Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Evol Biol ; 37(1): 14-27, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285661

RESUMEN

Identifying the drivers of microgeographic speciation (i.e., speciation over small, local geographic scales) is key to understand the origin of speciose groups. Here, we use genomic data to infer the demographic processes underlying diversification in Poecilimon luschani (Orthoptera: Tettigoniidae), a species complex belonging to the most diverse genus of bush crickets from the Mediterranean region (>170 taxa) that comprises three recognized subspecies with small allopatric distributions in the topographically complex Teke Peninsula, southwestern Anatolia. Phylogenomic reconstructions that include all other taxa within the species group confirmed that subspecies of P. luschani originated from a common ancestor during the Pleistocene, supporting recent (<1 Ma) diversification within a small geographical area (ca. 120 × 80 km). Genetic clustering analyses corroborated the distinctiveness of each subspecies and the cohesiveness of their respective populations, with abrupt genetic discontinuities coinciding with contemporary range boundaries. Indeed, our analyses uncovered the presence of two sympatric cryptic sister lineages that diverged <300 ka ago and do not admix despite being co-distributed. Collectively, these results support that all lineages within the complex represent independently evolving entities corresponding to full-fledged species. Statistical evaluation of alternative models of speciation strongly supports a scenario of divergence in isolation followed by a period of limited gene flow during the last glacial period, when all lineages experienced marked expansions according to demographic reconstructions. Our study exemplifies how localized allopatric divergence and fast evolution of reproductive isolation can promote microgeographic speciation and explain the high rates of endemism characterizing biodiversity hotspots.


Asunto(s)
Biodiversidad , Aislamiento Reproductivo , Filogenia , Especiación Genética
2.
Stud Mycol ; 107: 251-388, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38600961

RESUMEN

During 25 surveys of global Phytophthora diversity, conducted between 1998 and 2020, 43 new species were detected in natural ecosystems and, occasionally, in nurseries and outplantings in Europe, Southeast and East Asia and the Americas. Based on a multigene phylogeny of nine nuclear and four mitochondrial gene regions they were assigned to five of the six known subclades, 2a-c, e and f, of Phytophthora major Clade 2 and the new subclade 2g. The evolutionary history of the Clade appears to have involved the pre-Gondwanan divergence of three extant subclades, 2c, 2e and 2f, all having disjunct natural distributions on separate continents and comprising species with a soilborne and aquatic lifestyle and, in addition, a few partially aerial species in Clade 2c; and the post-Gondwanan evolution of subclades 2a and 2g in Southeast/East Asia and 2b in South America, respectively, from their common ancestor. Species in Clade 2g are soilborne whereas Clade 2b comprises both soil-inhabiting and aerial species. Clade 2a has evolved further towards an aerial lifestyle comprising only species which are predominantly or partially airborne. Based on high nuclear heterozygosity levels ca. 38 % of the taxa in Clades 2a and 2b could be some form of hybrid, and the hybridity may be favoured by an A1/A2 breeding system and an aerial life style. Circumstantial evidence suggests the now 93 described species and informally designated taxa in Clade 2 result from both allopatric non-adaptive and sympatric adaptive radiations. They represent most morphological and physiological characters, breeding systems, lifestyles and forms of host specialism found across the Phytophthora clades as a whole, demonstrating the strong biological cohesiveness of the genus. The finding of 43 previously unknown species from a single Phytophthora clade highlight a critical lack of information on the scale of the unknown pathogen threats to forests and natural ecosystems, underlining the risk of basing plant biosecurity protocols mainly on lists of named organisms. More surveys in natural ecosystems of yet unsurveyed regions in Africa, Asia, Central and South America are needed to unveil the full diversity of the clade and the factors driving diversity, speciation and adaptation in Phytophthora. Taxonomic novelties: New species: Phytophthora amamensis T. Jung, K. Kageyama, H. Masuya & S. Uematsu, Phytophthora angustata T. Jung, L. Garcia, B. Mendieta-Araica, & Y. Balci, Phytophthora balkanensis I. Milenkovic, Z. Tomic, T. Jung & M. Horta Jung, Phytophthora borneensis T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora calidophila T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora catenulata T. Jung, T.-T. Chang, N.M. Chi & M. Horta Jung, Phytophthora celeris T. Jung, L. Oliveira, M. Tarigan & I. Milenkovic, Phytophthora curvata T. Jung, A. Hieno, H. Masuya & M. Horta Jung, Phytophthora distorta T. Jung, A. Durán, E. Sanfuentes von Stowasser & M. Horta Jung, Phytophthora excentrica T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora falcata T. Jung, K. Kageyama, S. Uematsu & M. Horta Jung, Phytophthora fansipanensis T. Jung, N.M. Chi, T. Corcobado & C.M. Brasier, Phytophthora frigidophila T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora furcata T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora inclinata N.M. Chi, T. Jung, M. Horta Jung & I. Milenkovic, Phytophthora indonesiensis T. Jung, M. Tarigan, L. Oliveira & I. Milenkovic, Phytophthora japonensis T. Jung, A. Hieno, H. Masuya & J.F. Webber, Phytophthora limosa T. Corcobado, T. Majek, M. Ferreira & T. Jung, Phytophthora macroglobulosa H.-C. Zeng, H.-H. Ho, F.-C. Zheng & T. Jung, Phytophthora montana T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora multipapillata T. Jung, M. Tarigan, I. Milenkovic & M. Horta Jung, Phytophthora multiplex T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora nimia T. Jung, H. Masuya, A. Hieno & C.M. Brasier, Phytophthora oblonga T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora obovoidea T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora obturata T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora penetrans T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora platani T. Jung, A. Pérez-Sierra, S.O. Cacciola & M. Horta Jung, Phytophthora proliferata T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora pseudocapensis T. Jung, T.-T. Chang, I. Milenkovic & M. Horta Jung, Phytophthora pseudocitrophthora T. Jung, S.O. Cacciola, J. Bakonyi & M. Horta Jung, Phytophthora pseudofrigida T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora pseudoccultans T. Jung, T.-T. Chang, I. Milenkovic & M. Horta Jung, Phytophthora pyriformis T. Jung, Y. Balci, K.D. Boders & M. Horta Jung, Phytophthora sumatera T. Jung, M. Tarigan, M. Junaid & A. Durán, Phytophthora transposita T. Jung, K. Kageyama, C.M. Brasier & H. Masuya, Phytophthora vacuola T. Jung, H. Masuya, K. Kageyama & J.F. Webber, Phytophthora valdiviana T. Jung, E. Sanfuentes von Stowasser, A. Durán & M. Horta Jung, Phytophthora variepedicellata T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora vietnamensis T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora ×australasiatica T. Jung, N.M. Chi, M. Tarigan & M. Horta Jung, Phytophthora ×lusitanica T. Jung, M. Horta Jung, C. Maia & I. Milenkovic, Phytophthora ×taiwanensis T. Jung, T.-T. Chang, H.-S. Fu & M. Horta Jung. Citation: Jung T, Milenkovic I, Balci Y, Janousek J, Kudlácek T, Nagy ZÁ, Baharuddin B, Bakonyi J, Broders KD, Cacciola SO, Chang T-T, Chi NM, Corcobado T, Cravador A, Dordevic B, Durán A, Ferreira M, Fu C-H, Garcia L, Hieno A, Ho H-H, Hong C, Junaid M, Kageyama K, Kuswinanti T, Maia C, Májek T, Masuya H, Magnano di San Lio G, Mendieta-Araica B, Nasri N, Oliveira LSS, Pane A, Pérez-Sierra A, Rosmana A, Sanfuentes von Stowasser E, Scanu B, Singh R, Stanivukovic Z, Tarigan M, Thu PQ, Tomic Z, Tomsovský M, Uematsu S, Webber JF, Zeng H-C, Zheng F-C, Brasier CM, Horta Jung M (2024). Worldwide forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity. Studies in Mycology 107: 251-388. doi: 10.3114/sim.2024.107.04.

3.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34016748

RESUMEN

Fungi produce a wealth of pharmacologically bioactive secondary metabolites (SMs) from biosynthetic gene clusters (BGCs). It is common practice for drug discovery efforts to treat species' secondary metabolomes as being well represented by a single or a small number of representative genomes. However, this approach misses the possibility that intraspecific population dynamics, such as adaptation to environmental conditions or local microbiomes, may harbor novel BGCs that contribute to the overall niche breadth of species. Using 94 isolates of Aspergillus flavus, a cosmopolitan model fungus, sampled from seven states in the United States, we dereplicate 7,821 BGCs into 92 unique BGCs. We find that more than 25% of pangenomic BGCs show population-specific patterns of presence/absence or protein divergence. Population-specific BGCs make up most of the accessory-genome BGCs, suggesting that different ecological forces that maintain accessory genomes may be partially mediated by population-specific differences in secondary metabolism. We use ultra-high-performance high-resolution mass spectrometry to confirm that these genetic differences in BGCs also result in chemotypic differences in SM production in different populations, which could mediate ecological interactions and be acted on by selection. Thus, our results suggest a paradigm shift that previously unrealized population-level reservoirs of SM diversity may be of significant evolutionary, ecological, and pharmacological importance. Last, we find that several population-specific BGCs from A. flavus are present in Aspergillus parasiticus and Aspergillus minisclerotigenes and discuss how the microevolutionary patterns we uncover inform macroevolutionary inferences and help to align fungal secondary metabolism with existing evolutionary theory.


Asunto(s)
Aspergillus flavus/metabolismo , Aspergillus/metabolismo , Genoma Fúngico , Metaboloma , Metabolismo Secundario/genética , Aspergillus/clasificación , Aspergillus/genética , Aspergillus flavus/clasificación , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Especiación Genética , Genómica , Metagenómica , Familia de Multigenes , Filogenia , Estados Unidos
4.
Mol Ecol ; 32(5): 1117-1132, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36516402

RESUMEN

Under the ecological speciation model, divergent selection acts on ecological differences between populations, gradually creating barriers to gene flow and ultimately leading to reproductive isolation. Hybridisation is part of this continuum and can both promote and inhibit the speciation process. Here, we used white-tailed (Odocoileus virginianus) and mule deer (O. hemionus) to investigate patterns of speciation in hybridizing sister species. We quantified genome-wide historical introgression and performed genome scans to look for signatures of four different selection scenarios. Despite ample modern evidence of hybridisation, we found negligible patterns of ancestral introgression and no signatures of divergence with gene flow, rather localized patterns of allopatric and balancing selection were detected across the genome. Genes under balancing selection were related to immunity, MHC and sensory perception of smell, the latter of which is consistent with deer biology. The deficiency of historical gene-flow suggests that white-tailed and mule deer were spatially separated during the glaciation cycles of the Pleistocene and genome wide differentiation accrued via genetic drift. Dobzhansky-Muller incompatibilities and selection against hybrids are hypothesised to be acting, and diversity correlations to recombination rates suggests these sister species are far along the speciation continuum.


Asunto(s)
Ciervos , Flujo Génico , Animales , Ciervos/genética , Aislamiento Reproductivo , Hibridación Genética , Especiación Genética
5.
Mol Phylogenet Evol ; 178: 107645, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252933

RESUMEN

The history of riverine fish diversification is largely a product of geographic isolation. Physical barriers that reduce or eliminate gene flow between populations facilitate divergence via genetic drift and natural selection, eventually leading to speciation. For freshwater organisms, diversification is often the product of drainage basin rearrangements. In young clades where the history of isolation is the most recent, evolutionary relationships can resemble a tangled web. One especially recalcitrant group of freshwater fishes is the Johnny Darter (Etheostoma nigrum) species complex, where traditional taxonomy and molecular phylogenetics indicate a history of gene flow and conflicting inferences of species diversity. Here we assemble a genomic dataset using double digest restriction site associated DNA (ddRAD) sequencing and use phylogenomic and population genetic approaches to investigate the evolutionary history of the complex of species that includes E. nigrum, E. olmstedi, E. perlongum, and E. susanae. We reveal and validate several evolutionary lineages that we delimit as species, highlighting the need for additional work to formally describe the diversity of the Etheostoma nigrum complex. Our analyses also identify gene flow among recently diverged lineages, including one instance involving E. susanae, a localized and endangered species. Phylogeographic structure within the Etheostoma nigrum species complex coincides with major geologic events, such as parallel divergence in river basins during Pliocene inundation of the Atlantic coastal plain and multiple northward post-glacial colonization routes tracking river basin rearrangements. Our study serves as a nuanced example of how low dispersal rates coupled with geographic isolation among disconnected river systems in eastern North America has produced one of the world's freshwater biodiversity hotspots.


Asunto(s)
Percas , Animales , Filogeografía , Percas/genética , Filogenia , ADN Mitocondrial/genética , Genética de Población , Variación Genética
6.
Mol Phylogenet Evol ; 182: 107757, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36925090

RESUMEN

The progressive aridification of the Australian continent from âˆ¼ 20 million years ago posed severe challenges for the persistence of its resident biota. A key question involves the role of refugial habitats - specifically, their ability to mediate the effects of habitat loss and fragmentation, and their potential to shape opportunities for allopatric speciation. With freshwater species, for example, the patchiness, or absence, of water will constrain distributions. However, aridity may not necessarily isolate populations if disjunct refugia experience frequent hydrological connections. To investigate this potential dichotomy, we explored the evolutionary history of the Chlamydogobius gobies (Gobiiformes: Gobiidae), an arid-adapted genus of six small, benthic fish species that exploit all types of waterbodies (i.e. desert springs, waterholes and bore-fed wetlands, coastal estuarine creeks and mangroves) across parts of central and northern Australia. We used Anchored Phylogenomics to generate a highly resolved phylogeny of the group from sequence data for 260 nuclear loci. Buttressed by companion allozyme and mtDNA datasets, our molecular findings infer the diversification of Chlamydogobius in arid Australia, and provide a phylogenetic structure that cannot be simply explained by invoking allopatric speciation events reflecting current geographic proximity. Our findings are generally consistent with the existing morphological delimitation of species, with one exception: at the shallowest nodes of phylogenetic reconstruction, the molecular data do not fully support the current dichotomous delineation of C. japalpa from C. eremius in Kati Thanda-Lake Eyre-associated waterbodies. Together these findings illustrate the ability of structural (hydrological) connections to generate patterns of connectivity and isolation for an ecologically moderate disperser in response to ongoing habitat aridification. Finally, we explore the implications of these results for the immediate management of threatened (C. gloveri) and critically endangered (C. micropterus, C. squamigenus) congeners.


Asunto(s)
Evolución Biológica , Perciformes , Animales , Filogenia , Australia , Peces/genética , Ecosistema , Perciformes/genética , ADN Mitocondrial/genética
7.
Mol Phylogenet Evol ; 182: 107733, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36801373

RESUMEN

The processes leading to divergence and speciation can differ broadly among taxa with different life histories. We examine these processes in a small clade of ducks with historically uncertain relationships and species limits. The green-winged teal (Anas crecca) complex is a Holarctic species of dabbling duck currently categorized as three subspecies (Anas crecca crecca, A. c. nimia, and A. c. carolinensis) with a close relative, the yellow-billed teal (Anas flavirostris) from South America. A. c. crecca and A. c. carolinensis are seasonal migrants, while the other taxa are sedentary. We examined divergence and speciation patterns in this group, determining their phylogenetic relationships and the presence and levels of gene flow among lineages using both mitochondrial and genome-wide nuclear DNA obtained from 1,393 ultraconserved element (UCE) loci. Phylogenetic relationships using nuclear DNA among these taxa showed A. c. crecca, A. c. nimia, and A. c. carolinensis clustering together to form one polytomous clade, with A. flavirostris sister to this clade. This relationship can be summarized as (crecca, nimia, carolinensis)(flavirostris). However, whole mitogenomes revealed a different phylogeny: (crecca, nimia)(carolinensis, flavirostris). The best demographic model for key pairwise comparisons supported divergence with gene flow as the probable speciation mechanism in all three contrasts (crecca-nimia, crecca-carolinensis, and carolinensis-flavirostris). Given prior work, gene flow was expected among the Holarctic taxa, but gene flow between North American carolinensis and South American flavirostris (M âˆ¼0.1-0.4 individuals/generation), albeit low, was not expected. Three geographically oriented modes of divergence are likely involved in the diversification of this complex: heteropatric (crecca-nimia), parapatric (crecca-carolinensis), and (mostly) allopatric (carolinensis-flavirostris). Our study shows that ultraconserved elements are a powerful tool for simultaneously studying systematics and population genomics in systems with historically uncertain relationships and species limits.


Asunto(s)
Patos , Flujo Génico , Humanos , Animales , Patos/genética , Filogenia , Metagenómica , ADN Mitocondrial/genética
8.
Mol Phylogenet Evol ; 184: 107809, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37172861

RESUMEN

The poor mobility of nymphs living underground, usually for many years, and the weak flying ability of adults make cicadas unique for evolutionary biology and bio-geographical study. Cicadas of the genus Karenia are unusual in Cicadidae in lacking the timbals that produce sound. Population differentiation, genetic structure, dispersal and evolutionary history of the eastern Asian mute cicada Karenia caelatata were investigated based on morphological, acoustic and molecular data. The results reveal a high level of genetic differentiation in this species. Six independent clades with nearly unique sets of haplotypes corresponding to geographically isolated populations are recognized. Genetic and geographic distances are significantly correlated among lineages. The phenotypic differentiation is generally consistent with the high levels of genetic divergence across populations. Results of ecological niche modeling suggest that the potential distribution range of this mountain-habitat specialist during the Last Glacial Maximum was broader than its current range, indicating this species had benefited from the climate change during the early Pleistocene in southern China. Geological events such as orogeny in Southwest China and Pleistocene climate oscillations have driven the differentiation and divergence of this species, and basins, plains and rivers function as natural "barriers" to block the gene flow. Besides significant genetic divergence being found among clades, the populations occurring in the Wuyi Mountains and the Hengduan Mountains are significantly different in the calling song structure from other populations. This may have resulted from significant population differentiation and subsequent adaptation of related populations. We conclude that ecological differences in habitats, coupled with geographical isolation, have driven population divergence and allopatric speciation. This study provides a plausible example of incipient speciation in Cicadidae and improves understanding of population differentiation, acoustic signal diversification and phylogeographic relationships of this unusual cicada species. It informs future studies on population differentiation, speciation and phylogeography of other mountain-habitat insects in the East Asian continent.


Asunto(s)
Variación Genética , Hemípteros , Animales , Filogenia , Hemípteros/genética , Cambio Climático , ADN Mitocondrial/genética , Filogeografía , Asia Oriental , Ecosistema
9.
Proc Biol Sci ; 289(1980): 20221020, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946161

RESUMEN

Quaternary climate fluctuations can affect speciation in regional biodiversity assembly in two non-mutually exclusive ways: a glacial species pump, where isolation in glacial refugia accelerates allopatric speciation, and adaptive radiation in underused adaptive zones during ice-free periods. We detected biogeographic and genetic signatures associated with both mechanisms in the assembly of the biota of the European Alps. Age distributions of endemic and widespread species within aquatic and terrestrial taxa (amphipods, fishes, amphibians, butterflies and flowering plants) revealed that endemic fish evolved only in lakes, are highly sympatric, and mainly of Holocene age, consistent with adaptive radiation. Endemic amphipods are ancient, suggesting preglacial radiation with limited range expansion and local Pleistocene survival, perhaps facilitated by a groundwater-dwelling lifestyle. Terrestrial endemics are mostly of Pleistocene age and are thus more consistent with the glacial species pump. The lack of evidence for Holocene adaptive radiation in the terrestrial biome is consistent with faster recolonization through range expansion of these taxa after glacial retreats. More stable and less seasonal ecological conditions in lakes during the Holocene may also have contributed to Holocene speciation in lakes. The high proportion of young, endemic species makes the Alpine biota vulnerable to climate change, but the mechanisms and consequences of species loss will likely differ between biomes because of their distinct evolutionary histories.


Asunto(s)
Mariposas Diurnas , Emigración e Inmigración , Animales , Biodiversidad , Ecosistema , Peces , Especiación Genética , Filogenia , Refugio de Fauna
10.
Mol Ecol ; 31(13): 3516-3532, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35532943

RESUMEN

Freshwater fishes are notably diverse, given that freshwater habitat represents a tiny fraction of the earth's surface, but the mechanisms generating this diversity remain poorly understood. Rivers provide excellent models to understand how freshwater diversity is generated and maintained across heterogeneous habitats. In particular, the lower Congo River (LCR) consists of a dynamic hydroscape exhibiting extraordinary aquatic biodiversity, endemicity, morphological and ecological specialization. Previous studies have suggested that the numerous high-energy rapids throughout the LCR form physical barriers to gene flow, thus facilitating diversification and speciation, generating ichthyofaunal diversity. However, this hypothesis has not been fully explored using genome-wide SNPs for fish species distributed across the LCR. Here, we examined four lamprologine cichlids endemic to the LCR that are distributed along the river without range overlap. Using genome-wide SNP data, we tested the hypotheses that high-energy rapids serve as physical barriers to gene flow that generate genetic divergence at interspecific and intraspecific levels, and that gene flow occurs primarily in a downstream direction. Our results are consistent with the prediction that powerful rapids sometimes act as a barrier to gene flow but also suggest that, at certain temporal and spatial scales, they may provide multidirectional dispersal opportunities for riverine rheophilic cichlid fishes. These results highlight the complexity of diversification processes in rivers and the importance of assessing such processes across different riverscapes.


Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Congo , Peces , Flujo Génico , Genómica , Filogenia
11.
Mol Phylogenet Evol ; 174: 107513, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35605928

RESUMEN

Arunachal macaque (M. munzala) is an endangered and recently discovered cercopithecine primate from Western Arunachal Pradesh, India. On genetic analyses of Arunachal macaques, we observed spatially distributed substantial inter-species genetic divergence among the samples collected from Arunachal Pradesh. The results suggested that Arunachal macaque evolved into two phylogenetic species about 1.96 mya following allopatric speciation by means of Sela mountain pass in Arunachal Pradesh, India. We describe - Sela macaque (M. selai) as a new macaque species that interestingly exhibited high intra-specific genetic variation and also harbors at least two conservation units. Further, we report the past demographic trajectories and quantify genetic variation required for taxonomic clarification. The present study also identifies gap areas for undertaking surveys to document the relic and unknown trans-boundary populations of macaques through multinational, multi-lateral cross border collaboration.


Asunto(s)
Macaca , Animales , India , Macaca/genética , Filogenia
12.
New Phytol ; 232(3): 1463-1476, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34292587

RESUMEN

Understanding processes that generate and maintain large disjunctions within plant species can provide valuable insights into plant diversity and speciation. The butterfly bush Buddleja alternifolia has an unusual disjunct distribution, occurring in the Himalaya, Hengduan Mountains (HDM) and the Loess Plateau (LP) in China. We generated a high-quality, chromosome-level genome assembly of B. alternifolia, the first within the family Scrophulariaceae. Whole-genome re-sequencing data from 48 populations plus morphological and petal colour reflectance data covering its full distribution range were collected. Three distinct genetic lineages of B. alternifolia were uncovered, corresponding to Himalayan, HDM and LP populations, with the last also differentiated morphologically and phenologically, indicating occurrence of allopatric speciation likely to be facilitated by geographic isolation and divergent adaptation to distinct ecological niches. Moreover, speciation with gene flow between populations from either side of a mountain barrier could be under way within LP. The current disjunctions within B. alternifolia might result from vicariance of a once widespread distribution, followed by several past contraction and expansion events, possibly linked to climate fluctuations promoted by the Kunlun-Yellow river tectonic movement. Several adaptive genes are likely to be either uniformly or diversely selected among regions, providing a footprint of local adaptations. These findings provide new insights into plant biogeography, adaptation and different processes of allopatric speciation.


Asunto(s)
Buddleja , Demografía , Ecosistema , Flujo Génico , Especiación Genética , Filogenia
13.
Mol Ecol ; 30(6): 1398-1418, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33522056

RESUMEN

The microcrustacean Daphnia is arguably one of the most studied zooplankton species, having a well understood ecology, life history, and a relatively well studied evolutionary history. Despite this wealth of knowledge, species boundaries within closely related species in this genus often remain elusive and the major evolutionary forces driving the diversity of daphniids remain controversial. This genus contains more than 80 species with multiple cryptic species complexes, with many closely related species able to hybridize. Here, we review speciation research in Daphnia within the framework of current speciation theory. We evaluate the role of geography, ecology, and biology in restricting gene flow and promoting diversification. Of the 253 speciation studies on Daphnia, the majority of studies examine geographic barriers (55%). While evidence shows that geographic barriers play a role in species divergence, ecological barriers are also probably prominent in Daphnia speciation. We assess the contribution of ecological and nonecological reproductive isolating barriers between closely related species of Daphnia and found that none of the reproductive isolating barriers are restricting gene flow completely. Research on reproductive isolating barriers has disproportionally focused on two species complexes, the Daphnia pulex and Daphnia longispina species complexes. Finally, we identify areas of research that remain relatively unexplored and discuss future research directions that build our understanding of speciation in daphniids.


Asunto(s)
Daphnia , Flujo Génico , Animales , Evolución Biológica , Daphnia/genética , Especiación Genética , Geografía , Filogenia
14.
Mol Phylogenet Evol ; 160: 107125, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33636326

RESUMEN

Constructing phylogenetic relationships among closely related species is a recurrent challenge in evolutionary biology, particularly for long-lived taxa with large effective population sizes and uncomplete reproductive isolation, like conifers. Conifers further have slow evolutionary rates, which raises the question of whether adaptive or non/adaptive processes were predominantly involved when they rapidly diversified after migrating from temperate regions into the tropical mountains. Indeed, fine-scale phylogenetic relationships within several conifer genus remain under debate. Here, we studied the phylogenetic relationships of endemic firs (Abies, Pinaceae) discontinuously distributed in the montane forests from the Southwestern United States to Guatemala, and addressed several hypotheses related to adaptive and non-adaptive radiations. We derived over 80 K SNPs from genotyping by sequencing (GBS) for 45 individuals of nine Mesoamerican species to perform phylogenetic analyses. Both Maximum Likelihood and quartets-inference phylogenies resulted in a well-resolved topology, showing a single fir lineage divided in four subgroups that coincided with the main mountain ranges of Mesoamerica; thus having important taxonomic implications. Such subdivision fitted a North-South isolation by distance framework, in which non-adaptive allopatric processes seemed the rule. Interestingly, several reticulations were observed within subgroups, especially in the central-south region, which may explain past difficulties for generating infrageneric phylogenies. Further evidence for non-adaptive processes was obtained from analyses of 21 candidate-gene regions, which exhibited diminishing values of πa/πs and Ka/Ks with latitude, thus indicating reduced efficiency of purifying selection towards the Equator. Our study indicates that non-adaptive allopatric processes may be key generators of species diversity and endemism in the tropics.


Asunto(s)
Abies , Evolución Biológica , Clima Tropical , Abies/clasificación , Abies/genética , Bosques , Filogenia
15.
Mol Phylogenet Evol ; 155: 107002, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152535

RESUMEN

Allopatric speciation should be the dominant model of diversification across archipelagos because islands naturally promote isolation. It also follows that ecologically similar, vagile species should be more resistant to this kind of isolation due to dispersal and unifying selection. In a closely-related group of endemic Hawaiian hawkmoths, we found confounding patterns of inter-island connectivity and speciation that did not correlate with vagility, ecological specialization, or island age. Speciation occurred both in allopatric and sympatric taxa, with only the oldest and youngest islands fostering single-island endemic species. The intermediately-sized, central islands supported a combination of endemic and more widely-occurring lineages, suggesting no clear pattern leading to the current diversity in Hawaii. While some species are relatively common, others are apparently extinct or very rare, even on the same island. Further research into the specific mechanisms for these patterns in Hyles may prove broadly informative for understanding both cladogenesis and improving conservation planning. Our study identifies one new species endemic to Kauai and unique mitochondrial lineages in H. perkinsi, which may prove to be new species.


Asunto(s)
Biodiversidad , Mariposas Nocturnas/fisiología , Animales , Teorema de Bayes , Especiación Genética , Genética de Población , Hawaii , Islas , Filogenia , Especificidad de la Especie , Factores de Tiempo
16.
Ann Bot ; 127(5): 597-611, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32386290

RESUMEN

BACKGROUND AND AIMS: Several biogeographical models have been proposed to explain the colonization and diversification patterns of Macaronesian lineages. In this study, we calculated the diversification rates and explored what model best explains the current distribution of the 15 species endemic to the Canary Islands belonging to Helianthemum sect. Helianthemum (Cistaceae). METHODS: We performed robust phylogenetic reconstructions based on genotyping-by-sequencing data and analysed the timing, biogeographical history and ecological niche conservatism of this endemic Canarian clade. KEY RESULTS: Our phylogenetic analyses provided strong support for the monophyly of this clade, and retrieved five lineages not currently restricted to a single island. The pristine colonization event took place in the Pleistocene (~1.82 Ma) via dispersal to Tenerife by a Mediterranean ancestor. CONCLUSIONS: The rapid and abundant diversification (0.75-1.85 species per million years) undergone by this Canarian clade seems the result of complex inter-island dispersal events followed by allopatric speciation driven mostly by niche conservatism, i.e. inter-island dispersal towards niches featuring similar environmental conditions. Nevertheless, significant instances of ecological niche shifts have also been observed in some lineages, making an important contribution to the overall diversification history of this clade.


Asunto(s)
Cistaceae , Ecosistema , Genotipo , Islas , Filogenia , España
17.
Mol Phylogenet Evol ; 143: 106671, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31707139

RESUMEN

The geographical context of speciation is important for understanding speciation and community assembly. However, the predominant mode of speciation in the Himalayan-Hengduan Mountains (HHMs), a global biodiversity hotspot, remains unknown. Here, we examined the role of geography in speciation using four pairs of sister or closely related avian species that currently co-occur in the HHMs. While multilocus network analyses based on nine to eleven genes revealed deep splits between these species, several allelic networks based on individual loci suggested phylogenetic paraphyly implying a recent history of divergence. Following extensive sampling in the contact zones of these species pairs, the coalescence-based approximate Bayesian computation approach supported no gene flow during their divergence and was consistent with an allopatric speciation model. We further estimated the divergence times of the four species pairs during the middle and late Pleistocene, which were characterized by increased amplitudes of glacial variability. We found a positive relationship between their divergence times and current sympatry levels, supporting a scenario of secondary contact following allopatric speciation. The Pleistocene glacial-interglacial cycles may have led to the initial geographic population isolation; ecological divergence or mate choice might further accelerate their differentiation during secondary contact, facilitating their speciation and species accumulation in the mountainous landscape. Our findings reveal the critical role of geographic isolation in speciation in the HHMs and shed light on how this biodiversity hotspot aggregates numerous species.


Asunto(s)
Aves/genética , Especiación Genética , Animales , Teorema de Bayes , Biodiversidad , Aves/clasificación , Flujo Génico , Filogenia , Simpatría
18.
BMC Evol Biol ; 19(1): 5, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30621591

RESUMEN

BACKGROUND: Geographical isolation combined with historical climatic fluctuations have been identified as two major factors that contribute to the formation of new species. On the other hand, biotic factors such as competition and predation are also able to drive the evolution and diversification of organisms. To determine whether geographical barriers contributed to population divergence or speciation in the rare endemic cicada Subpsaltria yangi the population differentiation, genetic structure and phylogeography of the species were investigated in the Loess Plateau and adjacent areas of northwestern China by analysing mitochondrial and nuclear DNA and comparing the calling song structure of 161 male individuals. RESULTS: The results reveal a low level of genetic differentiation and relatively simple phylogeographic structure for this species, but two independent clades corresponding to geographically isolated populations were recognised. Genetic and geographical distances were significantly correlated among lineages. Results of divergence-time estimation are consistent with a scenario of isolation due to glacial refugia and interglacial climate oscillation in northwestern China. Significant genetic divergence was found between the population occurring in the Helan Mountains and other populations, and recent population expansion has occurred in the Helan Mountains and/or adjacent areas. This population is also significantly different in calling song structure from other populations. CONCLUSIONS: Geographical barriers (i.e., the deserts and semi-deserts surrounding the Helan Mountains), possibly coupled with related ecological differences, may have driven population divergence and allopatric speciation. This provides a possible example of incipient speciation in Cicadidae, improves understanding of population differentiation, acoustic signal diversification and phylogeographic relationships of this rare cicada species of conservation concern, and informs future studies on population differentiation, speciation and phylogeography of other insects with a high degree of endemism in the Helan Mountains and adjacent areas.


Asunto(s)
Variación Genética , Hemípteros/clasificación , Hemípteros/genética , Filogeografía , Vocalización Animal , Animales , Secuencia de Bases , Teorema de Bayes , Núcleo Celular/genética , China , ADN Mitocondrial/genética , Genes Mitocondriales , Genética de Población , Filogenia , Factores de Tiempo
19.
Am Nat ; 193(2): 240-255, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30720363

RESUMEN

Inferring the geographic mode of speciation could help reveal the evolutionary and ecological mechanisms that underlie the generation of biodiversity. Comparative methods have sought to reconstruct the geographic speciation history of clades, using data on phylogeny and species geographic ranges. However, inference from comparative methods has been limited by uncertainty over whether contemporary biodiversity data retain the historic signal of speciation. We constructed a process-based simulation model to determine the influence of speciation mode and postspeciation range evolution on current biodiversity patterns. The simulations suggest that the signal of speciation history remains detectable in species distributions and phylogeny, even when species ranges have evolved substantially through time. We extracted this signal by using a combination of summary statistics that had good power to distinguish speciation modes and then used these statistics to infer the speciation history of 30 plant and animal clades. The results point to broad taxonomic patterns in the modes of speciation, with strongest support for founder speciation in mammals and birds and strongest support for sympatric speciation in plants. Our model and analyses show that broad-scale comparative methods can be a powerful complementary approach to more focused genomic analyses in the study of the patterns and mechanisms of speciation.


Asunto(s)
Distribución Animal , Especiación Genética , Modelos Genéticos , Animales , Biodiversidad , Simulación por Computador , Geografía
20.
Proc Biol Sci ; 285(1893): 20182181, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30963909

RESUMEN

Why diversification rates vary so extensively across the tree of life remains an important yet unresolved issue in biology. Two prominent and potentially independent factors proposed to explain these trends reflect the capacity of lineages to expand into new areas of (i) geographical or (ii) ecological space. Here, we present the first global assessment of how diversification rates vary as a consequence of geographical and ecological expansion, studying these trends among 15 speciose passerine families (together approximately 750 species) using phylogenetic path analysis. We find that relative slowdowns in diversification rates characterize families that have accumulated large numbers of co-occurring species (at the 1° scale) within restricted geographical areas. Conversely, more constant diversification through time is prevalent among families in which species show limited range overlap. Relative co-occurrence is itself also a strong predictor of ecological divergence (here approximated by morphological divergence among species); however, once the relationship between co-occurrence and diversification rates have been accounted for, increased ecological divergence is an additional explanatory factor accounting for why some lineages continue to diversify towards the present. We conclude that opportunities for prolonged diversification are predominantly determined by continued geographical range expansion and to a lesser degree by ecological divergence among lineages.


Asunto(s)
Distribución Animal , Especiación Genética , Pájaros Cantores/anatomía & histología , Pájaros Cantores/fisiología , Animales , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA