Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38894187

RESUMEN

Ambient light sensors are becoming increasingly popular due to their effectiveness in extending the battery life of portable electronic devices. However, conventional ambient light sensors are large in area and small in dynamic range, and they do not take into account the effects caused due to a dark current. To address the above problems, a programmable ambient light sensor with dark current compensation and a wide dynamic range is proposed in this paper. The proposed ambient light sensor exhibits a low current power consumption of only 7.7 µA in dark environments, and it operates across a wide voltage range (2-5 V) and temperature range (-40-80 °C). It senses ambient light and provides an output current proportional to the ambient light intensity, with built-in dark current compensation to effectively suppress the effects of a dark current. It provides a wide dynamic range over the entire operating temperature range with three selectable output-current gain modes. The proposed ambient light sensor was designed and fabricated using a 0.18 µm standard CMOS process, and the effective area of the chip is 663 µm × 652 µm. The effectiveness of the circuit was verified through testing, making it highly suitable for portable electronic products and fluorescent fiber-optic temperature sensors.

2.
Ophthalmic Physiol Opt ; 43(2): 220-230, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36637143

RESUMEN

PURPOSE: Given the possible role of spectral composition of light and myopia, this study aimed at investigating the variation in the spectral composition of ambient light in different (a) outdoor/indoor locations, (b) time of a day and (c) seasons. METHODS: The spectral power distribution (SPD), categorised into short (380-500 nm), middle (505-565 nm) and long wavelengths (625-780 nm), was recorded using a handheld spectrometer at three outdoor locations ('open playground', 'under shade of tree' and 'canopy') and three indoor locations ('room with multiple windows', 'closed room' and 'closed corridor'). Readings were taken at five different time points (3-h intervals between 6:30 and 18:00 hours) on two days, each during the summer and monsoon seasons. RESULTS: The overall median SPD (IQR [25th-75th percentile] W/nm/m2 ) across the three outdoor locations (0.11 [0.09, 0.12]) was 157 times higher than that of the indoor locations (0.0007 [0.0001, 0.001]). Considerable locational, diurnal and seasonal variation was observed in the distribution of the median SPD value, with the highest value being recorded in the 'open playground' (0.27 [0.21, 0.28]) followed by 'under shade of tree' (0.083 [0.074, 0.09]), 'canopy' (0.014 [0.012, 0.015]) and 'room with multiple windows' (0.023 [0.015, 0.028]). The relative percentage composition of short, middle and long wavelengths was similar in both the outdoor and indoor locations, with the proportion of middle wavelengths significantly higher (p < 0.01) than short and long wavelengths in all the locations, except 'canopy'. CONCLUSION: Irrespective of variation in SPD values with location, time, day and season, outdoor locations always exhibited significantly higher spectral power than indoor locations. The relative percentage composition of short, middle and long wavelengths of light was similar across all locations. These findings establish a foundation for future research to understand the relationship between spectral power and the development of myopia.


Asunto(s)
Miopía , Humanos , Estaciones del Año , Miopía/diagnóstico
3.
Sensors (Basel) ; 23(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36850737

RESUMEN

In free-space optical (FSO) communication systems, on-off keying (OOK) is a widely used modulation format. Coherent and non-coherent OOK receivers with sensitivities of -54.60 dBm and -51.25 dBm, respectively, were built with a communication rate of 1 Gbit/s and a bit error rate of 10-3. In an FSO communication system, the parameters must be designed to ensure a sufficient link margin. In contrast to optical fiber systems, FSO systems have ambient light (AL) noise such as sunlight. The efficiency of sunlight coupling in the single-mode fiber (SMF) of the receivers was calculated in this study. For a signal light with AL, the change in the main components of noise and the sensitivity deterioration were theoretically analyzed and experimentally verified in conditions of coherent reception and non-coherent reception with a preamplifier. For coherent reception, the theoretical sensitivity deterioration results are consistent with the experimental results which indicate that coherent reception exhibits better anti-AL noise performance than non-coherent reception when the power spectral density of the AL is the same. Coherent and non-coherent receivers coupled with SMF can work in direct sunlight. When the receiver lens diameter is greater than 4.88 × 10-4 m, the anti-AL noise performance of the receiver can be improved by increasing the receiver lens diameter.

4.
Artículo en Inglés | MEDLINE | ID: mdl-33537858

RESUMEN

Fruit-feeding pteropodid bats roost under varying light conditions. Some roost in trees with high exposure to daylight (> 1000 lx), while others roost in dark caves (< 0.1 lx). To understand the effect of ambient light intensity and moon phase on flight activity, we examined flight times across five lunar cycles in three pteropodid species whose roosts differ in daylight exposure. We found significant interspecific differences in flight emergence and termination times. All species initiated flights after sunset but Rousettus leschenaultii, which typically roosts in caves, delayed emergence (40 ± 11 min) more than the two tree-roosting species Pteropus giganteus (16 ± 6 min) and Cynopterus sphinx (19 ± 7 min). R. leschenaultii terminated flights earlier (30 ± 7 min before sunrise) than P. giganteus (11 ± 11 min) and C. sphinx (16 ± 10 min). All individuals from P. giganteus and C. sphinx roosts emerged within less than an hour, while emergence times were more spread out in the R. leschenaultii colony. Peak emergence times differed across moon phases in the cave-roosting R. leschenaultii but not in the other species. Flight activity in R. leschenaultii is restricted to comparatively lower light levels than the tree-roosting species. The observed interspecific differences suggest that bat species, sharing same landscapes may respond differently to light pollution.


Asunto(s)
Conducta Animal/fisiología , Cuevas , Quirópteros/fisiología , Ecosistema , Vuelo Animal/fisiología , Animales , Luna , Fotoperiodo , Especificidad de la Especie
5.
Nanotechnology ; 32(46)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34256361

RESUMEN

Colorful indoor organic photovoltaics (OPVs) have attracted considerable attention in recent years for their autonomous function in internet-of-things (IoT) devices. In this study, a solution-processed TiO2layer in a metal-oxide-metal (MOM) color filter electrode is used for light energy recycling in P3HT:ICBA-based indoor OPVs. The MOM electrode allows for tuning of the optical cavity mode to maximize photocurrent production by modulating the thickness of the TiO2layer in the sandwich structure. This approach preserves the OPVs' optoelectronic properties without damaging the photoactive layer and enables them to display a suitable range of vivid colors. The optimized MOM-OPVs demonstrated an excellent power conversion efficiency (PCE) of 8.8% ± 0.2%, which is approximately 20% higher than that of reference opaque OPVs under 1000 lx light emitting diode illumination. This can be attributed to the high photocurrent density due to the nonresonant light reflected from metals into the photoactive layer. Additionally, the proposed MOM-OPVs exhibited high external quantum efficiency and large parasitic shunt resistances, leading to improved fill factor and PCE values. Thus, the study's MOM electrode provides excellent feasibility for realizing colorful and efficient indoor OPVs for IoT applications.

6.
Sensors (Basel) ; 21(16)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34451078

RESUMEN

This paper introduces an ambient light rejection (ALR) circuit for the autonomous adaptation of a subretinal implant system. The sub-retinal implants, located beneath a bipolar cell layer, are known to have a significant advantage in spatial resolution by integrating more than a thousand pixels, compared to epi-retinal implants. However, challenges remain regarding current dispersion in high-density retinal implants, and ambient light induces pixel saturation. Thus, the technical issues of ambient light associated with a conventional image processing technique, which lead to high power consumption and area occupation, are still unresolved. Thus, it is necessary to develop a novel image-processing unit to handle ambient light, considering constraints related to power and area. In this paper, we present an ALR circuit as an image-processing unit for sub-retinal implants. We first introduced an ALR algorithm to reduce the ambient light in conventional retinal implants; next, we implemented the ALR algorithm as an application-specific integrated chip (ASIC). The ALR circuit was fabricated using a standard 0.35-µm CMOS process along with an image-sensor-based stimulator, a sensor pixel, and digital blocks. As experimental results, the ALR circuit occupies an area of 190 µm2, consumes a power of 3.2 mW and shows a maximum response time of 1.6 s at a light intensity of 20,000 lux. The proposed ALR circuit also has a pixel loss rate of 0.3%. The experimental results show that the ALR circuit leads to a sensor pixel (SP) being autonomously adjusted, depending on the light intensity.


Asunto(s)
Prótesis e Implantes , Retina , Algoritmos , Procesamiento de Imagen Asistido por Computador , Luz
7.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557179

RESUMEN

For Li-Fi wireless links based on a white light emitting diode, an adaptive differential equalization (ADE) technique that reduces various noises such as interference noise and shot one generated from ambient light sources is pro-posed. The ADE technique reduces noise by taking advantage of the fact that the derivative between adjacent sampling points of signal with digital waveform is very different from that of noise with the random analog waveform. Furthermore, a weighting function that reflects the Poisson characteristics of shot noise is applied to the ADE technique in order to maximize the reduction efficiency of ambient noise. The signal-to-noise ratio of input non-return-to-zero-on-off keying (NRZ-OOK) signal is improved by 7.5 dB at the first-generation forward error correction (FEC) threshold (the bit error rate (BER) of 8 × 10-5) using the optical wireless experimental link. In addition, it is confirmed that it is possible to maintain the transmission performance corresponding to the BER of 1 × 10-5 by using the proposed ADE technique, even when the intensity of the ambient light source increases by 6 dB.

8.
J Clin Monit Comput ; 35(6): 1269-1277, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-32951188

RESUMEN

Measurement of pupillary characteristics, such as pupillary unrest in ambient light, and reflex dilation have been shown to be useful in a variety of clinical situations. Dedicated pupillometers typically capture images in the near-infrared to allow imaging in both light and darkness. However, because a subset of pupillary measurements can be acquired with levels of visible light suitable for conventional cameras, it is theoretically possible to capture data using general purpose cameras and computing devices such as those found on smartphones. Here we describe the development of a smartphone-based pupillometer and compare its performance with a commercial pupillometer. Smartphone pupillometry software was developed and then compared with a commercial pupillometer by performing simultaneous scans in both eyes, using the smartphone pupillometer and a commercial pupillometer. The raw scans were compared, as well as a selected pupillary index: pupillary unrest in ambient light. In 77% of the scans the software was able to successfully identify the pupil and iris. The raw data as well as calculated values of pupillary unrest in ambient light were in clinically acceptable levels of agreement; Bland-Altman analysis of raw pupil measurements yielded a 95% confidence interval of 0.26 mm. In certain situations a smartphone pupillometer may be an appropriate alternative to a commercial pupillometer.


Asunto(s)
Pupila , Teléfono Inteligente , Estudios de Factibilidad , Humanos
9.
J Esthet Restor Dent ; 33(6): 906-912, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32959520

RESUMEN

PURPOSE: To compare the shade matching capabilities between an intraoral scanner (IOS) and a spectrophotometer under different ambient light illuminance conditions. MATERIAL AND METHODS: The shade of three teeth of a patient was obtained using an IOS (IOS group) (TRIOS 3; 3Shape) and a spectrophotometer (DS group) (EasyShade V; Vita Zahnfabrik) at 4 ambient illuminances: 10000-, 1000-, 500-, and 0-lx. Ten shade measurements were documented using Vita Classical and 3D-Master guides per tooth at each lighting condition. Data was analyzed using the Kruskal-Wallis and Mann Whitney U tests (α = .05). RESULTS: Significant shade discrepancies were obtained between the groups in different lighting conditions (P < .05). The IOS group presented significant shade discrepancies in different lighting conditions when evaluated using either shade guide, with lower variation under the 0-lx condition. However, the DS group did not present significant shade discrepancies among the different lighting conditions with either shade guide, except for the maxillary lateral incisor measured under 10 000-lx condition using the 3D-Master guide. CONCLUSIONS: Lighting conditions influenced the shade matching competency of an IOS. The IOS tested obtained high variation in the different lighting conditions evaluated and provided a lower shade value than the spectrophotometer. The spectrophotometer revealed high consistency amongst the various lighting conditions evaluated. CLINICAL IMPLICATIONS: Ambient light illuminance conditions can impact the shade matching capabilities of IOSs. The results of this investigation suggest the use of a supplementary instrumental method for assessment of tooth shade.


Asunto(s)
Incisivo , Coloración de Prótesis , Color , Percepción de Color , Humanos , Espectrofotometría
10.
Chemistry ; 26(54): 12418-12430, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32372418

RESUMEN

Photocyclization, irrespective of whether multiple steps (e.g., Norrish-Yang cyclization) or a single concerted step (e.g., 6π photocyclization) are involved, is an intramolecular photochemical process resulting in the formation of one new single bond to afford a ring system. In particular, visible-light-induced photocyclization offers a green and sustainable route to organic cyclic compounds that are difficult to access by thermal reactions. Herein, we describe the ambient light-induced intramolecular photocyclization of a series of donor/acceptor chromophores 1 d-3 d containing two types of photoresponsive motifs, namely an electron-deficient BF2 -chelated ketone fused with an electron-rich thiophene, and probe the solution-phase and solid-state photochromic performance of these compounds. The results reveal that simple variation of R substituents on the diaryl moiety allows one to control the intramolecular photocyclization mechanism with high photochemical selectivity, e.g., under ambient light, methyl-substituted 1 d and 2 d undergo reversible 6π photocyclization, whereas ethyl-substituted 3 d exclusively undergoes irreversible Norrish-Yang photocyclization. Single-crystal X-ray analysis of Norrish-Yang cyclization products reveals the formation of four pairs of conformational enantiomers differing in the dihedral angle between benzothiophene and the BF2 core, namely (±)N-3 d@68°, (±)N-3 d@-77°, (±)N-3 d@-78°, and (±)N-3 d@-102°. The UV/Vis absorption spectra of 1 d-3 d cover a broad visible-light region (380-572 nm), while DFT and TD-DFT calculations reveal that absorption in this region is dominated by the charge-transfer (CT) transition from the thiophene-centered HOMO to the LUMO of the electron-deficient π-conjugated BF2 -chelated unit and the n→π* and π→π* transitions within the latter unit. The spatial separation of the HOMO and LUMO of these dyes promotes triplet-state generation and self-photosensitizes intramolecular photocyclization in the visible-light region. Three-dimensional time-resolved and steady-state emission spectra of 3 d show that the Norrish-Yang photocyclization takes place within milliseconds with excellent conversion efficiency (96 %).

11.
Sensors (Basel) ; 20(1)2020 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-31948003

RESUMEN

In vehicular optical camera communication (VOCC) systems, LED panels are used to transmit visible light signals which are captured by cameras. The logic bits 1 and 0 are represented by the On and Off status of the LEDs in the panel. The bit error rate (BER) of the system is directly proportional to the distinguishability of the On and Off LEDs in the received LED panel images. The signal quality is commonly believed in telecommunications to improve with a higher transmitted power. Therefore, one might expect to get a lower BER in VOCC systems by simply using more powerful LED lights. However, this is not the case with VOCC systems. This paper shows that the LED distinguishability is simultaneously determined by two factors: The LED extinction ratio and LED interference. The former needs to be kept high and the latter kept low for better LED distinguishability. The problem is that both the extinction ratio and interference increase with the ratio of LED light to ambient light (L2A). Consequently, an optimal L2A ratio exists to achieve the optimal balance between the positive impact of the extinction ratio and the negative impact of the interference. This can bring about the lowest BER without changing the system's data rate. In addition, this paper shows that the optimal L2A ratio varies according to the interval between the LEDs in a panel. We analyze the effect of the L2A ratio and LED interval on LED distinguishability. We then formulate a constrained optimization problem to find the optimal L2A ratios corresponding to different LED intervals. The simulation results verify the necessity of LED to ambient light ratio optimization as it can bring about the lowest BER without scarifying other aspects of the VOCC system.

12.
Sensors (Basel) ; 20(18)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961754

RESUMEN

Collecting remotely sensed spectral data under varying ambient light conditions is challenging. The objective of this study was to test the ability to classify grayscale targets observed by portable spectrometers under varying ambient light conditions. Two sets of spectrometers covering ultraviolet (UV), visible (VIS), and near-infrared (NIR) wavelengths were instrumented using an embedded computer. One set was uncalibrated and used to measure the raw intensity of light reflected from a target. The other set was calibrated and used to measure downwelling irradiance. Three ambient-light compensation methods that successively built upon each other were investigated. The default method used a variable integration time that was determined based on a previous measurement to maximize intensity of the spectral signature (M1). The next method divided the spectral signature by the integration time to normalize the spectrum and reveal relative differences in ambient light intensity (M2). The third method divided the normalized spectrum by the ambient light spectrum on a wavelength basis (M3). Spectral data were classified using a two-step process. First, raw spectral data were preprocessed using a partial least squares (PLS) regression method to compress highly correlated wavelengths and to avoid overfitting. Next, an ensemble of machine learning algorithms was trained, validated, and tested to determine the overall classification accuracy of each algorithm. Results showed that simply maximizing sensitivity led to the best prediction accuracy when classifying known targets. Average prediction accuracy across all spectrometers and compensation methods exceeded 93%.

13.
J Prosthodont ; 29(2): 107-113, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31860144

RESUMEN

PURPOSE: To quantify the impact of ambient lighting conditions on the accuracy (trueness and precision) of an intraoral scanner (IOS) when maxillary complete-arch and maxillary right quadrant digital scans were performed in a patient. MATERIAL AND METHODS: One complete dentate patient was selected. A complete maxillary arch vinyl polysiloxane impression was obtained and poured using Type IV dental stone. The working cast was digitized using a laboratory scanner (E4 Dental Scanner; 3Shape) and the reference standard tessellation language (STL file) was obtained. Two groups were created based on the extension of the maxillary digital scans performed namely complete-arch (CA group) and right quadrant (RQ) groups. The CA and RQ digital scans of the patient were performed using an IOS (TRIOS 3; 3Shape) with 4 lighting conditions chair light (CL), 10 000 lux, room light (RL), 1003 lux, natural light (NL), 500 lux, and no light (ZL), 0 lux. Ten digital scans per group at each ambient light settings (CL, RL, NL, and ZL) were consecutively obtained (n = 10). The STLR file was used to analyze the discrepancy between the digitized working cast and digital scans using MeshLab software. Kruskal-Wallis, one-way ANOVA, and pair-wise comparison were used to analyze the data. RESULTS: Significant difference in the trueness and precision values were found across different lighting conditions where RL condition obtained the lowest absolute error compared with the other lighting conditions tested followed by CL, NL, and ZL. On the CA group, RL condition also obtained the best accuracy values, CL and NL conditions performed closely and under ZL condition the mean error presented the highest values. On the RQ group, CL condition presented the lowest absolute error when compared with the other lighting conditions evaluated. A pair-wise multicomparison showed no significant difference between NL and ZL conditions. In all groups, the standard deviation was higher than the mean errors from the control mesh, indicating that the relative precision was low. CONCLUSIONS: Light conditions significantly influenced on the scanning accuracy of the IOS evaluated. RL condition obtained the lowest absolute error value of the digital scans performed. The extension of the digital scan was a scanning accuracy influencing factor. The higher the extension of the digital scan performed, the lower the accuracy values obtained. Furthermore, ambient light scanning conditions influenced differently depending on the extension of the digital scans made.


Asunto(s)
Técnica de Impresión Dental , Modelos Dentales , Diseño Asistido por Computadora , Arco Dental , Humanos , Imagenología Tridimensional
14.
Horm Behav ; 111: 78-86, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30244030

RESUMEN

Light profoundly affects the behavior and physiology of almost all animals, including humans. One such effect in humans is that the level of illumination during the day positively contributes to affective well-being and cognitive function. However, the neural mechanisms underlying the effects of daytime light intensity on affect and cognition are poorly understood. One barrier for progress in this area is that almost all laboratory animal models studied are nocturnal. There are substantial differences in how light affects nocturnal and diurnal species, e.g., light induces sleep in nocturnal mammals but wakefulness in diurnal ones, like humans. Therefore, the mechanisms through which light modulates affect and cognition must differ between the chronotypes. To further understand the neural pathways mediating how ambient light modulates affect and cognition, our recent work has developed a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus), in which daytime light intensity is chronically manipulated in grass rats housed under the same 12:12 hour light/dark cycle. This simulates lighting conditions during summer-like bright sunny days vs. winter-like dim cloudy days. Our work has revealed that chronic dim daylight intensity results in higher depression- and anxiety-like behaviors, as well as impaired spatial learning and memory. Furthermore, we have found that hypothalamic orexin is a mediator of these effects. A better understanding of how changes in daytime light intensity impinge upon the neural substrates involved in affect and cognition will lead to novel preventive and therapeutic strategies for seasonal affective disorder, as well as for non-seasonal emotional or cognitive impairments associated with light deficiency.


Asunto(s)
Ritmo Circadiano/fisiología , Cognición/efectos de la radiación , Emociones/efectos de la radiación , Luz , Animales , Ansiedad/etiología , Cognición/fisiología , Trastorno Depresivo , Hipotálamo/metabolismo , Murinae/fisiología , Fotoperiodo , Ratas , Aprendizaje Espacial
15.
Neurocrit Care ; 30(2): 316-321, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30218349

RESUMEN

BACKGROUND: Automated devices collecting quantitative measurements of pupil size and reactivity are increasingly used for critically ill patients with neurological disease. However, there are limited data on the effect of ambient light conditions on pupil metrics in these patients. To address this issue, we tested the range of pupil reactivity in healthy volunteers and critically ill patients in both bright and dark conditions. METHODS: We measured quantitative pupil size and reactivity in seven healthy volunteers and seven critically ill patients with the Neuroptics-200 pupillometer in both bright and dark ambient lighting conditions. Bright conditions were created by overhead LED lighting in a room with ample natural light. Dark conditions consisted of a windowless room with no overhead light source. The primary outcome was the Neurological Pupil Index (NPi), a composite metric ranging from 0 to 5 in which > 3 is considered normal. Secondary outcomes included resting and constricted pupil size, change in pupil size, constriction velocity, dilation velocity, and latency. Results were analyzed with multi-level linear regression to account for both inter- and intra-subject variability. RESULTS: Fourteen subjects underwent ten pupil readings each in bright and dark conditions, yielding 280 total measurements. In healthy subjects, median NPi in bright and dark conditions was 4.2 and 4.3, respectively. In critically ill subjects, median NPi was 2.85 and 3.3, respectively. Multi-level linear regression demonstrated significant differences in pupil size, pupil size change, constriction velocity, and dilation velocity in various light levels in healthy patients, but not NPi. In the critically ill, NPi and pupil size change were significantly affected. CONCLUSION: Ambient light levels impact pupil parameters in both healthy and critically ill subjects. Changes in NPi under different light conditions are small and more consistent in healthy subjects, but significantly differ in the critically ill. Practitioners should standardize lighting conditions to maximize measurement reliability.


Asunto(s)
Luz , Enfermedades del Sistema Nervioso/fisiopatología , Examen Neurológico/métodos , Pupila/fisiología , Reflejo Pupilar/fisiología , Adulto , Anciano , Cuidados Críticos , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/diagnóstico
16.
BMC Neurosci ; 19(1): 44, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30041620

RESUMEN

BACKGROUND: Given the reported inverse association between light and depressive mood, ambient light may also be associated with some of the brain regions in healthy subjects. The present study aims to investigate the effects of ambient light on glucose metabolism in the brain. We used the data of 28 healthy participants of the no intervention group from our previous randomized controlled trial and analyzed the association between ambient light and [18F]-FDG uptake in the brain. RESULTS: A whole brain analysis revealed a cluster of [18F]-FDG uptake that was significantly and inversely associated with log-transformed ambient light in the left culmen of the left cerebellum vermis. After adjustment for age, gender and serum melatonin levels, there remained a significant cluster of [18F]-FDG uptake with log-transformed ambient light in the left cerebellar vermis. CONCLUSIONS: The present findings suggest that the uptake of [18F]-FDG is significantly and inversely associated with ambient light in the left cerebellar vermis in healthy subjects. The cerebellar vermis may be involved in mood suppression which may be alleviated by light exposure where glucose uptake and metabolism in this area are decreased. Trial Registration This study is a secondary analysis of the previous randomized study which was registered as UMIN000007537. Retrospectively registered (March 20th, 2012).


Asunto(s)
Mapeo Encefálico , Encéfalo/metabolismo , Glucosa/metabolismo , Luz , Adulto , Femenino , Fluorodesoxiglucosa F18 , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Adulto Joven
17.
Sens Actuators B Chem ; 266: 63-70, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32288251

RESUMEN

Colloidal gold lateral flow immunoassay strips (AuNPs-LFIS) have been widely applied as qualitative diagnostic tools for point-of-care tests (POCT). If strip readers were incorporated, their use could be extended to quantitative analysis. However, their cost and non-portability render commercial strip readers unavailable for use in either home testing, community or rural hospital diagnosis. This is particularly true for on-site testing. Here, a smartphone-based reader was designed and 3D-printed for quantitatively assess AuNPs-LFIS. The basic principle of the devise was relying on a smartphone's ambient light sensor (SPALS). This sensor was harnessed to measure the transmitted light intensities originating from the T-lines on the strips, the transmitted light intensities vary with concentration of AuNP on the T-lines. To validate this approach, our newly developed smartphone's ambient light sensor-based reader (SPALS-reader) was used to readout AuNPs-LFIS of three analytical targets: cadmium ion (Cd2+; limit of detection (LOD) was 0.16 ng/mL), clenbuterol (CL; LOD was 0.046 ng/mL), and porcine epidemic diarrhea virus (PEDV; LOD was 0.055 µg/mL). The result showed good consistency with the results of conventional image analysis approaches, indicating that the smartphone-based device is appropriate for use in AuNPs-LFIS readouts. Compared with the traditional analysis method, the developed AuNPs-LFIS reader is easier operated, lower cost and more portable, which provided an on-site quantitative analysis tool for AuNPs-LFIS and enhances the applied range of AuNPs-LFIS.

18.
Sensors (Basel) ; 18(11)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384499

RESUMEN

Optical communication promises to be a high-rate supplement for acoustic communication in short-range underwater applications. In the photic zone of oceanic and coastal waters, underwater optical communication systems are exposed by remaining sunlight. This ambient light generates additional noise in photodetectors, thus degrading system performance. This effect can be diminished by the use of optical filters. This paper investigates light field characteristics of different water types and potential interactions with optical underwater communication. A colored glass and different thin film bandpass filters are examined as filter/detector combinations under varying light and water conditions, and their physical constraints are depicted. This is underlined by various spectral measurements as well as optical signal-to-noise ratio calculations. The importance of matching the characteristics of the light emitting diode (LED) light source, the photodetector, and the filter on the ambient conditions using wider angle of incidents is emphasized.

19.
Angew Chem Int Ed Engl ; 57(43): 14125-14128, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30126024

RESUMEN

The synthesis, characterization, and photovoltaic performance of a series of indacenodithiophene (IDT)-based D-π-A organic dyes with varying electron-accepting units is presented. By control of the electron affinity, perfectly matching energy levels were achieved with a copper(I/II)-based redox electrolyte, reaching a high open-circuit voltage (>1.1 V) while harvesting a large fraction of solar photons at the same time. Besides achieving high power conversion efficiencies (PCEs) for dye-sensitized solar cells (DSCs), that is, 11.2 % under standard AM 1.5 G sunlight, and 28.4 % under a 1000 lux fluorescent light tube, this work provides a possible method for the design and fabrication of low-cost highly efficient DSCs.

20.
Anal Bioanal Chem ; 409(28): 6567-6574, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28871402

RESUMEN

Smartphone biosensors could be cost-effective, portable instruments to be used for the readout of liquid colorimetric assays. However, current reported smartphone colorimetric readers have relied on photos of liquid assays captured using a camera, and then analyzed using software programs. This approach results in a relatively low accuracy and low generality. In this work, we reported a novel smartphone colorimetric reader that has been integrated with an ambient light sensor and a 3D printed attachment for the readout of liquid colorimetric assays. The portable and low-cost ($0.15) reader utilized a simplified electronic and light path design. Furthermore, our reported smartphone colorimetric reader can be compatible with different smartphones. As a proof of principle, the utility of this device was demonstrated using it in conjunction with an enzyme-linked immunosorbent assay to detect zearalenone. Results were consistent with those obtained using a professional microplate reader. The developed smartphone colorimetric reader was capable of providing scalable, cost-effective, and accurate results for liquid colorimetric assays that related to clinical diagnoses, environment pollution, and food testing. Graphical abstract A novel smartphone colorimetric reader that has been integrated with an ambient light sensor and a 3D printed attachment for the readout of liquid colorimetric assays.


Asunto(s)
Colorimetría/instrumentación , Contaminantes Ambientales/análisis , Estrógenos no Esteroides/análisis , Contaminación de Alimentos/análisis , Teléfono Inteligente/instrumentación , Zearalenona/análisis , Colorimetría/economía , Diseño de Equipo , Análisis de los Alimentos/economía , Análisis de los Alimentos/instrumentación , Humanos , Límite de Detección , Impresión Tridimensional , Teléfono Inteligente/economía , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA