal Y1-INs are necessary and sufficient for the behavioral symptoms of neuropathic pain and represent a promising target for future pharmacotherapeutic development of Y1 agonists.


Asunto(s)
Hiperalgesia , Neuralgia , Ratones , Animales , Hiperalgesia/tratamiento farmacológico , Neuropéptido Y/genética , Neuropéptido Y/farmacología , Neuralgia/tratamiento farmacológico , Neuronas , Médula Espinal
5.
J Allergy Clin Immunol ; 153(4): 904-912, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38103700

RESUMEN

Atopic dermatitis (AD) is predominantly characterized by intense itching, but concomitant skin pain is experienced by more than 40% of patients. Patients with AD display considerable somatosensory aberrations, including increased nerve sensitivity to itch stimuli (hyperknesis), perception of itch from innocuous stimuli (alloknesis), or perception of pain from innocuous stimuli (allodynia). This review summarizes the current understanding of the similarities and differences in the peripheral mechanisms underlying itch and pain in AD. These distinct yet reciprocal sensations share many similarities in the peripheral nervous system, including common mediators (such as serotonin, endothelin-1, IL-33, and thymic stromal lymphopoietin), receptors (such as members of the G protein-coupled receptor family and Toll-like receptors), and ion channels for signal transduction (such as certain members of the transient receptor potential [TRP] cation channels). Itch-responding neurons are also sensitive to pain stimuli. However, there are distinct differences between itch and pain signaling. For example, specific immune responses are associated with pain (type 1 and/or type 3 cytokines and certain chemokine C-C [CCL2, CCL5] and C-X-C [CXCL] motif ligands) and itch (type 2 cytokines, including IL-31, and periostin). The TRP melastatin channels TRPM2 and TRPM3 have a role in pain but no known role in itch. Activation of µ-opioid receptors is known to alleviate pain but exacerbate itch. Understanding the connection between itch and pain mechanisms may offer new insights into the treatment of chronic pain and itch in AD.


Asunto(s)
Dermatitis Atópica , Humanos , Dermatitis Atópica/metabolismo , Prurito , Dolor , Citocinas/metabolismo , Transducción de Señal
6.
Glia ; 72(8): 1402-1417, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38591338

RESUMEN

It is well-established that spinal microglia and peripheral macrophages play critical roles in the etiology of neuropathic pain; however, growing evidence suggests sex differences in pain hypersensitivity owing to microglia and macrophages. Therefore, it is crucial to understand sex- and androgen-dependent characteristics of pain-related myeloid cells in mice with nerve injury-induced neuropathic pain. To deplete microglia and macrophages, pexidartinib (PLX3397), an inhibitor of the colony-stimulating factor 1 receptor, was orally administered, and mice were subjected to partial sciatic nerve ligation (PSL). Following PSL induction, healthy male and female mice and male gonadectomized (GDX) mice exhibited similar levels of spinal microglial activation, peripheral macrophage accumulation, and mechanical allodynia. Treatment with PLX3397 significantly suppressed mechanical allodynia in normal males; this was not observed in female and GDX male mice. Sex- and androgen-dependent differences in the PLX3397-mediated preventive effects were observed on spinal microglia and dorsal root ganglia (DRG) macrophages, as well as in expression patterns of pain-related inflammatory mediators in these cells. Conversely, no sex- or androgen-dependent differences were detected in sciatic nerve macrophages, and inhibition of peripheral CC-chemokine receptor 5 prevented neuropathic pain in both sexes. Collectively, these findings demonstrate the presence of considerable sex- and androgen-dependent differences in the etiology of neuropathic pain in spinal microglia and DRG macrophages but not in sciatic nerve macrophages. Given that the mechanisms of neuropathic pain may differ among experimental models and clinical conditions, accumulating several lines of evidence is crucial to comprehensively clarifying the sex-dependent regulatory mechanisms of pain.


Asunto(s)
Microglía , Neuralgia , Pirroles , Caracteres Sexuales , Animales , Masculino , Femenino , Ratones , Neuralgia/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Microglía/efectos de los fármacos , Microglía/metabolismo , Pirroles/farmacología , Aminopiridinas/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Nervio Ciático/lesiones , Nervio Ciático/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/metabolismo , Modelos Animales de Enfermedad
7.
Glia ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046219

RESUMEN

Abdominal visceral pain is a predominant symptom in patients with chronic pancreatitis (CP); however, the underlying mechanism of pain in CP remains elusive. We hypothesized that astrocytes in the hypothalamic paraventricular nucleus (PVH) contribute to CP pain pathogenesis. A mouse model of CP was established by repeated intraperitoneal administration of caerulein to induce abdominal visceral pain. Abdominal mechanical stimulation, open field and elevated plus maze tests were performed to assess visceral pain and anxiety-like behavior. Fiber photometry, brain slice Ca2+ imaging, electrophysiology, and immunohistochemistry were used to investigate the underlying mechanisms. Mice with CP displayed long-term abdominal mechanical allodynia and comorbid anxiety, which was accompanied by astrocyte glial fibrillary acidic protein reactivity, elevated Ca2+ signaling, and astroglial glutamate transporter-1 (GLT-1) deficits in the PVH. Specifically, reducing astrocyte Ca2+ signaling in the PVH via chemogenetics significantly rescued GLT-1 deficits and alleviated mechanical allodynia and anxiety in mice with CP. Furthermore, we found that GLT-1 deficits directly contributed to the hyperexcitability of VGLUT2PVH neurons in mice with CP, and that pharmacological activation of GLT-1 alleviated the hyperexcitability of VGLUT2PVH neurons, abdominal visceral pain, and anxiety in these mice. Taken together, our data suggest that dysfunctional astrocyte glutamate uptake in the PVH contributes to visceral pain and anxiety in mice with CP, highlighting GLT-1 as a potential therapeutic target for chronic pain in patients experiencing CP.

8.
Neurobiol Dis ; 190: 106381, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38114049

RESUMEN

While neural oscillations play a critical role in sensory perception, it remains unclear how these rhythms function under conditions of neuropathic allodynia. Recent studies demonstrated that the anterior cingulate cortex (ACC) is associated with the affective-aversive component of pain, and plasticity changes in this region are closely linked to abnormal allodynic sensations. Here, to study the mechanisms of allodynia, we recorded local field potentials (LFPs) in the bilateral ACC of awake-behaving rats and compared the spectral power and center frequency of brain oscillations between healthy and CCI (chronic constriction injury) induced neuropathic pain conditions. Our results indicated that activation of the ACC occurs bilaterally in the presence of neuropathic pain, similar to the healthy condition. Furthermore, CCI affects both spontaneous and stimulus-induced activity of ACC neurons. Specifically, we observed an increase in spontaneous beta activity after nerve injury compared to the healthy condition. By stimulating operated or unoperated paws, we found more intense event-related desynchronization (ERD) responses in the theta, alpha, and beta frequency bands and faster alpha center frequency after CCI compared to before CCI. Although the behavioral manifestation of allodynia was more pronounced in the operated paw than the unoperated paw following CCI, there was no significant difference in the center frequency and ERD responses observed in the ACC between stimulation of the operated and unoperated limbs. Our findings offer evidence supporting the notion that aberrancies in ACC oscillations may contribute to the maintenance and development of neuropathic allodynia.


Asunto(s)
Neuralgia , Traumatismos del Sistema Nervioso , Ratas , Animales , Hiperalgesia , Giro del Cíngulo , Ratas Sprague-Dawley , Neuronas/fisiología
9.
Mol Pain ; 20: 17448069241258113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38744426

RESUMEN

Background: Recent studies have demonstrated that activated microglia were involved in the pathogenesis of central sensitization characterized by cutaneous allodynia in migraine. Activation of microglia is accompanied by increased expression of its receptors and release of inflammatory mediators. Acupuncture and its developed electroacupuncture (EA) have been recommended as an alternative therapy for migraine and are widely used for relieving migraine-associated pain. However, it remains rare studies that show whether EA exerts anti-migraine effects via inhibiting microglial activation related to a release of microglial receptors and the inflammatory pathway. Therefore, this study aimed to investigate EA' ability to ameliorate central sensitization via modulation of microglial activation, microglial receptor, and inflammatory response using a rat model of migraine induced by repeated epidural chemical stimulation. Methods: In the present study, a rat model of migraine was established by epidural repeated inflammatory soup (IS) stimulation and treated with EA at Fengchi (GB20) and Yanglingquan (GB34) and acupuncture at sham-acupoints. Pain hypersensitivity was further determined by measuring the mechanical withdrawal threshold using the von-Frey filament. The changes in c-Fos and ionized calcium binding adaptor molecule 1 (Ibal-1) labeled microglia in the trigeminal nucleus caudalis (TNC) were examined by immunflurescence to assess the central sensitization and whether accompanied with microglia activation. In addition, the expression of Ibal-1, microglial purinoceptor P2X4, and its associated inflammatory signaling pathway mediators, including interleukin (IL)-1ß, NOD-like receptor protein 3 (NLRP3), and Caspase-1 in the TNC were investigated by western blot and real-time polymerase chain reaction analysis. Results: Allodynia increased of c-Fos, and activated microglia were observed after repeated IS stimulation. EA alleviated the decrease in mechanical withdrawal thresholds, reduced the activation of c-Fos and microglia labeled with Ibal-1, downregulated the level of microglial purinoceptor P2X4, and limited the inflammatory response (NLRP3/Caspase-1/IL-1ß signaling pathway) in the TNC of migraine rat model. Conclusions: Our results indicate that the anti-hyperalgesia effects of EA ameliorate central sensitization in IS-induced migraine by regulating microglial activation related to P2X4R and NLRP3/IL-1ß inflammatory pathway.


Asunto(s)
Modelos Animales de Enfermedad , Electroacupuntura , Hiperalgesia , Inflamación , Microglía , Trastornos Migrañosos , Ratas Sprague-Dawley , Receptores Purinérgicos P2X4 , Animales , Electroacupuntura/métodos , Receptores Purinérgicos P2X4/metabolismo , Microglía/metabolismo , Hiperalgesia/terapia , Hiperalgesia/metabolismo , Trastornos Migrañosos/terapia , Trastornos Migrañosos/metabolismo , Masculino , Inflamación/metabolismo , Inflamación/patología , Inflamación/terapia , Sensibilización del Sistema Nervioso Central/fisiología , Ratas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
10.
Biochem Biophys Res Commun ; 724: 150217, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38865809

RESUMEN

Neuropathy is a disturbance of function or a pathological change in nerves causing poor health and quality of life. A proportion of chronic pain patients in the community suffer persistent neuropathic pain symptoms because current drug therapies may be suboptimal so there is a need for new therapeutic modalities. This study investigated the neuroprotective flavonoid, 6-methoxyflavone (6MF), as a potential therapeutic agent and gabapentin as the standard comparator, against neuropathic models. Thus, neuropathic-like states were induced in Sprague-Dawley rats using sciatic nerve chronic constriction injury (CCI) mononeuropathy and systemic administration of streptozotocin (STZ) to induce polyneuropathy. Subsequent behaviors reflecting allodynia, hyperalgesia, and vulvodynia were assessed and any possible motoric side-effects were evaluated including locomotor activity, as well as rotarod discoordination and gait disruption. 6MF (25-75 mg/kg) antagonized neuropathic-like nociceptive behaviors including static- (pressure) and dynamic- (light brushing) hindpaw allodynia plus heat/cold and pressure hyperalgesia in the CCI and STZ models. 6MF also reduced static and dynamic components of vulvodynia in the STZ induced polyneuropathy model. Additionally, 6MF reversed CCI and STZ suppression of locomotor activity and rotarod discoordination, suggesting a beneficial activity on motor side effects, in contrast to gabapentin. Hence, 6MF possesses anti-neuropathic-like activity not only against different nociceptive modalities but also impairment of motoric side effects.


Asunto(s)
Flavonas , Hiperalgesia , Neuralgia , Ratas Sprague-Dawley , Animales , Ratas , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Flavonas/farmacología , Flavonas/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Gabapentina/farmacología , Gabapentina/uso terapéutico , Nocicepción/efectos de los fármacos , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Femenino , Ácido gamma-Aminobutírico/metabolismo , Aminas/farmacología , Aminas/uso terapéutico , Nervio Ciático/lesiones , Nervio Ciático/efectos de los fármacos , Vulvodinia/tratamiento farmacológico , Constricción , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico
11.
Brain Behav Immun ; 119: 408-415, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636564

RESUMEN

Vestibulodynia is a complex pain disorder characterized by chronic discomfort in the vulvar region, often accompanied by tactile allodynia and spontaneous pain. In patients a depressive behaviour is also observed. In this study, we have used a model of vestibulodynia induced by complete Freund's adjuvant (CFA) focusing our investigation on the spinal cord neurons and microglia. We investigated tactile allodynia, spontaneous pain, and depressive-like behavior as key behavioral markers of vestibulodynia. In addition, we conducted in vivo electrophysiological recordings to provide, for the first time to our knowledge, the characterization of the spinal sacral neuronal activity in the L6-S1 dorsal horn of the spinal cord. Furthermore, we examined microglia activation in the L6-S1 dorsal horn using immunofluorescence, unveiling hypertrophic phenotypes indicative of neuroinflammation in the spinal cord. This represents a novel insight into the role of microglia in vestibulodynia pathology. To address the therapeutic aspect, we employed pharmacological interventions using GABApentin, amitriptyline, and PeaPol. Remarkably, all three drugs, also used in clinic, showed efficacy in alleviating tactile allodynia and depressive-like behavior. Concurrently, we also observed a normalization of the altered neuronal firing and a reduction of microglia hypertrophic phenotypes. In conclusion, our study provides a comprehensive understanding of the CFA-induced model of vestibulodynia, encompassing behavioral, neurophysiological and neuroinflammatory aspects. These data pave the way to investigate spinal cord first pain plasticity in vestibulodynia.


Asunto(s)
Modelos Animales de Enfermedad , Adyuvante de Freund , Hiperalgesia , Microglía , Neuronas , Médula Espinal , Vulvodinia , Animales , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Ratones , Hiperalgesia/fisiopatología , Hiperalgesia/metabolismo , Vulvodinia/fisiopatología , Vulvodinia/metabolismo , Femenino , Microglía/metabolismo , Neuronas/metabolismo , Enfermedades Neuroinflamatorias/fisiopatología , Gabapentina/farmacología , Amitriptilina/farmacología , Depresión/fisiopatología , Depresión/metabolismo , Ratones Endogámicos C57BL
12.
Brain Behav Immun ; 119: 261-271, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38570102

RESUMEN

Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP). Previously, we have shown that estrogen modulates sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP. The estrogen-dependent role of TNFR1-mediated supraspinal neuronal circuitry in CNP remains unknown. In this study, we interrogated the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that mechanical hypersensitivity induced by chronic constriction injury (CCI) decreases over time in males, but not in females. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38MAPK and NF-κB activation in male cortical tissue; however, p38MAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed a similar recovery from acute pain in male mice following CCI when p38αMAPK was knocked out of supraspinal Nex + neurons (NexCreERT2::p38αMAPKf/f), while chronic pain developed in female mice. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor ß (ER ß) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lends therapeutic relief to females following CCI comparable to the response evaluated in male mice. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER ß interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.


Asunto(s)
Dolor Crónico , Estrógenos , Neuralgia , Neuronas , Receptores Tipo I de Factores de Necrosis Tumoral , Transducción de Señal , Animales , Neuralgia/metabolismo , Masculino , Femenino , Ratones , Estrógenos/metabolismo , Estrógenos/farmacología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Neuronas/metabolismo , Dolor Crónico/metabolismo , Transducción de Señal/fisiología , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Hiperalgesia/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo
13.
Neurochem Res ; 49(4): 1049-1060, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38252396

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a major challenge for cancer patients who undergo chemotherapy with paclitaxel. Therefore, finding effective therapies for CIPN is crucial. Glatiramer acetate is used to treat multiple sclerosis that exerts neuroprotective properties in various studies. We hypothesized that glatiramer acetate could also improve the paclitaxel-induced peripheral neuropathy. We used a rat model of paclitaxel (2 mg/kg/every other day for 7 doses)-induced peripheral neuropathy. Rats were treated with either different doses of glatiramer acetate (1, 2, 4 mg/kg/day) or its vehicle for 14 days in separate groups. The mechanical and thermal sensitivity of the rats by using the Von Frey test and the Hot Plate test, respectively, were assessed during the study. The levels of oxidative stress (malondialdehyde and superoxide dismutase), inflammatory markers (TNF-α, IL-10, NF-kB), and nerve damage (H&E and S100B staining) in the sciatic nerves of the rats were also measured at the end of study. Glatiramer acetate (2 and 4 mg/kg) exerted beneficial effects on thermal and mechanical allodynia tests. It also modulated the inflammatory response by reducing TNF-α and NF-κB levels, enhancing IL-10 production, and improving the oxidative stress status by lowering malondialdehyde and increasing superoxide dismutase activity in the sciatic nerve of the rats. Furthermore, glatiramer acetate enhanced nerve conduction velocity in all treatment groups. Histological analysis revealed that glatiramer acetate (2 and 4 mg/kg) prevented paclitaxel-induced damage to the nerve structure. These results suggest that glatiramer acetate can alleviate the peripheral neuropathy induced by paclitaxel.


Asunto(s)
Paclitaxel , Enfermedades del Sistema Nervioso Periférico , Humanos , Ratas , Animales , Paclitaxel/toxicidad , Acetato de Glatiramer/uso terapéutico , Acetato de Glatiramer/farmacología , Interleucina-10 , Citocinas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/prevención & control , Estrés Oxidativo , Hiperalgesia/inducido químicamente , Superóxido Dismutasa/metabolismo , Malondialdehído/farmacología
14.
Neurochem Res ; 49(4): 980-997, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38170385

RESUMEN

Diabetic neuropathic pain is one of the most devasting disorders of peripheral nervous system. The loss of GABAergic inhibition is associated with the development of painful diabetic neuropathy. The current study evaluated the potential of 3-Hydroxy-2-methoxy-6-methyl flavone (3-OH-2'MeO6MF), to ameliorate peripheral neuropathic pain using an STZ-induced hyperglycemia rat model. The pain threshold was assessed by tail flick, cold, mechanical allodynia, and formalin test on days 0, 14, 21, and 28 after STZ administration accompanied by evaluation of several biochemical parameters. Administration of 3-OH-2'-MeO6MF (1,10, 30, and 100 mg/kg, i.p) significantly enhanced the tail withdrawal threshold in tail-flick and tail cold allodynia tests. 3-OH-2'-MeO6MF also increased the paw withdrawal threshold in mechanical allodynia and decreased paw licking time in the formalin test. Additionally, 3-OH-2'-MeO6MF also attenuated the increase in concentrations of myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), nitrite, TNF-α, and IL 6 along with increases in glutathione (GSH). Pretreatment of pentylenetetrazole (PTZ) (40 mg/kg, i.p.) abolished the antinociceptive effect of 3-OH-2'-MeO6MF in mechanical allodynia. Besides, the STZ-induced alterations in the GABA concentration and GABA transaminase activity attenuated by 3-OH-2'-MeO6MF treatment suggest GABAergic mechanisms. Molecular docking also authenticates the involvement of α2ß2γ2L GABA-A receptors and GABA-T enzyme in the antinociceptive activities of 3-OH-2'-MeO6MF.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Flavonas , Neuralgia , Ratas , Animales , Hiperalgesia/tratamiento farmacológico , Neuropatías Diabéticas/tratamiento farmacológico , Estreptozocina , Simulación del Acoplamiento Molecular , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/complicaciones , Analgésicos/farmacología , Ácido gamma-Aminobutírico/farmacología , Flavonas/farmacología , Flavonas/uso terapéutico , Biomarcadores
15.
Cephalalgia ; 44(2): 3331024241230279, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38416486

RESUMEN

BACKGROUND: To date, a number of studies on migraine have cross-sectionally evaluated sensory sensitivity with aversion thresholds/scores along the migraine cycle, reporting a decreased tolerance to sensory stimuli in different sensory modalities. Our hypothesis was that patients with migraine would exhibit heightened sensitivity to sound, light, touch and smell on days where they reported greater headache intensity. METHODS: This is an exploratory, longitudinal study, carried out over the course of 27 days. Aversion thresholds or scores to sound, light, touch and smell were quantified in six patients with migraine (11.33 ± 6.53 headache days/month). RESULTS: Patients reported an increased sensitivity to light (padj = 0.0297), touch (padj = 0.0077), and smell (padj = 0.0201) on days with higher headache intensity. However, a greater sensitivity to sound on days with higher headache intensity was only reported when anxiety levels were high (padj = 1.4e-06). Interestingly, variable levels of tolerance to bothersome light over time can also influence the correlation between light sensitivity and headache intensity (padj = 1.4e-06). CONCLUSIONS: Based on the present findings, future longitudinal studies evaluating sensory threshold changes along the migraine cycle in patients with migraine should account for the increased tolerance to bothersome light over time as well as the effect of anxiety on auditory sensitivity.


Asunto(s)
Trastornos Migrañosos , Percepción del Tacto , Humanos , Estudios Longitudinales , Cefalea , Umbral Sensorial
16.
Brain ; 146(2): 475-491, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35871491

RESUMEN

Chemotherapy-induced peripheral neuropathy is a frequent, disabling side effect of anticancer drugs. Oxaliplatin, a platinum compound used in the treatment of advanced colorectal cancer, often leads to a form of chemotherapy-induced peripheral neuropathy characterized by mechanical and cold hypersensitivity. Current therapies for chemotherapy-induced peripheral neuropathy are ineffective, often leading to the cessation of treatment. Transient receptor potential ankyrin 1 (TRPA1) is a polymodal, non-selective cation-permeable channel expressed in nociceptors, activated by physical stimuli and cellular stress products. TRPA1 has been linked to the establishment of chemotherapy-induced peripheral neuropathy and other painful neuropathic conditions. Sigma-1 receptor is an endoplasmic reticulum chaperone known to modulate the function of many ion channels and receptors. Sigma-1 receptor antagonist, a highly selective antagonist of Sigma-1 receptor, has shown effectiveness in a phase II clinical trial for oxaliplatin chemotherapy-induced peripheral neuropathy. However, the mechanisms involved in the beneficial effects of Sigma-1 receptor antagonist are little understood. We combined biochemical and biophysical (i.e. intermolecular Förster resonance energy transfer) techniques to demonstrate the interaction between Sigma-1 receptor and human TRPA1. Pharmacological antagonism of Sigma-1R impaired the formation of this molecular complex and the trafficking of functional TRPA1 to the plasma membrane. Using patch-clamp electrophysiological recordings we found that antagonists of Sigma-1 receptor, including Sigma-1 receptor antagonist, exert a marked inhibition on plasma membrane expression and function of human TRPA1 channels. In TRPA1-expressing mouse sensory neurons, Sigma-1 receptor antagonists reduced inward currents and the firing of actions potentials in response to TRPA1 agonists. Finally, in a mouse experimental model of oxaliplatin neuropathy, systemic treatment with a Sigma-1 receptor antagonists prevented the development of painful symptoms by a mechanism involving TRPA1. In summary, the modulation of TRPA1 channels by Sigma-1 receptor antagonists suggests a new strategy for the prevention and treatment of chemotherapy-induced peripheral neuropathy and could inform the development of novel therapeutics for neuropathic pain.


Asunto(s)
Antineoplásicos , Neuralgia , Canales de Potencial de Receptor Transitorio , Ratones , Humanos , Animales , Oxaliplatino/toxicidad , Canal Catiónico TRPA1 , Antineoplásicos/toxicidad , Neuralgia/inducido químicamente , Neuralgia/prevención & control , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Receptor Sigma-1
17.
Br J Anaesth ; 132(4): 735-745, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336518

RESUMEN

BACKGROUND: Cigarette smoking is commonly reported among chronic pain patients in the clinic. Although chronic nicotine exposure is directly linked to nociceptive hypersensitivity in rodents, underlying neurobiological mechanisms remain unknown. METHODS: Multi-tetrode recordings in freely moving mice were used to test the activity of dopaminergic projections from the ventral tegmental area (VTA) to pyramidal neurones in the anterior cingulate cortex (ACC) in chronic nicotine-treated mice. The VTA→ACC dopaminergic pathway was inhibited by optogenetic manipulation to detect chronic nicotine-induced allodynia (pain attributable to a stimulus that does not normally provoke pain) assessed by von Frey monofilaments (force units in g). RESULTS: Allodynia developed concurrently with chronic (28-day) nicotine exposure in mice (0.36 g [0.0141] vs 0.05 g [0.0018], P<0.0001). Chronic nicotine activated dopaminergic projections from the VTA to pyramidal neurones in the ACC, and optogenetic inhibition of VTA dopaminergic terminals in the ACC alleviated chronic nicotine-induced allodynia in mice (0.06 g [0.0064] vs 0.28 g [0.0428], P<0.0001). Moreover, optogenetic inhibition of Drd2 dopamine receptor signalling in the ACC attenuated nicotine-induced allodynia (0.07 g [0.0082] vs 0.27 g [0.0211], P<0.0001). CONCLUSIONS: These findings implicate a role of Drd2-mediated dopaminergic VTA→ACC pathway signalling in chronic nicotine-elicited allodynia.


Asunto(s)
Giro del Cíngulo , Nicotina , Humanos , Ratones , Animales , Nicotina/farmacología , Hiperalgesia/inducido químicamente , Dopamina/metabolismo , Dolor
18.
Can J Neurol Sci ; 51(1): 32-39, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36799022

RESUMEN

Patients with neuropathic pain are heterogeneous in pathophysiology, etiology, and clinical presentation. Signs and symptoms are determined by the nature of the injury and factors such as genetics, sex, prior injury, age, culture, and environment. Basic science has provided general information about pain etiology by studying the consequences of peripheral injury in rodent models. This is associated with the release of inflammatory cytokines, chemokines, and growth factors that sensitize sensory nerve endings, alter gene expression, promote post-translational modification of proteins, and alter ion channel function. This leads to spontaneous activity in primary afferent neurons that is crucial for the onset and persistence of pain and the release of secondary mediators such as colony-stimulating factor 1 from primary afferent terminals. These promote the release of tertiary mediators such as brain-derived neurotrophic factor and interleukin-1ß from microglia and astrocytes. Tertiary mediators facilitate the transmission of nociceptive information at the spinal, thalamic, and cortical levels. For the most part, these findings have failed to identify new therapeutic approaches. More recent basic science has better mirrored the clinical situation by addressing the pathophysiology associated with specific types of injury, refinement of methodology, and attention to various contributory factors such as sex. Improved quantification of sensory profiles in each patient and their distribution into defined clusters may improve translation between basic science and clinical practice. If such quantification can be traced back to cellular and molecular aspects of pathophysiology, this may lead to personalized medicine approaches that dictate a rational therapeutic approach for each individual.


Asunto(s)
Neuralgia , Manejo del Dolor , Humanos , Neuralgia/etiología , Microglía , Citocinas , Biología
19.
Int J Med Sci ; 21(7): 1265-1273, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818478

RESUMEN

This study investigated the effects of pregabalin on microglial differentiation in rats with neuropathic pain (NP) induced by sciatic nerve ligation and transection. After confirming NP, the rats were randomly allocated to either a pregabalin or control group. The pregabalin group received intraperitoneal injections of 10 mg/kg pregabalin, while the control group received an equivalent volume of normal saline following surgery. On postoperative day 28, neuronal damage, microglial activity, and microglial differentiation were assessed. The pregabalin group exhibited significantly less neuronal damage compared to the control group, along with a significant decrease in activated microglial expression in both the brain and spinal cord. Pregabalin treatment also significantly altered the microglial phenotype expression, with a decrease in the M1 phenotype percentage and an increase in the M2 phenotype percentage in both the brain (M1 phenotype: 43.52 ± 12.16% and 18.00 ± 8.57% in the control and pregabalin groups, respectively; difference: 27.26 [15.18-42.10], p = 0.002; M2 phenotype: 16.88 ± 6.47% and 39.63 ± 5.82% in the control and pregabalin groups, respectively; difference 22.04 [17.17-32.70], p < 0.001) and the spinal cord ipsilateral to nerve injury (M1 phenotype: 44.35 ± 12.12% and 13.78 ± 5.39% in the control and pregabalin groups, respectively; difference 30.46 [21.73-44.45], p < 0.001; M2 phenotype: 7.64 ± 3.91% and 33.66 ± 7.95% in the control and pregabalin groups, respectively; difference 27.41 [21.21-36.30], p < 0.001). Overall, pregabalin treatment significantly decreased the microglial M1 phenotype while increasing the microglial M2 phenotype in NP rats.


Asunto(s)
Diferenciación Celular , Microglía , Neuralgia , Pregabalina , Animales , Pregabalina/farmacología , Pregabalina/uso terapéutico , Microglía/efectos de los fármacos , Microglía/patología , Neuralgia/tratamiento farmacológico , Neuralgia/patología , Neuralgia/etiología , Ratas , Diferenciación Celular/efectos de los fármacos , Masculino , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Modelos Animales de Enfermedad , Analgésicos/farmacología , Analgésicos/uso terapéutico , Nervio Ciático/efectos de los fármacos , Nervio Ciático/patología , Ratas Sprague-Dawley , Humanos , Encéfalo/efectos de los fármacos , Encéfalo/patología
20.
Photodermatol Photoimmunol Photomed ; 40(2): e12955, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361492

RESUMEN

BACKGROUND: A few patients report intense pain and other unpleasant sensations, such as burning, dysesthesia and hyperalgesia, after even brief exposure to the sun and in the absence of any skin lesion. Sometimes they also develop systemic symptoms, such as mild fever, fatigue, faintness and fainting. As a result, these patients carefully avoid even short-term sun exposure with a consequent severe negative impact on their lives. METHODS: We have reviewed the clinical findings and the results of photobiological investigations of 10 patients who presented this clinical picture. Six of these patients were previously described by our group with the diagnosis of sun pain. We have reviewed the similarities with other previously described disorders such as solar dysesthesia and PUVA pain and have evaluated possible pathogenetic mechanisms. RESULTS: During phototesting our patients experienced intense pain in the exposed area and in the surrounding skin, without any visible lesion, even with very low sub-erythemal doses. At follow-up, five patients were diagnosed with fibromyalgia, three with a major depressive disorder, one with bipolar syndrome and one with a conversion disorder. The pathogenesis remains unclear, but the use of a psychopharmacological treatment with antidepressants improved both the neuropsychiatric symptoms and sensitivity to the sun in most subjects. CONCLUSION: For patients with pain and other severe symptoms in the absence of skin lesions and clinical and laboratory manifestations of known photodermatoses, a neuropsychiatric evaluation should be suggested.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos por Fotosensibilidad , Humanos , Parestesia/diagnóstico , Parestesia/etiología , Luz Solar/efectos adversos , Trastornos por Fotosensibilidad/diagnóstico , Trastornos por Fotosensibilidad/etiología , Dolor/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA