Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.951
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38959890

RESUMEN

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.

2.
Cell ; 186(9): 1950-1967.e25, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36996814

RESUMEN

Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Inspired by the discovery that mutations in SLC7A5, a transporter of metabolically essential large neutral amino acids (LNAAs), lead to autism, we employed metabolomic profiling to study the metabolic states of the cerebral cortex across different developmental stages. We found that the forebrain undergoes significant metabolic remodeling throughout development, with certain groups of metabolites showing stage-specific changes, but what are the consequences of perturbing this metabolic program? By manipulating Slc7a5 expression in neural cells, we found that the metabolism of LNAAs and lipids are interconnected in the cortex. Deletion of Slc7a5 in neurons affects the postnatal metabolic state, leading to a shift in lipid metabolism. Additionally, it causes stage- and cell-type-specific alterations in neuronal activity patterns, resulting in a long-term circuit dysfunction.


Asunto(s)
Aminoácidos Neutros , Transportador de Aminoácidos Neutros Grandes 1 , Femenino , Humanos , Embarazo , Aminoácidos Neutros/genética , Aminoácidos Neutros/metabolismo , Encéfalo/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Mutación , Neuronas/metabolismo , Animales , Ratones
3.
Cell ; 186(10): 2111-2126.e20, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172564

RESUMEN

Microglia are specialized brain-resident macrophages that play crucial roles in brain development, homeostasis, and disease. However, until now, the ability to model interactions between the human brain environment and microglia has been severely limited. To overcome these limitations, we developed an in vivo xenotransplantation approach that allows us to study functionally mature human microglia (hMGs) that operate within a physiologically relevant, vascularized immunocompetent human brain organoid (iHBO) model. Our data show that organoid-resident hMGs gain human-specific transcriptomic signatures that closely resemble their in vivo counterparts. In vivo two-photon imaging reveals that hMGs actively engage in surveilling the human brain environment, react to local injuries, and respond to systemic inflammatory cues. Finally, we demonstrate that the transplanted iHBOs developed here offer the unprecedented opportunity to study functional human microglia phenotypes in health and disease and provide experimental evidence for a brain-environment-induced immune response in a patient-specific model of autism with macrocephaly.


Asunto(s)
Microglía , Organoides , Humanos , Encéfalo , Macrófagos , Fenotipo
4.
Cell ; 186(9): 1930-1949.e31, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37071993

RESUMEN

Cortical circuits are composed predominantly of pyramidal-to-pyramidal neuron connections, yet their assembly during embryonic development is not well understood. We show that mouse embryonic Rbp4-Cre cortical neurons, transcriptomically closest to layer 5 pyramidal neurons, display two phases of circuit assembly in vivo. At E14.5, they form a multi-layered circuit motif, composed of only embryonic near-projecting-type neurons. By E17.5, this transitions to a second motif involving all three embryonic types, analogous to the three adult layer 5 types. In vivo patch clamp recordings and two-photon calcium imaging of embryonic Rbp4-Cre neurons reveal active somas and neurites, tetrodotoxin-sensitive voltage-gated conductances, and functional glutamatergic synapses, from E14.5 onwards. Embryonic Rbp4-Cre neurons strongly express autism-associated genes and perturbing these genes interferes with the switch between the two motifs. Hence, pyramidal neurons form active, transient, multi-layered pyramidal-to-pyramidal circuits at the inception of neocortex, and studying these circuits could yield insights into the etiology of autism.


Asunto(s)
Trastorno Autístico , Neocórtex , Células Piramidales , Animales , Femenino , Ratones , Embarazo , Trastorno Autístico/genética , Trastorno Autístico/patología , Mutación , Neocórtex/fisiología , Neuronas/fisiología , Células Piramidales/fisiología
5.
Cell ; 186(12): 2593-2609.e18, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37209683

RESUMEN

Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.


Asunto(s)
Síndrome del Cromosoma X Frágil , Expansión de Repetición de Trinucleótido , Humanos , Estructuras R-Loop , Metilación de ADN , Síndrome del Cromosoma X Frágil/genética , Epigénesis Genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
6.
Cell ; 185(23): 4409-4427.e18, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36368308

RESUMEN

Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the ∼85% of the ASD population that remain idiopathic.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Variaciones en el Número de Copia de ADN/genética , Genómica
7.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34767757

RESUMEN

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Asunto(s)
Trastorno Autístico/microbiología , Conducta Alimentaria , Microbioma Gastrointestinal , Adolescente , Factores de Edad , Trastorno Autístico/diagnóstico , Conducta , Niño , Preescolar , Heces/microbiología , Femenino , Humanos , Masculino , Fenotipo , Filogenia , Especificidad de la Especie
8.
Cell ; 184(18): 4772-4783.e15, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34388390

RESUMEN

Throughout development and aging, human cells accumulate mutations resulting in genomic mosaicism and genetic diversity at the cellular level. Mosaic mutations present in the gonads can affect both the individual and the offspring and subsequent generations. Here, we explore patterns and temporal stability of clonal mosaic mutations in male gonads by sequencing ejaculated sperm. Through 300× whole-genome sequencing of blood and sperm from healthy men, we find each ejaculate carries on average 33.3 ± 12.1 (mean ± SD) clonal mosaic variants, nearly all of which are detected in serial sampling, with the majority absent from sampled somal tissues. Their temporal stability and mutational signature suggest origins during embryonic development from a largely immutable stem cell niche. Clonal mosaicism likely contributes a transmissible, predicted pathogenic exonic variant for 1 in 15 men, representing a life-long threat of transmission for these individuals and a significant burden on human population health.


Asunto(s)
Crecimiento y Desarrollo , Mosaicismo , Espermatozoides/metabolismo , Adolescente , Envejecimiento/sangre , Alelos , Células Clonales , Estudios de Cohortes , Humanos , Masculino , Modelos Biológicos , Mutación/genética , Factores de Riesgo , Factores de Tiempo , Adulto Joven
9.
Cell ; 184(19): 5053-5069.e23, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34390642

RESUMEN

Genetic perturbations of cortical development can lead to neurodevelopmental disease, including autism spectrum disorder (ASD). To identify genomic regions crucial to corticogenesis, we mapped the activity of gene-regulatory elements generating a single-cell atlas of gene expression and chromatin accessibility both independently and jointly. This revealed waves of gene regulation by key transcription factors (TFs) across a nearly continuous differentiation trajectory, distinguished the expression programs of glial lineages, and identified lineage-determining TFs that exhibited strong correlation between linked gene-regulatory elements and expression levels. These highly connected genes adopted an active chromatin state in early differentiating cells, consistent with lineage commitment. Base-pair-resolution neural network models identified strong cell-type-specific enrichment of noncoding mutations predicted to be disruptive in a cohort of ASD individuals and identified frequently disrupted TF binding sites. This approach illustrates how cell-type-specific mapping can provide insights into the programs governing human development and disease.


Asunto(s)
Corteza Cerebral/embriología , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Análisis de la Célula Individual , Astrocitos/citología , Diferenciación Celular , Linaje de la Célula/genética , Análisis por Conglomerados , Aprendizaje Profundo , Epigénesis Genética , Lógica Difusa , Glutamatos/metabolismo , Humanos , Mutación/genética , Neuronas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética
10.
Cell ; 182(3): 754-769.e18, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32610082

RESUMEN

To discover regulatory elements driving the specificity of gene expression in different cell types and regions of the developing human brain, we generated an atlas of open chromatin from nine dissected regions of the mid-gestation human telencephalon, as well as microdissected upper and deep layers of the prefrontal cortex. We identified a subset of open chromatin regions (OCRs), termed predicted regulatory elements (pREs), that are likely to function as developmental brain enhancers. pREs showed temporal, regional, and laminar differences in chromatin accessibility and were correlated with gene expression differences across regions and gestational ages. We identified two functional de novo variants in a pRE for autism risk gene SLC6A1, and using CRISPRa, demonstrated that this pRE regulates SCL6A1. Additionally, mouse transgenic experiments validated enhancer activity for pREs proximal to FEZF2 and BCL11A. Thus, this atlas serves as a resource for decoding neurodevelopmental gene regulation in health and disease.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica/genética , Corteza Prefrontal/embriología , Telencéfalo/embriología , Animales , Trastorno Autístico/genética , Línea Celular , Secuenciación de Inmunoprecipitación de Cromatina , Eucromatina/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Ontología de Genes , Predisposición Genética a la Enfermedad , Edad Gestacional , Humanos , Ratones , Ratones Transgénicos , Motivos de Nucleótidos , Mutación Puntual , Corteza Prefrontal/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Análisis Espacio-Temporal , Telencéfalo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Cell ; 182(5): 1170-1185.e9, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32795412

RESUMEN

Loss of the gene (Fmr1) encoding Fragile X mental retardation protein (FMRP) causes increased mRNA translation and aberrant synaptic development. We find neurons of the Fmr1-/y mouse have a mitochondrial inner membrane leak contributing to a "leak metabolism." In human Fragile X syndrome (FXS) fibroblasts and in Fmr1-/y mouse neurons, closure of the ATP synthase leak channel by mild depletion of its c-subunit or pharmacological inhibition normalizes stimulus-induced and constitutive mRNA translation rate, decreases lactate and key glycolytic and tricarboxylic acid (TCA) cycle enzyme levels, and triggers synapse maturation. FMRP regulates leak closure in wild-type (WT), but not FX synapses, by stimulus-dependent ATP synthase ß subunit translation; this increases the ratio of ATP synthase enzyme to its c-subunit, enhancing ATP production efficiency and synaptic growth. In contrast, in FXS, inability to close developmental c-subunit leak prevents stimulus-dependent synaptic maturation. Therefore, ATP synthase c-subunit leak closure encourages development and attenuates autistic behaviors.


Asunto(s)
Adenosina Trifosfato/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Subunidades de Proteína/metabolismo , Animales , Línea Celular , Ciclo del Ácido Cítrico/fisiología , Fibroblastos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo , ARN Mensajero , Sinapsis/metabolismo
12.
Cell ; 183(7): 1742-1756, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33357399

RESUMEN

It is unclear how disease mutations impact intrinsically disordered protein regions (IDRs), which lack a stable folded structure. These mutations, while prevalent in disease, are frequently neglected or annotated as variants of unknown significance. Biomolecular phase separation, a physical process often mediated by IDRs, has increasingly appreciated roles in cellular organization and regulation. We find that autism spectrum disorder (ASD)- and cancer-associated proteins are enriched for predicted phase separation propensities, suggesting that IDR mutations disrupt phase separation in key cellular processes. More generally, we hypothesize that combinations of small-effect IDR mutations perturb phase separation, potentially contributing to "missing heritability" in complex disease susceptibility.


Asunto(s)
Enfermedad/genética , Mutación/genética , Cromatina/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Modelos Biológicos , Proteoma/metabolismo
13.
Cell ; 180(3): 568-584.e23, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31981491

RESUMEN

We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n = 35,584 total samples, 11,986 with ASD). Using an enhanced analytical framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate of 0.1 or less. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 show higher frequencies in individuals ascertained to have ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In cells from the human cortex, expression of risk genes is enriched in excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.


Asunto(s)
Trastorno Autístico/genética , Corteza Cerebral/crecimiento & desarrollo , Secuenciación del Exoma/métodos , Regulación del Desarrollo de la Expresión Génica , Neurobiología/métodos , Estudios de Casos y Controles , Linaje de la Célula , Estudios de Cohortes , Exoma , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación Missense , Neuronas/metabolismo , Fenotipo , Factores Sexuales , Análisis de la Célula Individual/métodos
14.
Cell ; 180(6): 1178-1197.e20, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32200800

RESUMEN

Social impairment is frequently associated with mitochondrial dysfunction and altered neurotransmission. Although mitochondrial function is crucial for brain homeostasis, it remains unknown whether mitochondrial disruption contributes to social behavioral deficits. Here, we show that Drosophila mutants in the homolog of the human CYFIP1, a gene linked to autism and schizophrenia, exhibit mitochondrial hyperactivity and altered group behavior. We identify the regulation of GABA availability by mitochondrial activity as a biologically relevant mechanism and demonstrate its contribution to social behavior. Specifically, increased mitochondrial activity causes gamma aminobutyric acid (GABA) sequestration in the mitochondria, reducing GABAergic signaling and resulting in social deficits. Pharmacological and genetic manipulation of mitochondrial activity or GABA signaling corrects the observed abnormalities. We identify Aralar as the mitochondrial transporter that sequesters GABA upon increased mitochondrial activity. This study increases our understanding of how mitochondria modulate neuronal homeostasis and social behavior under physiopathological conditions.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Ácido Aspártico/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Glucosa/metabolismo , Homeostasis , Humanos , Masculino , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Conducta Social , Transmisión Sináptica , Ácido gamma-Aminobutírico/genética
15.
Cell ; 177(6): 1600-1618.e17, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150625

RESUMEN

Autism spectrum disorder (ASD) manifests as alterations in complex human behaviors including social communication and stereotypies. In addition to genetic risks, the gut microbiome differs between typically developing (TD) and ASD individuals, though it remains unclear whether the microbiome contributes to symptoms. We transplanted gut microbiota from human donors with ASD or TD controls into germ-free mice and reveal that colonization with ASD microbiota is sufficient to induce hallmark autistic behaviors. The brains of mice colonized with ASD microbiota display alternative splicing of ASD-relevant genes. Microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. Indeed, treatment of an ASD mouse model with candidate microbial metabolites improves behavioral abnormalities and modulates neuronal excitability in the brain. We propose that the gut microbiota regulates behaviors in mice via production of neuroactive metabolites, suggesting that gut-brain connections contribute to the pathophysiology of ASD.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Síntomas Conductuales/microbiología , Microbioma Gastrointestinal/fisiología , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Bacterias , Conducta Animal/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Microbiota , Factores de Riesgo
16.
Cell ; 178(4): 850-866.e26, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398340

RESUMEN

We performed a comprehensive assessment of rare inherited variation in autism spectrum disorder (ASD) by analyzing whole-genome sequences of 2,308 individuals from families with multiple affected children. We implicate 69 genes in ASD risk, including 24 passing genome-wide Bonferroni correction and 16 new ASD risk genes, most supported by rare inherited variants, a substantial extension of previous findings. Biological pathways enriched for genes harboring inherited variants represent cytoskeletal organization and ion transport, which are distinct from pathways implicated in previous studies. Nevertheless, the de novo and inherited genes contribute to a common protein-protein interaction network. We also identified structural variants (SVs) affecting non-coding regions, implicating recurrent deletions in the promoters of DLG2 and NR3C2. Loss of nr3c2 function in zebrafish disrupts sleep and social function, overlapping with human ASD-related phenotypes. These data support the utility of studying multiplex families in ASD and are available through the Hartwell Autism Research and Technology portal.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Linaje , Mapas de Interacción de Proteínas/genética , Animales , Niño , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Guanilato-Quinasas/genética , Humanos , Patrón de Herencia/genética , Aprendizaje Automático , Masculino , Núcleo Familiar , Regiones Promotoras Genéticas/genética , Receptores de Mineralocorticoides/genética , Factores de Riesgo , Proteínas Supresoras de Tumor/genética , Secuenciación Completa del Genoma , Pez Cebra/genética
17.
Cell ; 178(4): 867-886.e24, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398341

RESUMEN

Somatosensory over-reactivity is common among patients with autism spectrum disorders (ASDs) and is hypothesized to contribute to core ASD behaviors. However, effective treatments for sensory over-reactivity and ASDs are lacking. We found distinct somatosensory neuron pathophysiological mechanisms underlie tactile abnormalities in different ASD mouse models and contribute to some ASD-related behaviors. Developmental loss of ASD-associated genes Shank3 or Mecp2 in peripheral mechanosensory neurons leads to region-specific brain abnormalities, revealing links between developmental somatosensory over-reactivity and the genesis of aberrant behaviors. Moreover, acute treatment with a peripherally restricted GABAA receptor agonist that acts directly on mechanosensory neurons reduced tactile over-reactivity in six distinct ASD models. Chronic treatment of Mecp2 and Shank3 mutant mice improved body condition, some brain abnormalities, anxiety-like behaviors, and some social impairments but not memory impairments, motor deficits, or overgrooming. Our findings reveal a potential therapeutic strategy targeting peripheral mechanosensory neurons to treat tactile over-reactivity and select ASD-related behaviors.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Agonistas del GABA/farmacología , Ácidos Isonicotínicos/farmacología , Fenotipo , Células Receptoras Sensoriales/efectos de los fármacos , Tacto/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Ansiedad/tratamiento farmacológico , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Agonistas del GABA/uso terapéutico , Ácidos Isonicotínicos/uso terapéutico , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética , Inhibición Prepulso/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo
18.
Cell ; 177(4): 986-998.e15, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982599

RESUMEN

By observing their social partners, primates learn about reward values of objects. Here, we show that monkeys' amygdala neurons derive object values from observation and use these values to simulate a partner monkey's decision process. While monkeys alternated making reward-based choices, amygdala neurons encoded object-specific values learned from observation. Dynamic activities converted these values to representations of the recorded monkey's own choices. Surprisingly, the same activity patterns unfolded spontaneously before partner's choices in separate neurons, as if these neurons simulated the partner's decision-making. These "simulation neurons" encoded signatures of mutual-inhibitory decision computation, including value comparisons and value-to-choice conversions, resulting in accurate predictions of partner's choices. Population decoding identified differential contributions of amygdala subnuclei. Biophysical modeling of amygdala circuits showed that simulation neurons emerge naturally from convergence between object-value neurons and self-other neurons. By simulating decision computations during observation, these neurons could allow primates to reconstruct their social partners' mental states.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Toma de Decisiones/fisiología , Animales , Conducta Animal/fisiología , Conducta de Elección/fisiología , Relaciones Interpersonales , Aprendizaje/fisiología , Macaca mulatta/fisiología , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Recompensa
19.
Cell ; 179(3): 750-771.e22, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626773

RESUMEN

Tissue-specific regulatory regions harbor substantial genetic risk for disease. Because brain development is a critical epoch for neuropsychiatric disease susceptibility, we characterized the genetic control of the transcriptome in 201 mid-gestational human brains, identifying 7,962 expression quantitative trait loci (eQTL) and 4,635 spliceQTL (sQTL), including several thousand prenatal-specific regulatory regions. We show that significant genetic liability for neuropsychiatric disease lies within prenatal eQTL and sQTL. Integration of eQTL and sQTL with genome-wide association studies (GWAS) via transcriptome-wide association identified dozens of novel candidate risk genes, highlighting shared and stage-specific mechanisms in schizophrenia (SCZ). Gene network analysis revealed that SCZ and autism spectrum disorder (ASD) affect distinct developmental gene co-expression modules. Yet, in each disorder, common and rare genetic variation converges within modules, which in ASD implicates superficial cortical neurons. More broadly, these data, available as a web browser and our analyses, demonstrate the genetic mechanisms by which developmental events have a widespread influence on adult anatomical and behavioral phenotypes.


Asunto(s)
Trastorno del Espectro Autista/genética , Sitios de Carácter Cuantitativo/genética , Esquizofrenia/genética , Transcriptoma/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Femenino , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Edad Gestacional , Humanos , Masculino , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Empalme del ARN/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología
20.
Cell ; 173(6): 1356-1369.e22, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29856954

RESUMEN

Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.


Asunto(s)
Encéfalo/embriología , Corteza Cerebral/fisiología , Neurogénesis/fisiología , Receptor Notch2/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Femenino , Eliminación de Gen , Genes Reporteros , Gorilla gorilla , Células HEK293 , Humanos , Neocórtex/citología , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Pan troglodytes , Receptor Notch2/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA